Advertisement

Evolutionary Genetics and the Genetic Control of Morphogenesis in Flowering Plants

  • Konrad Bachmann

Abstract

There are good reasons why the importance of developmental biology for an understanding of evolution had to be rediscovered recently (Gould, 1977; Løvtrup, 1981; Bonner, 1982). The Synthetic Theory of Evolution had been built up on the demonstration that natural populations contain an immense amount of genetic variation that could fully account for the morphological variation studied by naturalists (Mayr and Provine, 1980). This central achievement of the Synthetic Theory had to be defended against a false picture of genetic evolution due to rare mutations with major, often deleterious effects. The creative force in evolution undoubtedly is not mutation pressure, but selection. To support this statement, the store of genetic variation in natural populations had to be characterized, and it had to be shown that steady selection pressure could slowly and gradually alter characters by accumulating small additive effects of many genes.

Keywords

Genetic Control Flowering Plant Fibonacci Number Corolla Lobe Synthetic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allsopp, A., 1965, Heteroblastic development of cormophytes, in: Handbuch der Pflanzenphysiologie, Vol. XV (W. Ruhland, ed.), Part 1, pp. 1171–1221, Springer-Verlag, Berlin.Google Scholar
  2. Babcock, E. B., 1947, The Genus Crepis, University of California Publications in Botany Vol. 21.Google Scholar
  3. Bachmann, K., and Chambers, K. L., 1978, Pappus part number in annual species of Microseris (Compositae, Cichoriaceae), Plant Syst. Evol. 129:119–134.CrossRefGoogle Scholar
  4. Bachmann, K., and Chambers, K. L., 1981, Genes regulating the appearance of two kinds of fruit in Microseris strain B87 (Asteraceae: Compositae), Experientia 37:29–31.CrossRefGoogle Scholar
  5. Bachmann, K., and Price, H. J., 1979, Variability of the inflorescence of Microseris laciniata (Compositae: Cichorieae), Plant Syst. Evol. 131:17–34.CrossRefGoogle Scholar
  6. Bachmann, K., Chambers, K. L., and Price, H. J., 1979, Genome size and phenotypic evolution in Microseris (Compositae, Cichoriaceae), Plant Syst. Evol. (Suppl.) 2:41–66.CrossRefGoogle Scholar
  7. Bachmann, K., Chambers, K. L., and Price, H. J., 1981, Genetic determination of pappus part number in the annual hybrid Microseris B87 (Asteraceae, Lactuceae). Plant Syst. Evol. 138:235–246.CrossRefGoogle Scholar
  8. Bachmann, K., Chambers, K. L., Price, H. J., and König, A., 1982, Four additive genes determining pappus part numbers in Microseris annual hybrid C34 (Asteraceae. Lactuceae), Plant Syst. Evol. 141:123–141.CrossRefGoogle Scholar
  9. Bachmann, K., Chambers, K. L., and Price, H. J., in press, Genome size and natural selection: Observations and experiments in plants, in: Natural Selection and Genomic DNA (T. Cavalier-Smith, ed.) Academic, London, in press.Google Scholar
  10. Bonner, J. T., 1982. Introduction, in: Evolution and Development (J. T. Bonner ed.), pp. 1–16, Springer-Verlag, New York.CrossRefGoogle Scholar
  11. Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13:115–155.CrossRefGoogle Scholar
  12. Britten, R. J., and Davidson, E. H., 1969, Gene regulation for higher cells: A theory, Science 165:349–358.PubMedCrossRefGoogle Scholar
  13. Britten, R. J., and Davidson, E. H., 1971, Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty, Q. Rev. Biol. 46:111–138.PubMedCrossRefGoogle Scholar
  14. Chambers, K. L., 1955, A biosystematic study of the annual species of Microseris, Contrib. Dudley Herb. 4:207–312.Google Scholar
  15. Chambers, K. L., 1963, Amphitropical species pairs in Microseris and Agoseris (Compositae: Cichorieae), Q. Rev. Biol. 38:124–140.CrossRefGoogle Scholar
  16. Christoffersen, R. E., Warm, E., and Laties, G. G., 1982, Gene expression during fruit ripening in avocado, Planta 155:52–57.CrossRefGoogle Scholar
  17. Cleland, R. E., 1970, The missing petal character in Oenothera and its relation to the cruciate character, Am. J. Bot. 57:850–855.CrossRefGoogle Scholar
  18. Cook, C. D. K., 1966, A monographic study of Ranunculus Subgenus Batrachium (DC) A. Gray. Mitt. Bot. Staatssaml. Muench. 6:47–237.Google Scholar
  19. Cook, S. A., and Johnson, M. P., 1968, Adaptation to heterogenous environments. I. Variation in heterophylly in Ranunculus flammula L., Evolution 22:496–516.CrossRefGoogle Scholar
  20. Davidson, E. H., 1982, Evolutionary change in genomic regulatory organization: Speculations on the origins of novel biological structure, in: Evolution and Development (J. T. Bonner, ed.), pp. 65–84, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  21. Deschamp, P., and Cooke, T. J., 1982, Pattern of leaf development in the aquatic angiosperm Callitriche heterophylla Pursh., Bot. Soc. Am. Misc. Ser. Publ. 162:12 (abstract).Google Scholar
  22. Dooner, H. K., 1979, Identification of an R locus region that controls the tissue specificity of anthocyanin formation in maize, Genetics 93:703–710.PubMedGoogle Scholar
  23. Fick, G. N., 1976, Genetics of floral color and morphology in sunflowers, J. Hered. 67:227–230.Google Scholar
  24. Franck, D. H., 1976, Comparative morphology and early leaf histogenesis of adult and juvenile leaves of Darlingtonia californica and their bearing on the concept of heter-ophylly, Bot. Gaz. 137:20–34.CrossRefGoogle Scholar
  25. Gerisch, G., 1976, Cyclic-AMP oscillation and signal transmission in aggregating Dictyostelium cells, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H.-G. Schweiger, eds.), pp. 433–440. Abakon, Berlin.Google Scholar
  26. Goldberg, R. B., G. Hoschek, S. H. Tarn, G. S. Ditta, and R. W. Breidenbach, 1981, Abundance, diversity, and regulation of mRNA sequence sets in soybean embryoge-nesis, Dev. Biol. 83:201–217.PubMedCrossRefGoogle Scholar
  27. Gorter, Christine J., 1965, Origin of fasciation, in: Encyclopedia of Plant Physiology, Vol. XV (W. Ruhland, ed.), Part II, pp. 330–351, Springer-Verlag, Berlin.Google Scholar
  28. Gottschalk, W., 1971, Die Bedeutung der Genmutation für die Evolution der Pflanzen, Gustav Fischer, Stuttgart.Google Scholar
  29. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  30. Green, Paul B., 1980, Organogenesis—A biophysical view. Annu. Rev. Plant Physiol. 31:51–82.CrossRefGoogle Scholar
  31. Hahlbrock, K., Knobloch, K., Kreuzaler, J. R., Potts, R. M., and Wellmann, E., 1976, Coordinated induction and subsequent activity changes of two groups of metabolically interrelated enzymes, Eur. J. Biochem. 61:199–206.PubMedCrossRefGoogle Scholar
  32. Halperin, W., 1978, Organogenesis at the shoot apex, Annu. Rev. Plant Physiol. 29:239–262.CrossRefGoogle Scholar
  33. Heslop-Harrison, J., 1967, Differentiation, Annu. Rev. Plant Physiol. 18:325–348.CrossRefGoogle Scholar
  34. Ho, T.-H. D., 1979, Hormonal control of gene expression, in: Physiological Genetics (J. G. Scandalios, ed.), pp. 109–139, Academic, New York.Google Scholar
  35. Hofmeister, W., 1868, Allgemeine Morphologie der Gewächse, Engelmann, Leipzig.Google Scholar
  36. Huether, C.A., 1968, Exposure of natural genetic variability underlying the pentamerous corolla constancy in Linanthus androsaceus ssp. androsaceus, Genetics 60:123–146.PubMedGoogle Scholar
  37. Huether, C. A., 1969, Constancy of the pentamerous corolla phenotype in natural populations of Linanthus, Evolution 23:572–588.CrossRefGoogle Scholar
  38. Irmler, C., Bachmann, K., Chambers, K. L., Price, H. J., and König, A., 1983, Enzymes and quantitative morphological characters compared between the allotetraploid Microseris decipiens and its diploid parental species, Beitr. Biol. Pflanz. 57:269–289.Google Scholar
  39. Jellinghaus, U., Schätzle, U., Schmid, W., and Roewekamp, W., 1982, Transcription of a Dictyostelium discoidin-I gene in yeast. Alternative promotor sites used in two different eucaryotic cells, J. Mol. Biol. 159:623–636.PubMedCrossRefGoogle Scholar
  40. Kaufmann, T. C., and Wakimoto, B. T., 1982, Genes that control high level developmental switches, in: Evolution and Development (J. T. Bonner, ed.), pp. 189–205, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  41. Kessler, B., and Reches, S., 1977, Structural and functional changes of chromosomal DNA during aging and phase change in plants, Chromosomes Today 6:237–246.Google Scholar
  42. King, M.-C., and Wilson, A., 1975, Evolution at two levels in humans and chimpanzees, Science, 188:107–116.PubMedCrossRefGoogle Scholar
  43. Lee, C. W., Crickson, H. T., and Janick, J., 1976, Inheritance of cleistogamy in Salpiglossis sinuata, J. Hered. 67:267–270.Google Scholar
  44. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  45. Lindenmayer, A., 1978, Algorithms for plant morphogenesis, in: Theoretical Plant Morphology (R. Sattler, ed.,), pp. 37–81, Leiden University Press, The Hague.Google Scholar
  46. Lord, E. M., 1981, Cleistogamy: A tool for the study of floral morphogenesis, function and evolution, Bot. Rev. 47:421–449.CrossRefGoogle Scholar
  47. Løvtrup, S., 1981, Introduction to evolutionary epigenetics, in: Evolution Today. Proceedings of the Second International Congress of Systematic and Evolutionary Biology (G. G. E. Scudder and J. L. Reveal, eds.), pp. 139–144, Hunt Institute for Botanical Documentation, Pittsburgh, Pennsylvania.Google Scholar
  48. Mauthe, S., Bachmann, K., Chambers, K. L., and Price, H. J., 1982, Variability of the inflorescence among populations of Microseris laciniata (Asteraceae, Lactuceae), Beitr. Biol. Pflanz. 56:25–52.Google Scholar
  49. Mayers, A., and Lord, E. M., 1982, Comparative floral morphogenesis in the cleistogamous species Viola odorata L., Bot. Soc. Am. Misc. Ser. Publ. 162:18 (abstract).Google Scholar
  50. Mayr, E., and Provine, W. B., (eds.), 1980, The Evolutionary Synthesis. Perspectives on the Unification of Biology, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  51. Meinhardt, H., 1978, Space dependent cell determination under the control of a morphogen gradient, J. Theor. Biol. 74:307–321.PubMedCrossRefGoogle Scholar
  52. Mitchison, G. J., 1977, Phyllotaxis and the Fibonacci series, Science 196:270–275.PubMedCrossRefGoogle Scholar
  53. Nei, M., 1975 Molecular Population Genetics and Evolution, American Elsevier, New York.Google Scholar
  54. Piternick, L. K. (ed.), 1980, Richard Goldschmidt: Controversial Geneticist and Creative Biologist, Birkhäuser Verlag, Basel.Google Scholar
  55. Pomplitz, R., 1956, Die Heteromorphie der Früchte von Calendula arvensis unter besonderer Berücksichtigung der Stellungs-und Zahlenverhältnisse, Beitr. Biol. Pflanz. 32:331–369.Google Scholar
  56. Popham, R. A., and Chan, A. P., 1952. Origin and development of the receptacle of Chrysanthemum morifolium. Am. J. Bot. 39:329–339.CrossRefGoogle Scholar
  57. Rendel, J. M., 1967, Canalization and Gene Control. Logos Press and Academic Press. London.Google Scholar
  58. Rendel, J. M., 1977, Canalization in quantitative genetics, in: Proceedings International Conference on Quantitative Genetics (E. Pollack, O. Kempthorne, and Th. B. Bailey, Jr., eds.), pp. 23–28, Iowa State University Press, Ames, Iowa.Google Scholar
  59. Rendel, J. M., 1979. Canalization and selection, in: Quantitative Genetic Variation (J. N. Thompson and J. M. Thoday, eds.), pp. 139–156, Academic, New York.Google Scholar
  60. Richards, F. J., 1951, Phyllotaxis: Its quantitative expression and relation to growth in the apex, Philos. Trans. R. Soc. London 235:509–564.CrossRefGoogle Scholar
  61. Richter, P. H., and Schranner, R., 1978, Leaf arrangement: Geometry, morphogenesis and classification, Naturwissenschaften 65:319–327.CrossRefGoogle Scholar
  62. Scandalios, J. G., and Baum, J. A., 1982, Regulatory gene variation in higher plants, Adv. Genet. 21:347–370.CrossRefGoogle Scholar
  63. Schäffner, K.-H., and Nagl, W., 1979, Differential DNA replication involved in transition from juvenile to adult phase in Hedera helix (Araliaceae), Plant Syst. Evol. (Suppl.) 2:105–110.CrossRefGoogle Scholar
  64. Sharma, R., and Schöpfer, P., 1982, Sequential control of phytochrome-mediated synthesis de novo of ß-amylase in the cotyledons of mustard (Sinapsis alba L.) seedlings, Planta 155:183–189.CrossRefGoogle Scholar
  65. Sinnott, E. W., 1935, Evidence for the existence of genes controlling shape, Genetics 20:12–21.PubMedGoogle Scholar
  66. Smith, H., Billett, E. E., and Giles, A. B., 1977, The photocontrol of gene expression in higher plants, in: Regulation of Enzyme Synthesis and Activity in Higher Plants (H. Smith, ed.), pp. 93–127, Academic, London.Google Scholar
  67. Snow, R., 1955, Problems of phyllotaxis and leaf determination, Endeavour, 1955:190–199.Google Scholar
  68. Stebbins, G. L., 1967, Adaptive radiation and trends of evolution in higher plants. Evol. Biol. 1:101–142.Google Scholar
  69. Stubbe, H., 1966, Genetik und Zytologie von Antirrhinum L., sect. Antirrhinum, Gustav Fischer, Jena.Google Scholar
  70. van Nigtevecht, G., 1966, Genetic studies in dioecious Melandrium I. Sex-linked and sex-influenced inheritance in Melandrium album and Melandrium dioicum, Genetics 37:281–306.Google Scholar
  71. Varner, J. E., and Ho, D. T.-H., 1977, Hormonal control of enzyme activity in higher plants, in: Regulation of Enzyme Synthesis and Activity in Higher Plants (H. Smith, ed.), pp. 83–92, Academic, London.Google Scholar
  72. Veen, A. H., and Lindenmayer, A., 1977, Diffusion mechanism for phyllotaxis, Plant Physiol. 60:127–139.PubMedCrossRefGoogle Scholar
  73. Waddington, C. H., 1940, Organizers and Genes, Cambridge University Press, London.Google Scholar
  74. Wardlaw, C. W., 1968, Morphogenesis in Plants, Methuen, London.Google Scholar
  75. Wareing, P. F., 1971, Some aspects of differentiation in plants. in: Control Mechanisms of Growth and Differentiation (D. D. Davies and M. Baees, eds.) pp. 323–344, Cambridge University Press, London.Google Scholar
  76. Williams, R. F., 1975, The Shoot Apex and Leaf Growth, Cambridge University Press, London.CrossRefGoogle Scholar
  77. Wolk, C. P., 1979, Intercellular interactions and pattern formation in filamentous cyano-bacteria, in: Determinants of Spatial Organization (S. Subtelny and I. R. Königsberg, eds.), pp. 247–266, Academic, New York.Google Scholar
  78. Wolpert, L., 1982, Pattern formation and change, in: Evolution and Development (J. T. Bonner, ed.), pp. 169–188, Springer-Verlag, New York.CrossRefGoogle Scholar
  79. Young, D. A., 1978, On the diffusion theory of phyllotaxis. J. Theor. Biol. 71:421–432.PubMedCrossRefGoogle Scholar
  80. Young, R. A., Hagenbüchle, O., and Schibier, U., 1981, A single mouse α-amylase gene specifies two different tissue-specific mRNAs, Cell 23:451–458.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Konrad Bachmann
    • 1
  1. 1.Premedical Biology ProgramUniversity of HeidelbergHeidelbergWest Germany

Personalised recommendations