Skip to main content

Lipids

  • Chapter
Food Analysis

Abstract

Lipids have at least three important functions in foods: culinary, physiological, and nutritional. The ability of lipids to carry odors and flavors and their contribution to the palatability of meats, to the tenderness of baked products, and to the richness and texture of ice cream are examples of the first kind. As lipids serve as a convenient means of rapid heat transfer, they have found increasing use in commercial frying operations. Dietary lipids represent the most compact chemical energy available to man. They contain twice the caloric value of an equivalent weight of sugar. They are vital to the structure and biological function of cells. Dietary lipids provide the essential linoleic acid, which has both a structural and functional role in animal tissue, and are carriers of the nutritionally essential fat-soluble vitamins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Alexander, D. E., Silvela, L. S., Colins, F. L, and Rodgers, R. C. (1967). Analysis of oil content of maize by wide-line NMR. J. Am. Oil Chem. Soc. 44, 555–558.

    Article  CAS  Google Scholar 

  • Allen, C. F., Good, P., Davis, H. F., Chisum, P., and Fowler, S. D. (1966). Methodology for separation of plant lipids and application to spinach leaf and chloroplast lamellae. J. Am. Oil Chem. Soc. 43, 223–231.

    Article  CAS  Google Scholar 

  • Allen, J. C., and Hamilton, R. J., Eds. (1983). Rancidity in Foods. Applied Science Publishers, London.

    Google Scholar 

  • Allen, R. R. (1955). Determination of unsaturation. J. Am. Oil Chem. Soc. 32, 671–674.

    Article  CAS  Google Scholar 

  • Anon. (1950). Deutsche Gesellschaft fur Fettwissenschaft. D. G. F. Einheitsmethoden. Munster, Germany.

    Google Scholar 

  • Anon. (1954). Standard Methods for the Analysis of Oils and Fats. International Union of Pure and Applied Chemistry, Paris.

    Google Scholar 

  • Anon. (1960). Standard Methods for the Examination of Dairy Products, 11th ed. Am. Public Health Assoc., New York.

    Google Scholar 

  • Anon. (1967). IUPAC-IUB Commission on Biochemical Nomenclature (CBN). The nomenclature of lipids. Eur. J. Biochem. 2, 127–131.

    Article  Google Scholar 

  • Anon. (1983). Cereal Laboratory Methods, 8th ed. Am. Assoc. Cereal Chemists, St. Paul, MN.

    Google Scholar 

  • Barbano, D. M., Clark, J. L., and Dunham, C. E. (1988). Comparison of Babcock and ether extraction methods for the determination of fat content of milk: a collaborative study. J. Assoc. Off. Anal. Chem. 71, 898–914.

    CAS  Google Scholar 

  • Barnard, D., and Hargrave, K. R. (1951). Analytical studies concerned with the reactions between organic peroxides and thio-esters. L Analysis of organic peroxides. Anal. Chim. Acta 5, 476–488.

    Article  CAS  Google Scholar 

  • Barnes, P. J., ed. (1983). Lipids in Cereal Chemistry and Technology. Academic Press, London.

    Google Scholar 

  • Bauman, L. F., Conway, T. F., and Watson, S. A. (1963). Heritability of variations in oil content of individual oil kernels. Science139, 498–499.

    Article  CAS  Google Scholar 

  • Baumann, L. A. (1959). Evaluating refined cottonseed oils in storage. J. Am. Oil Chem. Soc. 28–34.

    Google Scholar 

  • Bezecna, L., Tankl, L., and Konradova, M. (1991). The determination of oil content in winter rape by NMR without affecting the biological properties of seeds. Rostl. Vyroba 75–80 (Chem. Abstr. 116, 322999u).

    Google Scholar 

  • Biggs, D. A. (1967). Milk analysis with the infrared milk analyzer. J. Dairy Sci. 50, 799–803.

    Article  Google Scholar 

  • Bhat, H. K., and Ansari, G. A. S. (1989). Improved separation of lipid esters by thin-layer chromatography. J. Chromatogr. 483, 369–378.

    Article  CAS  Google Scholar 

  • Bidder, T. G., and Sipka, B. M. (1989). A modification of the thiobarbituric acid reaction. Lipids24, 656–658.

    Article  CAS  Google Scholar 

  • Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    Article  CAS  Google Scholar 

  • Bloor, J. (1925). Biochemistry of fats. Chem. Rev. 2, 243–300.

    Article  CAS  Google Scholar 

  • Boekenogen, H. A. (1964). Analysis and Characterization of Oils, Fats, and Fat Products. Interscience Publishers, New York.

    Google Scholar 

  • Bostian, M. L., Webb, N. B., and Hadden, J. P. (1984). Evaluation of rapid fat, moisture, and protein determination in meats and meat products, using an automatic meat analyzer. J. Food Sci. 49, 1347–1349.

    Article  Google Scholar 

  • Brown, F. (1952). The estimation of vitamin E. Separation of tocopherol mixtures occurring in natural products by paper chromatography. Bioehem. J. 51, 237–239.

    CAS  Google Scholar 

  • Burns, D. A. (1981). Automated sample preparation. Ami. Chem. 53, 1402A, 1404A, 1406A, 1408A, 1410A, 1412A, 1414A, 1417A, 1418A.

    Google Scholar 

  • Campen, W. A. C., and Greerling, H. (1954). Fast and simple determination of the amount of crude fat and fatty acids in animal feed—a method of general application.Chem. Weekblad50, 385–393. [Chem. Abstr. 48, 10952i.]

    CAS  Google Scholar 

  • Cannon, J. H. (1964). Sterol acetate test for foreign fats in dairy products. J. Assoe. Off. Agrie. Chem. 47, 577–580.

    CAS  Google Scholar 

  • Chan, H. W-S., Ed. (1987). Autoxidation of Unsaturated Lipids. Academic Press, London.

    Google Scholar 

  • Cocks, L. V., and Van Rede, C. (1966). Laboratory Handbook for Oil and Fat Analysts. Academic Press, New York.

    Google Scholar 

  • Collins, F. L, Alexander, D. E., Rodgers, R. C., and Silvella, L. S. (1967). Analysis of oil content of soybeans by wide-line NMR. J. Am. Oil Chem. Soe. 44, 708–710.

    Article  CAS  Google Scholar 

  • Colquhoun, L J., and Grant, A. (1989). Solid state NMR spectroscopy of fats. Agrie. Food Chem. Consum. Proe. Eur. Conf. Food Chem. 5th 2, 668–672.

    CAS  Google Scholar 

  • Conway, T. F. (1960). Proc. Symposium on High-Oil Corn. Dept. Agronomy, Univ. Illinois. Cited by Alexander et al. (1967).

    Google Scholar 

  • Conway, T. F., and Johnson, L. F. (1969). Nuclear magnetic resonance measurement of oil “unsaturation” in single viable com kernels.Science164, 827–828.

    Article  CAS  Google Scholar 

  • Craig, L. C. (1944). Identification of small amounts of organic compounds by distribution studies. II. Separation by countercurrent distribution. J. Biol. Chem. 155, 519–534.

    CAS  Google Scholar 

  • Cronin, D. A., and Mckenzie, K. (1990). A rapid method for the determination of fat in foodstuffs by infrared spectrometry. Food Chem. 35, 39–49.

    Article  CAS  Google Scholar 

  • Cropper, F. R., and Heywood, A. (1953). Analytical separation of the methyl esters of the C12-C22 fatty acids by vapor-phase chromatography. Nature172, 1101–1102.

    Article  CAS  Google Scholar 

  • Dahle, L. K., Hill, E. G., and Holman, R. T. (1962). The thiobarbituric acid reaction and the autoxidation of polyunsaturated fatty acid methyl esters. Areh. Biochem. Biophys. 98, 253–261.

    Article  CAS  Google Scholar 

  • de Man, J. M., and de Man, L. (1984). Automated AOM test for fat stability.J. Am. Oil Chem. Soe. 61, 534–536.

    Article  Google Scholar 

  • Derbesy, M., and Richert, M. T. (1979). Detection of shea butter in cocoa butter. Oleagi- neaux34, 405–409. (French)

    CAS  Google Scholar 

  • Derde, M.-P., Coomans, D., and Massart, D. L. (1984). SIMCA (Soft Independent Modelling of Class Analogy) demonstrated with characterization and classifica»n of Italian olive oil. J. Assoe. Off. Anal. Chem. 67, 721–727.

    CAS  Google Scholar 

  • Dessy, R. (1983). Robots in the laboratory. II. Anal. Chem. 55, 1232A, 123A, 1238A, 1240A, 1242A.

    Article  Google Scholar 

  • Deuel, H. J., Jr. (1951). The Lipids, Their Chemistry and Biochemistry, Vol. 1. Interscience Publishers, New York.

    Google Scholar 

  • Dick, R., and Miserez, A. (1980). Gas chromatographic detection of adulteration of cocoa butter. Mitt. Geb. Lebensm. Hyg. 71, 499–508. (German)

    CAS  Google Scholar 

  • Dieffenbacher, A. (1991). New perspectives in oil and fat analysis.Mitt. GebieteLebensm. Hyg. 82, 80–97.

    CAS  Google Scholar 

  • Drozdowski, B., and Szukalska, E. (1987). A rapid instrumental method for the evaluation of the stability of fats. J. Am. Oil Chem. Soc. 64, 1008–1011.

    Article  CAS  Google Scholar 

  • Dugan, L., Jr. (1955). Stability and rancidity. J. Am. Oil Chem. Soc. 32, 605–609.

    Article  CAS  Google Scholar 

  • Dutton, H. J. (1961). Some applications of mass spectrometry to lipid research. J. Am. Oil Chem. Soc. 38, 660–664.

    Article  CAS  Google Scholar 

  • Eisner, J., and Firestone, D. (1963). Gas chromatography of unsaponifiable matter. II. Identification of vegetable oils by their sterols. J. Assoc. Off. Agric. Chem. 46, 542–550.

    CAS  Google Scholar 

  • Eisner, J., Wong, N. P., Firestone, D., and Bond, J. (1962). Gas chromatography of unsaponifiable matter. 1. Butter and margarine sterols. J. Assoc. Off. Agric. Chem. 45, 337–342.

    CAS  Google Scholar 

  • Entenmann, C. (1961). The preparation of tissue lipid extracts.J. Am. Oil Chem. Soc. 38, 534–538.

    Article  Google Scholar 

  • Ettinger, C. L., Malanoski, A., and Kirschenbaum, H. (1965). Detection and estimation of animal fats in vegetable oils by gas chromatography. J. Assoc. Off. Agric. Chem. 48, 1186–1191.

    CAS  Google Scholar 

  • Falbe, J., and Weber, J. (1974). Determination of fats, oils, and waxes. In Methodicum Chimicum, Vol. I, Part B, Analytical Methods, Micromethods, Biological Methods, Quality Control, Automatization (F. Korte, ed.), pp. 970–990. Academic Press, New York.

    Google Scholar 

  • Faust, V., and Keller, H. (1976). Automation of analyses in the clinical-chemical laboratory. Chem. Ing. Techn. 48, 419–428. (German)

    Article  CAS  Google Scholar 

  • Fehr, W. F., Collins, F. I., and Weber, C. R. (1968). Evaluation of methods for proteins and oil determination in soybean seed. Crop Sci. 8, 47–49.

    Article  CAS  Google Scholar 

  • Firestone, D. (1991). Official Methods and Recommended Practices of the American Oil Chemists Society, 4th ed.. Champaign, IL.

    Google Scholar 

  • Fioriti, J. A. (1977). Measuring flavor deterioration of fats, oils, dried emulsions and foods. J. Am. Oil Chem. Soc. 54, 450–453.

    Article  CAS  Google Scholar 

  • Fitzgerald, J. W., Rings, G. R., and Winder, W. C. (1961). Ultrasonic method for measurement of fluids-nonfat and milk fat in fluid milk. J. Dairy Sci. 44, 1165.

    Google Scholar 

  • Folch, J., Lees, M., and Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.

    CAS  Google Scholar 

  • Fontell, K., Holman, R. T., and Lambertsen, G. (1960). Some new methods for separation and analysis of fatty acids and other lipids. J. Lipid Res. 1, 391–404.

    CAS  Google Scholar 

  • Freeman, C. P., and West, D. (1966). Complete separation of lipid classes on a single thin-layer plate. J. Lipid Res. 7, 324–327.

    CAS  Google Scholar 

  • Fritsch, C. W., Egberg, D. C., and Magnuson, J. S. (1979). Changes in dielectric constant as a measure of frying oil deterioration. J. Am. Oil Chem. Soc. 56, 746–752.

    Article  CAS  Google Scholar 

  • Galliard, T., and Mercier, E. I., Eds. (1975). Recent Advances in the Chemistry and Biochemistry of Plant Lipids. Academic Press, London.

    Google Scholar 

  • Gray, J. I. (1978). Measurement of lipid oxidation: a review. J. Am. Oil Chem. Soc. 55, 539–546.

    Article  CAS  Google Scholar 

  • Graziano, V. J. (1979). Portable instrument rapidly measures quality of frying fat in food service operations. Food Technol. 33(9), 50, 56, 57.

    Google Scholar 

  • Grosch, W. (1975). Course and analysis of oxidative fat deterioration. Z. Lebensm. Unters. Forsch. 157, 70–83. (German)

    Google Scholar 

  • Gunstone, F. D., and Norris, F. A. (1983). Lipids in Foods—Chemistry, Biochemistry and Technology. Pergamon Press, Oxford.

    Google Scholar 

  • Gurr, M. I., and James, A. T. (1980). Lipid Biochemistry: An Introduction, 3rd ed. Chapman & Hall, London.

    Book  Google Scholar 

  • Hamilton, R. J., and Bhati, A., Eds. (1980). Fats and Oils: Chemistry and Technology. Applied Science Publishers, London.

    Google Scholar 

  • Hangaard, G., and Pettinati, J. D. (1959). Photometric milk fat determination. J. Dairy Sci. 42, 1255–1275.

    Article  Google Scholar 

  • Helrich, K. (1980). Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. Assoc. Off. Anal. Chemists, Washington, DC.

    Google Scholar 

  • Helrich, K. (editor) (1990) Official Methods of Analysis of the Association of Official Analytical Chemists. 15 th ed. AOAC, Arlington, VA.

    Google Scholar 

  • Henick, A. S., Benca, M. F., and Mitchell, J. H. (1954). Estimating carbonyl compounds in rancid fats and foods. J. Am. Oil Chem. Soc. 31, 88–91.

    Article  CAS  Google Scholar 

  • Hilditch, T. P., and Williams, P. N. (1964). The Chemical Constitution of Natural Fats, 4th ed. Chapman and Hall, London.

    Google Scholar 

  • Hirsch, J., and Ahrens, E. H., Jr. (1958). The separation of complex lipide mixtures by the use of silicic acid chromatography. J. Biol. Chem. 233, 311–320.

    CAS  Google Scholar 

  • Holman, R. T., Lundberg, W. O., and Burr, G. O. (1945). Spectrophotometric studies of the oxidation of fats. III. Ultraviolet absorption spectra of oxidized octadecatrienoic acids. J. Am. Chem. Soc. 67, 1390–1394.

    Article  CAS  Google Scholar 

  • Holman, R. T., and Rahm, J. J. (1966). Analysis and characterization of polyunsaturated fatty acids. Prog. Chem. Fats Other Lipids9(1), 15–90.

    CAS  Google Scholar 

  • Horning, E. C., and Vandenheuvel, W. J. A. (1964). Gas chromatography in lipid investigations. J. Am. Oil Chem. Soc. 41, 707–716.

    Article  CAS  Google Scholar 

  • Hornstein, I., Crowe, P. F., and Ruck, J. B. (1967). Separation of muscle lipids into classes by nonchromatographic techniques. Anal. Chem. 39, 352–354.

    Article  CAS  Google Scholar 

  • Hoyland, D. V., and Taylor, A. J. (1989). a modified distillation method for the detection of fat oxidation in foods. J. Food Sci. Technol. 24, 153–161.

    Google Scholar 

  • Hung, S. S. O., and Slinger, S. J. (1981). Studies of chemical methods of assessing the oxidative quality and storage stability of feeding oils. J. Am. Oil Chem. Soc. 58, 785–788.

    Article  CAS  Google Scholar 

  • Hunt, W. H., Neustadt, M. H., Hart, J. R., and Zeleny, L. (1952). A rapid dielectric method for determining the oil content of soybeans. J. Am. Oil Chem. Soc. 29, 258–261.

    Article  CAS  Google Scholar 

  • Hunt, W. H., Neustadt, M. H., Shurkus, A. A., and Zeleny, L. (1951). A simple iodine- number refractometer for testing flaxseed and soybeans. J. Am. Oil Chem. Soc. 28, 5–8.

    Article  CAS  Google Scholar 

  • Hussin, A. B. B. H., and Povey, M. J. W. (1984). A study of dilation and acoustic propagation in solidifying fats and oils. II. Experimental. J. Am. Oil Chem. Soc. 61, 560–564.

    Article  Google Scholar 

  • Iskander, F. Y. (1989). Determination of iodine value by bromine/instrumental neutron activation analysis. J. Assoc. Off. Anal. Chem. 72, 498–500.

    CAS  Google Scholar 

  • James, A. T., and Martin, A. J. P. (1952). Gas-liquid partition chromatography; the separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J. 50, 679–690.

    CAS  Google Scholar 

  • Jamieson, G. R., and Reid, E. H. (1965). The analysis of oils and fats by gas chromatography. J. Chromatogr. 17, 230–237.

    Article  CAS  Google Scholar 

  • Janero, D. R., and Burghardt, B. (1989). Thiobarbituric acid-reactive malonaldehyde formation during superoxide-dependent iron-catalyzed lipid peroxidation: influence of peroxidation conditions. Lipids24, 125–131.

    Article  CAS  Google Scholar 

  • Jewell, G. G. (1983). The application of NMR to oils and fats. J. Sci. FoodAgric. 34, 1024.

    Google Scholar 

  • Johnson, L. F., and Shoolery, J. N. (1962). Determination of unsaturation and average molecular weight of natural fats by nuclear magnetic resonance.Anal. Chem. 34, 1136–1139.

    Article  CAS  Google Scholar 

  • Kakuda, Y., Stanley, D. W., and van de Voort, F. R. (1981). Determination of TBA number by high-performance liquid chromatography. J. Am. Oil Chem. Soc. 58, 773–775.

    Article  CAS  Google Scholar 

  • Kaufmann, H. P. (1958). Analysis of Fat and Fat Products, Vols. 1 and 2. Springer-Verlag, Berlin. (German)

    Google Scholar 

  • Kaufmann, H. P., Mankel, G., and Lehmann, K. (1961). Gas chromatography of fatty compounds. I. General survey. Fette, Scifen, Anstrichm. 63, 1109–1116. [Chem. Abstr. 56, 11729h.]

    Article  Google Scholar 

  • Kaufmann, H. P., Seher, A., and Mankel, G. (1962). Gas chromatography of fats. II. Quantitative applications. Fette, Scifen, Anstrichm. 64, 501–509. [Chem. Abstr. 57, 7399b.]

    Article  CAS  Google Scholar 

  • Ke, P. J., Cervantes, E., and Robles-Martinez, C. (1984). Determination of thiobarbituric reactive substances (TBARS) in fish tissue by an improved distillation-spectrophotometric method. J. Sci. FoodAgric. 35, 1248–1254.

    Article  CAS  Google Scholar 

  • Keeney, M. (1956). A survey of United States butterfat constants. II. Butyric acid. J. Assoc. Off. Agric. Chem. 39, 212–225.

    CAS  Google Scholar 

  • Kessler, G., and Lederer, H. (1965). Cited by Levine (1967).

    Google Scholar 

  • Kim, H. Y., and Salem, N. (1990). Separation of lipid classes by solid phase extraction. J. Lipid Res. 31, 2285–2289.

    CAS  Google Scholar 

  • King, J. D. (1966). N. M. R. analysis of meat composition. Proc. Meat. Ind. Res. Conf, Chicago, 149–157. [Chem. Abstr. 67, 115886u.]

    Google Scholar 

  • Kochhar, S. p., and Rossell, j. b. (1987). Analysis of oils and fats using infra-red spectroscopy. Int. Analyst Issue 5, 23–26.

    Google Scholar 

  • Kohn, H. I., and Liversedge, N. (1944). A new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, adrenaline, and menadione. J. Pharmacol. 82, 292–300.

    CAS  Google Scholar 

  • Kohn, R. (1964). Application of gas chromatography in analyses of foods. Qual. Plant. Mat. Veg. 11, 150–167. (German)

    Google Scholar 

  • de Koning, A. J., and Mol, T. H. (1989). Lipid determination in fish meal: an investigation of three standard methods applied to stabilised and non-stabilised anchovy meals at increasing stages of maturity. J. Sci. Food Agric. 46, 259–266.

    Article  Google Scholar 

  • Kosugi, H., Kojima, T., and Kikugawa, K. (1989). Thiobarbituric acid-reactive substances from peroxidized lipids. Lipids24, 873–881.

    Article  CAS  Google Scholar 

  • Kovacs, L., Pick, J., and Pucsoc, J. (1989). Lipid analysis by high-performance thin-layer chromatography. I. Microtechniques. J. Planar Chromatogr.—Mod. TLC2, 289–391.

    Google Scholar 

  • Kropf, D. H. (1984). New rapid methods for moisture and fat analysis: a review. J. Food Qual. 6, 199–210.

    Article  CAS  Google Scholar 

  • Kuksis, A. (1966). Quantitative lipid analysis by combined thin-layer and gas-liquid chromatographic systems. Chromatogr. Rev. 8, 172–207.

    Article  CAS  Google Scholar 

  • Kuksis, A., Ed. (1978). Handbook of Lipid Research, Vol. I, Fatty Acids and Glycerides. Plenum Press, New York.

    Google Scholar 

  • Kuksis, A., and Mccarthy, M. J. (1964). Triglyceride gas chromatography as a means of detecting butterfat adulteration. J. Am. Oil Chem. Soc. 41, 17–21.

    Article  Google Scholar 

  • Kurtz, F. E. (1965). The lipids of milk-composition and properties. In Fundamentals of Dairy Chemistry (B. H. Webb and A. H. Johnson, eds.). AVI Publishing Co., Westport, CT.

    Google Scholar 

  • Kwon, T. W., and Olcott, H. S. (1966). Thiobarbituric-acid-reactive substances from au- toxidized or ultraviolet irradiated unsaturated fatty esters and squalene. J. Food Sci. 31, 552–557.

    Article  CAS  Google Scholar 

  • Lapin, G. R., and Clark, L. C. (1951). Colorimetric method for determination of traces of carbonyl compounds. Anal. Chem. 23, 541–543.

    Article  Google Scholar 

  • Le Botlan, D., Pousin, M., Tellier, C., and Tromeur, O. (1989). Determination of the solid-liquid content and of water states in fats by NMR spectroscopy. Agric. Food Chem. Consum., Proc. Eur. Conf Food Chem. 5th2, 663–667.

    Google Scholar 

  • Lea, C. H. (1931). Effect of light on the oxidation of fats. Proc. Roy. Soc. London, Ser. B108, 175–179.

    Article  CAS  Google Scholar 

  • Lea, C. H. (1946). The determination of the peroxide values of edible fats and oils: the iodometric method. J. Soc. Chem. Ind. 65, 286–290.

    Article  CAS  Google Scholar 

  • Lea, C. H. (1962). The oxidative deterioration of food lipids. In Symposium of Foods: Lipids and Their Oxidation (H. W. Schultz, E. A. Day, and R. O. Sinnhuber, eds.). AVI Publishing Co., Westport, CT.

    Google Scholar 

  • Lee, C. F., Ambrose, M. E., and Smith, P., Jr. (1966). Determination of lipids in fish meal. J. Assoc. Off. Agric. Chem. 49, 946–949.

    CAS  Google Scholar 

  • Leemans, F. A., and Mccloskey, J. M. (1967). Combination gas chromatography-mass spectrometry.J. Am. Oil Chem. Soc. 44, 11–17.

    Article  CAS  Google Scholar 

  • Lester, A. L. (1963).Cited by Wells and Dittmer (1966).

    Google Scholar 

  • Levine, J. B. (1967). Recent advances in automated lipid analysis. J. Am. Oil Chem. Soc. 44, 95–98.

    Article  CAS  Google Scholar 

  • Levine, J. B., and Zak, B. (1964). Automated determination of serum total cholesterol. Clin. Chim. Acta10, 381–384.

    Article  CAS  Google Scholar 

  • Lofland, H. B. (1964). A semiautomated procedure for the determination of triglycerides in serum. Anal. Biochem. 9, 393–400.

    Article  CAS  Google Scholar 

  • Macgibbon, A. K. H. (1988). Modified method of fat extraction for solid fat content determination. N. Z. J. Dairy Sci. Technol. 23, 399–403.

    CAS  Google Scholar 

  • Mcgann, T. C. A. (1980). Analytical chemistry in the dairy industry. In Euroanalysis IIL Reviews on Analytical Chemistry (D. M. Carrol, ed.), 251–270. Applied Science Publishers, London.

    Google Scholar 

  • Mani, V. V. S., and Lakshminarayana, G. (1976). Chromatographic and other methods for detection of adulteration of oils and fats. J. Oil Technol. Assoc. India VIII, 84–103.

    Google Scholar 

  • Marcuse, R., and Johansson, L. (1973). TBA (thiobarbituric acid) test for rancidity grading. IL TBA reactivity of different aldehyde classes. J. Am. Oil Chem. Soc. 50, 387–391.

    Article  CAS  Google Scholar 

  • Marinetti, G. V. (1964). Chromatographic analysis of polar lipids on silicic acid impregnated paper. In New Biochemical Separations (A. T. James and L. J. Morris, eds.). D. Van Nostrand Co., London.

    Google Scholar 

  • Marriott, N. G., Smith, G. C., Carpenter, Z. L., and Dutson, T. R. (1975). Rapid fat and moisture determinations for meat samples. J. Anim. Sci. 41, 296–291.

    Google Scholar 

  • Mattsson, P. (1978). Crude fat determination in feedingstuffs. Some studies of extraction and hydrolysis methods. St. Lantbr.-Kem. Lab. Medd. 19 pages. (Swedish)

    Google Scholar 

  • Mecham, D. K., and Mohammad, A. (1955). Extraction of lipids from wheat products. Cereal Chem. 32, 405–415.

    CAS  Google Scholar 

  • Medh, J. D., and Weigel, P. H. (1989). Separation of phosphatidylinositols and other phospholipids by two-step one-dimensional thin-layer chromatography. J. Lipid Res. 30, 761–764.

    CAS  Google Scholar 

  • Mehlenbacher, V. C. (1958). Standard methods in the fat and oil industry. Prog. Chem. Fats Other Lipids5, 1–29.

    Article  CAS  Google Scholar 

  • Mehlenbacher, V. C. (1960). Analysis of Fats and Oils. The Garrard Press, Champaign, IL.

    Google Scholar 

  • Mills, B. L., and van de Voort, F. R. (1981). Comparison of the direct and indirect wide- line nuclear magnetic resonance methods for determining solid fat content. J. Am. Oil Chem. Soc. 58, 776–778.

    Article  CAS  Google Scholar 

  • Mitchell, J. H., Kraybill, H. R., and Zscheile, F. P. (1943). Quantitative spectrum analysis of fats. Ind. Eng. Chem., Anal. Ed. 15, 1–3.

    Article  CAS  Google Scholar 

  • Miwa, T. K., Kwolek, W. F., and Wolff, I. A. (1966). Quantitative determination of un- saturation in oils by using an automatic-titrating hydrogenator. Lipids1, 152–157.

    Article  CAS  Google Scholar 

  • Mojonnier, T., and Troy, H. C. (1925). Technical Control of Dairy Products. Mojonnier Bros. Co., Chicago.

    Google Scholar 

  • Murphy, M. F., and Mcgann, T. C. A. (1967). Investigations on the use of the Milko-tester for routine estimation of fat content in milk. J. Dairy Res. 34, 65–72.

    Article  Google Scholar 

  • Nadj, L. J., and Wehden, D. G. (1966). Refractometric estimation of total fat in chocolate- type products.Anal. Chem. 38, 125–126.

    Article  CAS  Google Scholar 

  • Ng-Kwai-Hang, K. F., Moxley, J. E., and van de Voort, F. R. (1988). Factors affecting differences in milk fat test obtained by Babcock, Rose-Gottlieb, and infrared methods and in protein test from infrared milk analysis. J. Dairy Sci. 71, 290–298.

    Article  CAS  Google Scholar 

  • Nielsen, H. (1990). Three-step one dimensional thin-layer chromatographic separation of neutral lipids. J. Chromatogr. 498, 423–427.

    Article  CAS  Google Scholar 

  • O’connor, R. T. (1955). Ultraviolet absorption spectroscopy. J. Am. Oil Chem. Soe. 32, 616–624.

    Article  Google Scholar 

  • O’connor, R. T. (1961a). Near-infrared absorption spectroscopy—a new tool for lipid analysis. J. Am. Oil Chem. Soc. 38, 641–648.

    Article  Google Scholar 

  • O’connor, R. T. (1961b). Recent progress in the application of infrared absorption spectroscopy to lipid chemistry. J. Am. Oil Chem. Soc. 38, 648–659.

    Article  Google Scholar 

  • Oh, F. C. H. (1982). Sources of errors in the determination of iodine value of palm oil by Wijs method. Mardi Res. Bull. 10, 248–258.

    CAS  Google Scholar 

  • Pardun, P. (1975). Analytical methods for the assay of freshness and stability of animal fats. Fette, Scifen, Anstrichm. 77, 296–305. (German)

    Article  CAS  Google Scholar 

  • Patton, S., Keeney, M., and Kurtz, G. W. (1951). Compounds producing the Kreis color reaction with particular reference to oxidized milk fat. J. Am. Oil Chem. Soc. 28, 391–393.

    Article  CAS  Google Scholar 

  • Patton, S., and Kurtz, G. W. (1951). 2-Thiobarbituric acid as a reagent for detecting milkfat oxidation. J. Dairy Sci. 34, 669–674.

    Article  CAS  Google Scholar 

  • Perkins, E. G., Ed. (1991). Analyses of Fats, Oils and Lipoproteins. American Oil Chemists Society, Champaign, IL.

    Google Scholar 

  • Perkins, E. G., Means, J. C., and Ticciano, M. F. (1977). Recent advances in instrumental analysis of lipids. Rev. Franc. Corps Gras24, 74–84.

    Google Scholar 

  • Pettinati, J. D. (1980). Update: rapid methods for the determination of fat, moisture, and protein. Proc. Recip. Meat Conf. 33, 156–163.

    Google Scholar 

  • Pinto, A. F., and Enas, J. D. (1949). Rapid method of copra analysis and its application to the various oil seeds. J. Am. Oil Chem. Soc. 26, 723–730.

    Article  CAS  Google Scholar 

  • Pitt, G. A. J., and Morton, R. A. (1957). Ultraviolet spectrophotometry of fatty acids. Prog. Chem. Fats Other Lipids4, 227–278.

    Article  Google Scholar 

  • Pohle, W. D., Gregory, R. L., and Taylor, J. R. (1962). A comparison of several analytical techniques for prediction of relative stability of fats and oils to oxidation.J. Am. Oil Chem. Soc. 39, 226–229.

    Article  CAS  Google Scholar 

  • Pohle, W. D., Gregory, R. L., and van Giessen, B. (1963). A rapid bomb method for evaluating the stability of fats and shortenings.J. Am. Oil Chem. Soc. 40, 603–605.

    Article  CAS  Google Scholar 

  • Pohle, W. D. et al. (1964). A study of methods for evaluation of the stability of fats and shortenings. J. Am. Oil Chem. Soc. 41, 795–798.

    Article  CAS  Google Scholar 

  • Pool, P. O. (1931). Rancidity and stability in shortening products. Oil Fat Ind. 8, 331–336.

    Article  CAS  Google Scholar 

  • Povey, M. J. W. (1984). A study of dilatation and acoustic propagation in solidifying fats and oils. L Theoretical. Am. Oil Chem. Soc. 61, 558–559.

    Article  Google Scholar 

  • Precht, D. (1988). Classification of butter fat quality and rapid determination of iodine number by triglyceride analysis. Z. Lebensm. Unters. Forsch. 187, 457–462.

    Article  CAS  Google Scholar 

  • Pryde, E. H., Ed. (1979). Fatty Acids. Am. Oil. Chemists Soc., Champaign, IL.

    Google Scholar 

  • Randall, E. L. (1974). Improved method for fat and oil analysis by a new process of extraction.J. Assoc. Off. Anal. Chem. 57, 1165–1168.

    CAS  Google Scholar 

  • Ragnarson, J. O., and Labuza, T. P. (1977). Accelerated shelf-life testing for oxidative rancidity in foods. A review.Food Chem. 2, 291–308.

    Article  Google Scholar 

  • Ranfft, K., Gerstl, R., and Koische, G. (1988). Determination of oxidative stability of fats and oils. Landswirtsch. Forsch. 41, 259–266.

    CAS  Google Scholar 

  • Rao, C. R., Reddy, L. C. S., and Prabhu, C. A. R. (1980). Study of adulteration in oils and fats by ultrasonic method. Current Sci. 49, 185–186.

    CAS  Google Scholar 

  • Robertson, J. A., and Morrison, W. H. (1979). Analysis of oil content of sunflower seed by wide-line NMR. J. Am. Oil Chem. Soc. 56, 961–964.

    Article  CAS  Google Scholar 

  • Robertson, J. A., and Windham, W. R. (1981). Comparative study of methods of determining oil content of sunflower seed.J. Am. Oil Chem. Soc. 58, 993–996.

    Article  CAS  Google Scholar 

  • Roden, A., and Ullyot, G. (1984). Quality control in edible oil processing. J. Am. Oil Chem. Soc. 61, 1109–1111.

    Article  CAS  Google Scholar 

  • Rossell, J. B., Ed. (1991). Analysis of Oilseeds, Fats, and Fatty Acids. Elsevier, New York.

    Google Scholar 

  • Rouser, G., Kritchevsky, G., Galli, C., and Heller, D. (1965). Determination of polar lipids: quantitative column and thin layer chromatography. J. Am. Oil Chem. Soc. 42, 215–227.

    Article  CAS  Google Scholar 

  • Roy, R. B. (1984). Automated food analysis using continuous flow-analytical systems.In Food Analysis—Principles and Techniques, Vol. I, Physical Characterization (D. W. Gruenwedel and J. R. Whitaker, eds.), pp. 247–294. Marcel Dekker, New York and Basel.

    Google Scholar 

  • Ryhage, R., and Stenhagen, E. (1960). Mass spectrometry in lipid research. J. Lipid Res. 1, 361–390.

    CAS  Google Scholar 

  • Sager, O. S., Sanders, G. P., Norman, G. H., and Middleton, M. B. (1955). A detergent test for the milk fat content of dairy products. J. Assoc. Off. Agric. Chem. 38, 931–940.

    CAS  Google Scholar 

  • Saprykin, E. G., and Soldatov, V. P. (1988). Method of refractometric measurement of fat content in dairy products. USSR SU 1,413,524 (Chem. Abstr. 110, 133939z).

    Google Scholar 

  • Schain, P. (1949). The use of detergents for quantitative fat determination. I. Determination of fat in milk. Science110, 121–122.

    Article  CAS  Google Scholar 

  • Schober, B. (1967). Application of a refractometric method for lipid determination in fish and fish products. I. Determination of the fat content in herring. Fischereiforschung5, 121–124. [Chem. Abstr. 69, 1825j.]

    CAS  Google Scholar 

  • Schreiner, L. J., Pintar, M. M., and Blinc, R. (1988). Seed proton NMR sping grouping. J. Am. Oil Chem. Soc. 65, 106–108.

    Article  CAS  Google Scholar 

  • Shahidi, F., and Hong, C. (1991). Evaluation of malonaldehyde as a marker of oxidative rancidity in meat products. J. Food Biochem. 15, 97–105.

    Article  CAS  Google Scholar 

  • Shlafer, M., and Shepard, B. M. (1984). A method to reduce interference by sucrose in the detection of thiobarbituric-reactive substances. Anal. Biochem. 137, 269–276.

    Article  CAS  Google Scholar 

  • Shoolery, J. N. (1983). Applications of high resolution nuclear magnetic resonance to the study of lipids. Am. Oil Chem. Soc. Monograph. 10, 220–240.

    CAS  Google Scholar 

  • Shukla, V. K. S. (1983). Studies on the crystallization behaviour of the cocoa butter equivalents by pulse nuclear magnetic resonance. Part I. Fette, Scifen, Anstrichm. 85, 467–471.

    Article  CAS  Google Scholar 

  • Shukla, G. E., Machari, A. N., Sharma, C. K., and Murthi, T. N. (1980). A butyrometric method for rapid determination of the oil content of groundnut seeds. J. Food. Sci. Technol. 17, 242–244.

    CAS  Google Scholar 

  • Simic, M. G., and Karel, M., Eds. (1979). Autoxidation in Food and Biological Systems. Plenum Press, New York.

    Google Scholar 

  • Skipski, V. P., Good, J. J. Barclay, M., and Reggio, R. B. (1968). Quantitative analysis of simple lipid classes by thin-layer chromatography. Biochim. Biophys. Acta152, 10–19.

    CAS  Google Scholar 

  • Smith, H. M. (1955). Melting point, solidification, and consistency. J. Am. Oil Chem. Soc. 32, 593–595.

    Article  CAS  Google Scholar 

  • Squires, E. J., Valdes, E. V., Wu, J., and Leeson, S. (1991). Research note: utility of the thiobarbituric acid test in the determination of the quality of fats and oils in feeds. Poultry Sci. 70, 180–183.

    Article  CAS  Google Scholar 

  • Stegeman, G. A., Baer, R. J., Schingoethe, D., and Casper, D. P. (1991). Influence of milk fat higher in unsaturated fatty acids on the accuracy of milk fat analyses by the mid- infrared spectroscopic method. Food Protect. 54, 890–893.

    CAS  Google Scholar 

  • Stern, L, and Shapiro, B. (1953). A rapid and simple method for the determination of es- terified fatty acids and for total fatty acids in blood.J. Clin. Pathol. 6, 158–160.

    Article  CAS  Google Scholar 

  • Swern, D., Ed. (1982). Bailey’s Industrial Oil and Fat Products. Wiley, New York.

    Google Scholar 

  • Tarladgis, B. G., Pearson, A. M., and Dugan, L. R. (1962). The chemistry of the 2-thiobar- bituric acid test for the determination of oxidative rancidity in foods. I. Some important side reactions. J. Am. Oil Chem. Soc. 39, 34–39.

    Article  CAS  Google Scholar 

  • Trappe, W. (1940). Separation of biological fats from natural mixtures by means of adsorption columns. I. The eluotropic series of solvents.Biochem. Z. 305, 150–161.

    CAS  Google Scholar 

  • Troeng, S. (1955). Oil determination of oilseed. Gravimetric routine method. J. Am. Oil Chem. Soc. 32, 124–126.

    Article  CAS  Google Scholar 

  • Ugrinovits, M. H., and Luthy, J. (1988). The determination of fats in foods. Mitt. Gebiete Lebensm. Hyg. 79, 186–197.

    CAS  Google Scholar 

  • Van Reusel, A., and Oger, R. (1987). Turbidimetric determination of the fat content of milk. Bull. Intern. Dairy Fed. 208, 31–40.

    Google Scholar 

  • Waiser, p. E., and Bartels, M. A. (1982). Design of a system for laboratory automation. Am. Lab. 14(2), 113, 114, 116, 118–120.

    Google Scholar 

  • Wells, M. A., and Dittmer, J. C. (1963). The use of Sephadex for the removal of nonlipid contaminants from lipid extracts. Biochemistry2, 1259–1263.

    Article  CAS  Google Scholar 

  • Wells, M. A., and Dittmer, J. C. (1966). A microanalytical technique for the quantitative determination of twenty-four classes of brain lipids. Biochemistry5, 3405–3408.

    Article  CAS  Google Scholar 

  • Wheeler, D. H. (1954). Infrared absorption spectroscopy in fats and oils. Prog. Chem. Fats Other Lipids 2, 268–291.

    Article  CAS  Google Scholar 

  • White, P. J. (1991). Methods for measuring changes in deep-fat frying oils. Food Technol. 45(2), 75–76, 78–80.

    CAS  Google Scholar 

  • Whitley, R. W., and Alburn, H. E. (1964). Cited by Levin (1967).

    Google Scholar 

  • Wijs, J. J. A. (1929). The Wijs method as the standard for iodine absorption.Analyst54, 12–14.

    Article  CAS  Google Scholar 

  • Williams, K. A. (1950). Oils, Fats and Fatty Foods. Churchill Publishing Co., London.

    Google Scholar 

  • Wilmer, M. C., Rettori, C., Vargas, H., Barberis, G. E., and Dasilva, W. J. (1978). Single kernel wide-line NMR oil analysis for breeding purpose. Rev. Brasileira Fisica8, 562–575.

    Google Scholar 

  • Wood, R. (1984). Collaborative study on a potential EEC method for the determination of milk fat in cocoa and chocolate products. Spec. Publ. R. Soc. Chem. 49, 56–67. [Chem. Abstr. 101, 37273W.]

    Google Scholar 

  • Wood, W. G., Cornwell, M., and Williamson, L. S. (1989). High performance thin-layer chromatography and densitometry of synaptic plasma membrane lipids. J. Lipid Res. 30, 775–779.

    CAS  Google Scholar 

  • Young, C. C. (1984). The interpretation of GLC triglyceride data for the determination of cocoa butter equivalents in chocolate: a new approach. J. Am. Oil Chem. Soc. 61, 576–581.

    Article  CAS  Google Scholar 

  • Yu, T. C., and Sinnhuber, R. O. (1967). An improved 2-thiobarbituric acid (TBA) procedure for the measurement of autooxidation in fish oils.J. Am. Oil Chem. Soc. 44, 256–258.

    Article  CAS  Google Scholar 

  • Zehren, V. L., and Jackson, H. C. (1956). A survey of United States butterfat constants. L Reichert-Meissl, Polenske and refractive index values. J. Assoc. Off. Agric. Chem. 39, 194–212.

    CAS  Google Scholar 

  • Zilversmit, D. B., and Davis, A. K. (1960). Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med. 35, 155–160.

    Google Scholar 

  • Zimmerman, D. C. (1962). The relationship between seed density and oil content in flax. J. Am. Oil Chem. Soc. 39, 77–78.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Pomeranz, Y., Meloan, C.E. (1994). Lipids. In: Food Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6998-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6998-5_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7000-4

  • Online ISBN: 978-1-4615-6998-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics