Skip to main content

Enzymatic Methods

  • Chapter
Food Analysis

Abstract

An analytical method is of value when its specificity, reproducibility, and sensitivity are high and when the expenditure of labor, time, and material are low. Theoretically, most of these requirements can be met admirably by enzymatic analysis (Bergmeyer 1983). The term enzymatic analysis is generally understood to mean analysis with the aid of enzymes. The major advantages of enzymes in analysis lie in their ability to react specifically with individual components of a mixture. This avoids lengthy separations of the components and reduces the time needed for an analysis. The amount of substrate (sample) required for analysis is small, and because of the mild conditions employed, enzymes often allow the detection and determination of labile substances that can be estimated only rather inaccurately by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Amador, E., and Wacker, W. E. C. (1965). Enzymatic methods for diagnosis. Methods Biochem. Anal. 13, 265–356.

    Article  CAS  Google Scholar 

  • Augustinson, K. B. (1959). Assay methods of cholinesterases. Methods Biochem. Anal. 5, 1–63.

    Google Scholar 

  • Bergmeyer, H. U. (1983). Methods of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  • Bergmeyer, H. U., and Gawehn, K. (1978). Principles of Enzymatic Analysis. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Beutler, H.-O. (1978). Enzymatic determination of starch in foods by the hexokinase method (in German). Starch30, 309–312.

    Article  CAS  Google Scholar 

  • Boehringer Mannheim. (1980). Methods of Enzymatic Analysis Manual. Boehringer Mannheim Biochemicals, Indianapolis, IN.

    Google Scholar 

  • Bowers, L. D., and Carr, P. W. (1980). Immobilized enzymes in analytical chemistry.In Immobilized Enzymes (A. Fiechter, ed.), pp. 90–128. Springer-Verlag, Berlin.

    Google Scholar 

  • Carr, P. W., and Bowers, L. D. (1980). Immobihzed Enzymes in Analytical and Clinical Chemistry. Wiley, New York.

    Google Scholar 

  • Debecze, G. I. (1965). Enzymes—industrial. In Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 8. Wiley, New York.

    Google Scholar 

  • Dickerman, H. W., and Carter, M. L. (1962). A spectrophotometric method for the determination of lysine utilizing bacterial lysine decarboxylase. Anal. Biochem. 3, 195–205.

    Article  CAS  Google Scholar 

  • Ellis, P. C., and Rand, A. G. (1987). Comparison of methods for determination of lactose (nonfat dry milk) in meat products. J. Assoc. Off. Anal. Chem. 70, 1063–1068.

    CAS  Google Scholar 

  • Ettel, W. (1981). A new enzymatic method for starch determination in food. Alimenta20(1), 7–11.

    CAS  Google Scholar 

  • Fox, P. F., ed. (1991). Food Enzymology, Vols. 1 and 2. Elsevier, New York.

    Google Scholar 

  • Frank, J. F., and Christen, G. L. (1984). Determination of lactose and sucrose contents of ice cream mix via enzymatic-cryoscopic methodology. J. Food Sci. 49, 1332–1334.

    Article  CAS  Google Scholar 

  • Free, A. H. (1963). Enzymatic determination of glucose.Adv. Clin. Chem. 6, 67–96.

    Article  CAS  Google Scholar 

  • Giang, P. A., and Hall, S. A. (1951). Enzymic determination of organic phosphorus insecticides. Anal. Chem. 23, 1830–1834.

    Article  CAS  Google Scholar 

  • Gorton, L., Appelquist, R., Johansson, G., Scheller, F., and Kirstein, D. (1989). Determination of starch and maltose using immobilized amyloglucosidase and a glucose electrode in a flow injection system.J. Chem. Tech. Biotechnol46, 327–333.

    CAS  Google Scholar 

  • Griffin, F. J., and Casson, C. B. (1961). Enzymic hydrolysis of phospholipids as a means of determining egg in foods. Analyst86, 544.

    CAS  Google Scholar 

  • Guilbault, G. G. (1970). Enzymatic Methods of Analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Guilbault, G. G. (1976). Handbook of Enzymatic Methods of Analysis. Marcel Dekker, New York.

    Google Scholar 

  • Guilbault, G. G., Lubrano, G. L., Kaufmann, J. M., and Patriarche, G. J. (1988). Enzyme electrodes for sugar substitute aspartame. NATO ASI Ser. C. 226, 379–388.

    CAS  Google Scholar 

  • Haissig, B. E., and Dickson, R. E. (1979). Starch measurement in plant tissue using enzymatic hydrolysis. Physiol. Plant. 47, 151–157.

    Article  CAS  Google Scholar 

  • Halliwell, G. (1957a). Cellulolysis by rumen microorganisms. J. Gen. Microbiol. 17, 153–165.

    CAS  Google Scholar 

  • Halliwell, G. (1957b). Cellulolytic preparations from microorganisms of the rumen and from Myrothecium verrucaria. J. Gen. Microbiol. 17, 166–183.

    CAS  Google Scholar 

  • Halliwell, G. (1958). Microdetermination of cellulose in studies with cellulase. Biochem. J. 68, 605–610.

    CAS  Google Scholar 

  • Halliwell, G. (1960). Microdetermination of carbohydrates and proteins. Biochem. J. 74, 457–462.

    CAS  Google Scholar 

  • Higgins, T. (1984). Evaluation of a colorimetric triglyceride method on the KDA analyzer. J. Clin. Lab. Automation4, 162–165.

    CAS  Google Scholar 

  • Holz, F. (1977). Automated enzymatic-photometric determination of starch in cereals (in German). Landwirtsch. Forsch. 33(11), 228–249.

    Google Scholar 

  • Jahns, F. D., and Rand, A. G., Jr. (1977). Enzyme methods to assess marine food quality. In Enzymes in Food and Beverage Processing (R. L. Ory and A. J. St. Angelo, eds.). ACS Symposium No. 47. American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Karube, I., and Sode, K. (1988). Biosensors for lipids. In Proceedings of the World Conference on Biotechnology of Fats and Oils Industry, pp. 215–218. (T. H. Applewhite, ed.) AOCS, Champaign, IL.

    Google Scholar 

  • Karube, I., and Tamiya, E. (1987). Biosensors for the food industry. Food BiotechnoL1, 147–165.

    Article  CAS  Google Scholar 

  • Kennedy, J. F., Melo, E. H. M., and Jumel, K. (1989). Immobilized biosystems in research and industry.Biotechnol Genet. Eng. Rev. 7, 297–313.

    CAS  Google Scholar 

  • Kobos, R. K. (1987). Enzyme-based electrochemical biosensors.Trends Anal. Chem. 6(1), 6–9.

    Article  CAS  Google Scholar 

  • Krueger, E., and Nordmann, A. (1981). Enzymic food analyses (in German). Labor Praxis 5(1/2), 20–23.

    CAS  Google Scholar 

  • Lakon, G. (1942). Topographical detection of viability of cereal seeds with tetrazolium salts. Ber. Deut. Bot. Ges. 60, 299–305.

    Google Scholar 

  • Lee, E. Y. C., and Whelan, W. J. (1966). Enzymic methods for the microdetermination of glycogen and amylopectin and their unit-chain lengths. Arch. Biochem. Biophys. 116, 162–167.

    Article  CAS  Google Scholar 

  • Li, Y. T., and Li, S. C. (1988). The use of enzymes for structural determination of complex carbohydrates. Adv. Exp. Med. Biol. 228, 787–801.

    Article  CAS  Google Scholar 

  • Lind, J. (1977). Enzymatic determination of starch (in German). Fleischwirtschaft57, 1496–1498, 1501.

    Google Scholar 

  • Linko, P. (1960). The biochemistry of grain storage. Cereal Sci. Today10, 302–306.

    Google Scholar 

  • Marko-Varga, G., and Dominguez, E. (1991). Enzymes as analytical tools. Trends Anal. Chem. 10, 290–297.

    Article  CAS  Google Scholar 

  • Mercier, C. (1981). Enzymes in food analysis. Ernaehrung5, 80–87.

    CAS  Google Scholar 

  • Nabi Rani, M. A., Lubrano, G. J., and Guilbault, G. G. (1987). Enzyme electrode for the determination of sucrose in food products. J. Agric. Food Chem. 35, 1001–1004.

    Article  Google Scholar 

  • Natl. Canners Assoc. (1954). Bull. 27-L. Berkeley, CA.

    Google Scholar 

  • Peynaud, E., Blouin, J., and Lafon-Lafourcade, Y. (1966). Review of applications of enzymatic methods to the determination of some organic acids in wines. Am. J. Enol. Viticul. 17, 218–224.

    CAS  Google Scholar 

  • Pomeranz, Y. (1966). The role of enzyme additives in breadmaking.Brot Gebäck20, 40–45.

    CAS  Google Scholar 

  • Pulley, J. E. (1969). Enzymes simplify processing. Food Eng. 41(2), 68–71.

    CAS  Google Scholar 

  • Rebhein, H. (1979). Development of an enzymatic method to differentiate fresh and seafrozen and thawed fish fillets. Z. Lebensm. Unters. Forsch. 169, 263–265.

    Article  Google Scholar 

  • Rechnitz, G. A. (1988). Biosensors. Chem. Eng. News66(36), 24–26, 31–36.

    Article  CAS  Google Scholar 

  • Sanger, F. (1952). The arrangement of amino acids in proteins.Adv. Protein Chem. 7, 2–67.

    Google Scholar 

  • Skrede, G. (1983). An enzymic method for the determination of starch in meat products. Food Chem. 11, 175–185.

    Article  CAS  Google Scholar 

  • Swaisgood, H. E., and Catignani, G. L. (1991). Protein digestibility: in vitro methods of assessment. Adv. Food Nutr. Res. 35, 185–236.

    Article  CAS  Google Scholar 

  • Swaisgood, H. E., and Horton, H. R. (1989). Immobilized enzymes as processing aids or analytical tools. ACS Symp. Ser. No. 389 (Biocatal. Agric. Biotechnol), 242–261.

    Google Scholar 

  • Talalay, P. (1960). Enzymic analysis of steroid hormones. Methods Biochem. Anal. 8, 119–143.

    Article  CAS  Google Scholar 

  • Townsend, A. (1981). Uses of enzymes in analytical chemistry. J. Assoc. Public Anal. 19, 51–58.

    Google Scholar 

  • Updike, S. J., and Hicks, G. P. (1967). The enzyme electrode. Nature214, 986.

    Article  CAS  Google Scholar 

  • Valentova, O., Marek, M., Albrechtova, I., Albrecht, J., and Kas, J. (1983). Enzymic determination of glucose in foodstuffs.J. Sci. Food Agric. 34, 748–754.

    Article  CAS  Google Scholar 

  • Watanabe, E., Takagi, M., Takei, S., Hoshi, M., and Cao, S. (1991). Development of biosensors for the simultaneous determination of sucrose and glucose, lactose and glucose, and starch and glucose. BiotechnoL Bioeng. 38, 99–103.

    Article  CAS  Google Scholar 

  • Wease, D. F., Anderson, Y. J., and Ducharme, D. M. (1979). Use of immobilized enzymes for glucose analysis in a small laboratory. Clin. Chem. 25, 1346–1347.

    CAS  Google Scholar 

  • Weetal, H. H. (1975). Immobilized Enzymes, Antigen, Antibodies and Peptides. Marcel Dekker, Inc. New York.

    Google Scholar 

  • Whitaker, J. R. (1972). Principles of Enzymology for the Food Sciences. Marcel Dekker, New York.

    Google Scholar 

  • Whitaker, J. R., ed. (1974a). Food Related Enzymes. Adv. Chem. Ser. No. 136. American Chemical Society, Washington, DC.

    Google Scholar 

  • Whitaker, J. R. (1974b). Analytical applications of enzymes.In Food Related Enzymes (J. R. Whitaker, ed.). Adv. Chem. Ser. No. 136. American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  • Wiseman, A. (1984). Enzymes in analysis of foods. In Enzymes and Food Processing (G. G. Birch, N. Blakebrough, and K. J. Parker, eds.), pp. 275–287. Applied Science Publishers, London.

    Google Scholar 

  • Zaborsky, G. R. (1973). Immobilized Enzymes. CRC Press, Cleveland.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Pomeranz, Y., Meloan, C.E. (1994). Enzymatic Methods. In: Food Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6998-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6998-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7000-4

  • Online ISBN: 978-1-4615-6998-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics