Skip to main content

The Role of Single-Gene Mutations in the Evolution of Flowering Plants

  • Chapter
Evolutionary Biology

Abstract

Although a general concordance has been achieved concerning the mechanisms underlying evolution at the intraspecific level, transspecific evolution is still a controversial and quite intriguing issue. The controversy is caused by the relatively short time span in which higher taxa evolved and the rarity or lack of morphological intermediates in the fossil record. Two major schools of thought exist regarding macroevolution, one favoring gradual evolution, the other saltation. The former process is based on the accumulation over a long period of time of small mutations, while the latter is considered to occur relatively rapidly as to the result of the isolation of peripheral populations (Mayr, 1942, 1954, 1982) that have undergone large-magnitude mutations [in the extreme case, Goldschmidt’s (1940) “hopeful monsters”] and have been filtered by natural selection (Eldredge and Gould, 1972; Gould, 1977). The history and details of these concepts are discussed by Mayr (1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R. W., 1952, Inheritance of four morphological characters in lima beans, Hilgardia 22:383.

    Google Scholar 

  • Anstey, T. H., and Moore, J. F., 1954, Inheritance of glossy foliage and cream petals in green sprouting broccoli, J. Hered. 45:39.

    Google Scholar 

  • Bailey, L. H., 1977, Manual of Cultivated Plants, MacMillan, New York.

    Google Scholar 

  • Bassett, M. J., 1981, Inheritance of a lanceolate leaf mutation in the common bean. J. Hered. 72:431.

    Google Scholar 

  • Beale, G. H., 1940, The genetics of Verbena, J. Genet. 40:337.

    Article  Google Scholar 

  • Bohn, G. W., 1961, Inheritance and origin of nectarless muskmelon, J. Hered. 52:233.

    Google Scholar 

  • Borgonakar, D. S., Harlan, J. R., and de Wet, J. M. J., 1962, A cytogenetical study of hybrids between Dieanthium annulation and D. fecundum, Proc. Okla. Acad. Sci. 42:13.

    Google Scholar 

  • Brown, H. B., and Cotton, J. R., 1937, “Round leaf” cotton. Notes on the appearance and behaviour of a peculiar new strain, J. Hered. 28:45.

    Google Scholar 

  • Cain, A. J., 1982, Porcupine biology. Nature 297:707.

    Article  Google Scholar 

  • Campbell, C. G., and Nonnecke, I. L., 1974, Inheritance of an enhanced branching character in the tomato (Lycopersicon esculantum Mill.), J. Am. Soc. Hortic. Sci. 99:358.

    Google Scholar 

  • Ceccarelli, S., 1978, Single-gene inheritance of anther extrusion in barley, J. Hered. 69:210.

    Google Scholar 

  • Chailakhyan, M. K. H., 1979, Genetic and hormonal regulation of growth, flowering, and sex expression in plants, Am. J. Bot. 66:717.

    Article  CAS  Google Scholar 

  • Chu, M. C., and Thompson, A. E., 1972, Morphology and genetics of fleshy calyx and their relation to crack resistance in tomatoes, J. Am. Soc. Hortic. Sci. 97:197.

    Google Scholar 

  • Clayberg, C. D., 1975, Genetics of corolla traits in gloxinia. J. Hered. 66:10.

    Google Scholar 

  • Coffett, T. A., and Hammons, R. O., 1974, Inheritance of pod constriction in peanuts, J. Hered. 65:94.

    Google Scholar 

  • Collins, G. N., and Kempton, J. H., 1914. A teosinte-maize hybrid. J. Agric. Res. 19:1.

    Google Scholar 

  • Cowan, R. S., 1968. Swartzia (Leguminosae. Caesalpinoideae, Swartzieae). Flora Neotrop. Monogr. 1:1.

    Google Scholar 

  • Crane, M. B., 1915, Heredity of type of inflorescences and fruits in the tomato. J. Genet. 5:1.

    Article  Google Scholar 

  • Cronquist, A., 1968. The Evolution and Classification of Flowering Plants, Houghton Mifflin, Boston, Massachusetts.

    Google Scholar 

  • Cronquist, A., 1980. Asteraceae, in: Vascular Flora of Southeastern United States, Vol. I (A. E. Radford, H. E. Ahles, and G. R. Bell, eds.). University of North Carolina Press. Chapel Hill, North Carolina.

    Google Scholar 

  • Cronquist, A., 1981, An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.

    Google Scholar 

  • Currence, T. M., 1932, Linkage relation of growth habit in tomato plants, Proc. Am. Soc. Hortic. Sci. 29:501.

    Google Scholar 

  • Dennery, E. B., and Hecht, A., 1970, Genetic basis of anomalous flowering in Oenothera, J. Hered. 61:199.

    Google Scholar 

  • Den Nijs, T. P. M., Leue, E. F., and Peloquin, S. J., 1980. Topiary, a mutant character in Solanum infundibuliforme, J. Hered. 71:57.

    Google Scholar 

  • de Wet, J. M. J., and Harlan, J. R., 1976. Cytogenetic evidence for the origin of teosinte (Zea mays ssp. mexicana), Euphytica 25:447.

    Article  Google Scholar 

  • Dickson, M. H., 1968, Eight newly described genes in broccoli, Proc. Am. Soc. Hort. Sci. 93:356.

    Google Scholar 

  • Dobzhansky, T., Ayala, F. J., Stebbins, G. L., and Valentine, J. W., 1977. Evolution, Freeman, San Francisco, California.

    Google Scholar 

  • Donnelly, E. D., Watson, J. E., and McGuire, J. A., 1972, Inheritance of hard seed in Vicia, J. Hered. 63:361.

    Google Scholar 

  • Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology (T. J. M. Schopf, ed.), pp. 82–115, Freeman, San Francisco, California.

    Google Scholar 

  • Enns, H., and Larter, E. N., 1961. Note on the inheritance of DS; a gene governing meiotic chromosome behaviour in barley, Can. J. Plant Sci. 40:570.

    Article  Google Scholar 

  • Eyster, W. H., and Burpee, D., 1936, Inheritance of doubleness in the flowers of nasturium, J. Hered. 27:51.

    Google Scholar 

  • Fatokun, C. A., Aken’Ova, M. E., and Chheda, H. R., 1979, Supernumerary inflorescence: A mutant of agronomic significance in okra, J. Hered. 70:270.

    Google Scholar 

  • Foster, A. S., and Gifford, E. M., 1974, Comparative Morphology of Vascular Plants, Freeman, San Francisco, California.

    Google Scholar 

  • Freeman, D. C., Harper, K. T., and Charnov, E. L., 1980, Sex change in plants: Old and new observations and new hypotheses, Oecologia 47:222.

    Article  Google Scholar 

  • Gajewski, W., 1953, Torche obserwacji nad zaburzeniami w rozwoju kwiatow u Geum L., Acta Soc. Bot. Pol. 22:587.

    Google Scholar 

  • George, W. L., 1970, Genetic and environmental modification of determinate plant habit in cucumbers, J. Am. Soc. Hortic. Sci. 95:583.

    Google Scholar 

  • Goldschmidt, R. B., 1940, The Material Basis of Evolution, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Gottschalk, W., 1977, Die Bedeutung der Genmutation fur die. Evolution der Pflanzen, Gustav Fisher, Stuttgart.

    Google Scholar 

  • Gould, S. J., 1977, The return of hopeful monsters, Nat. Hist. 86:22.

    Google Scholar 

  • Grant, V., 1952, Isolation and hybridization between Aquilegia formosa and A. pubescens, Al Aliso 2:341.

    Google Scholar 

  • Grant, V., 1975, Genetics of Flowering Plants, Columbia University Press, New York.

    Google Scholar 

  • Hammons, R. O., 1971, Inheritance of inflorescence in main stem leaf axile in Arachis hypogaeae L., Crop Sci. 11:570.

    Article  Google Scholar 

  • Hanson, A. A., and Hanson, R. G., 1952, Abnormal petiole and petioliole development in red clover, Trifolium pratense L., J. Hered. 43:58.

    Google Scholar 

  • Harlan, J. R., 1968, On the origin of barley, in: Barley: Origin, Botany, Culture, Winter Hardiness, Genetics, and Utilization, U.S. Department of Agriculture Handbook 338, Washington, D.C.

    Google Scholar 

  • Harlan, J. R., 1975, Crops and Man, Crop Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Harlan, J. R., 1982, Human interference with grass systematics, in: Grasses and Grasslands (J. Estes, R. Tyrl, and J. Brunken, eds.), University of Oklahoma Press, Norman, Oklahoma.

    Google Scholar 

  • Heslop-Harrison, J., 1972, Sexuality of angiosperms, in: Physiology of Development: From Seeds to Sexuality (F. C. Steward, ed.), Academic, New York.

    Google Scholar 

  • Honma, S., and Bukovac, M. J., 1966, Inheritance of gibberellin induced heterostyly in the tomato, Euphytica 15:362.

    Article  Google Scholar 

  • Huelsen, W. A., and Gills, M. C., 1929, Inheritance of kernel arrangement in sweet corn, Illinois Agricultural Experiment Station Bulletin, No. 320.

    Google Scholar 

  • Hutchins, A. E., 1940, Inheritance in cucumber, J. Agric. Res. 60:117.

    Google Scholar 

  • Jackson, R. C., and Dimas, C. T., 1981, Experimental evidence for systematic placement of the Haplopappus phyllocephalus complex, Syst. Bot. 6:8.

    Article  Google Scholar 

  • Janick, J., 1955, Inheritance of sex in tetraploid spinach, Proc. Am. Soc. Hortic. Sci. 66:361.

    Google Scholar 

  • Janick, J., and Stevenson, E. C., 1954, A genetic study of the heterogametic nature of the staminate plant in spinach (Spinacia oleraceae L.), Proc. Am. Soc. Hortic. Sci. 63:444.

    Google Scholar 

  • Jaynes, R., 1974, Inheritance of flower and foliage characteristics in mountain laurel (Kalmia latifolia L.), J. Am. Soc. Hortic. Sci. 99:209.

    Google Scholar 

  • Jaynes, R., 1981, Inheritance of ornamental traits in mountain laurel, Kalmia latifolia, J. Hered. 72:245.

    Google Scholar 

  • John, C. W., and Palmer, R. G., 1982, Floral development of a flower-structure mutant in soybean, Glycine max (L.) Merr. (Leguminosae), Am. J. Bot. 69:829.

    Article  Google Scholar 

  • Karper, R. E., and Stephens, J. C., 1936, Floral abnormalities in sorghum, J. Hered. 27:183.

    Google Scholar 

  • Kelaney, M. A., 1925, Inheritance in Nicotiana tabacum VI. A Mendelian analysis of certain flower form, flower and filament color, and leaf base characters, Univ. Calif. Publ. Bot. 11:31.

    Google Scholar 

  • Kelly, P. J., 1922, Astylis phlox, J. Hered. 13:339.

    Google Scholar 

  • Kohel, R. J., 1965, Inheritance of accessory involecure mutant in American Upland cotton, Gossypium hirsutum L., Crop Sci. 5:119.

    Article  Google Scholar 

  • Kubicki, B., 1969a, Investigations on sex determination in cucumber (Cucumis sativus L.) IV. Multiple alleles of locus Acr, Genet. Pol. 10:23.

    Google Scholar 

  • Kubicki, B., 1969b, Investigation on sex determination in cucumber (Cucumis sativus L.) V. Genes controlling intensity of femaleness, Genet. Pol. 10:69.

    Google Scholar 

  • Kubicki, B., 1969c, Investigation on sex determination in cucumber (Cucumis sativus L.) VIII. Trimonoecism, Genet. Pol. 10:123.

    Google Scholar 

  • Kubicki, B., 1969d, Sex determination in muskmelon (Cucumber melo L.), Genet. Pol. 10:145.

    Google Scholar 

  • Kubicki, B., 1969e, Comparative studies in cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.), Genet. Pol. 10:167.

    Google Scholar 

  • Kubicki, B., 1974, New sex types in cucumber and their uses in breeding work. in: Proceedings of the XIXth International Horticultural Congress. Vol. 3 (R. Antoszewski, ed.), p. 475, Research Institute of Pomology, Skierniewice. Poland.

    Google Scholar 

  • Kumar, L. S. S., 1961, Die verebung eines Phaseolus-types mit drei kotyledon sowie uber die Wirkung von drei neven genen. Agric. Hortic. Genet. 19:333.

    Google Scholar 

  • Ladizinsky, G., 1979, The genetics of several morphological traits in the lentil, J. Hered. 70:135.

    Google Scholar 

  • Lai, C. H., Janick, J., and Weiler, T. C., 1974, Inheritance of photoperiodic response and stem striping in Salvia splendens Sello, Hort science 9:573.

    Google Scholar 

  • Lamm, R., 1937, Length factors in dwarf peas, Hereditas 23:72.

    Google Scholar 

  • Lamm, R., 1947, Studies on linkage relations of the Cy-factors in Pisum, Hereditas 23:405.

    Google Scholar 

  • Lamprecht, H., 1938, Über Hülseneigenschaften bie Pisum, ihre Vererbung und ihr Züchterischer Wert, Der Züchter, 10:150.

    Google Scholar 

  • Lamprecht, H., 1945, Intra-and interspecific genes, Agric. Hortic. Genet. 3:45.

    Google Scholar 

  • Lamprecht, H., 1957, Artifizielle Umwandlung einer Spezies in eine andere, Agric. Hort. Genet. 15:194.

    Google Scholar 

  • Lawrance, G. H. M., 1951, Taxonomy of Vascular Plants, MacMillan, New York.

    Google Scholar 

  • Linqvist, K., 1951, The mutation “Micro” in Pisum, Hereditas 37:389.

    Article  Google Scholar 

  • Little, T. M., and Kantor, J. H., 1941, Inheritance of earliness of flowering in the sweet pea, J. Hered. 32:379.

    Google Scholar 

  • Liu, P. B. W., and Loy, J. B., 1972, Inheritance and morphology of two dwarf mutants in watermelon, J. Am. Soc. Hortic. Sci. 97:745.

    Google Scholar 

  • Luckwill, L. C., 1943, The evolution of cultivated tomato, J. R. Hortic. Soc. 68:19.

    Google Scholar 

  • MacArthur, J. W., 1928, Linkage studies with the tomato, Genetica 13:410.

    CAS  Google Scholar 

  • Martini, M. L., and Harlan, H. V., 1942, Barley freaks, J. Hered. 33:339.

    Google Scholar 

  • May, K. W., and Kasha, K. J., 1980, The cytological expression and inheritance of desy-napsis in a clone of diploid timothy (Phleum nodosum L.), Euphytica 29:233.

    Article  Google Scholar 

  • Mayr, E., 1942, Systematics and the Origin of Species, Columbia University Press, New York.

    Google Scholar 

  • Mayr, E., 1954, Change of genetic environment and evolution, in: Evolution as a Process (J. Huxley, A. C. Hardey, and E. B. Ford, eds.), pp. 157–180, Allen and Unwin, London.

    Google Scholar 

  • Mayr, E., 1982, The Growth of Biological Thought: Diversity, Evolution, and Inheritance, Belknap, Cambridge, Massachusetts.

    Google Scholar 

  • McClintock, B., 1967, The role of the nucleus genetic systems regulating gene expression during development, Dev. Biol. (Suppl.) 1:84.

    Google Scholar 

  • Miller, G. A., and George, W. L., Jr., 1979, Inheritance of dwarf and determinate growth habit in cucumber, J. Am. Soc. Hortic. Sci. 104:114.

    Google Scholar 

  • Miyake, K., and Imai, Y., 1926, On a monstrous flower and its linkage in the Japanese morning glory, J. Genet. 16:63.

    Article  Google Scholar 

  • Mockaitis, J. M., and Kivilaon, A., 1965, A green corolla mutant in Cucumis melo L., Naturwissenschaften 52:434.

    Article  Google Scholar 

  • Moh, C. C., and Nilan, R. A., 1953, Multiovary in barley: A mutant induced by atomic bomb irradiation, J. Hered. 44:183.

    Google Scholar 

  • Monti, L. M., and Devreux, M., 1969, Stamina pistilloida: A new mutation induced in pea, Theor. Appl. Genet. 39:17.

    Article  Google Scholar 

  • Munz, P., 1946, The cultivated and wild colombines, Gentes Herb. 7:.

    Google Scholar 

  • Murty, G. S., and Jain, K. B. L., 1960, Genetic studies in barley. II. Inheritance of fertility of the lateral florets and certain other characters, J. Ind. Bot. Soc. 39:281.

    Google Scholar 

  • Natarella, N. J., and Sink, K. C., 1971, The morphogenesis of double flowering in Petunia hybrida Hort., J. Am. Soc. Hortic. Sci. 96:600.

    Google Scholar 

  • Nilan, R. A., 1964, The cytology and genetics of barley, Res. Studies, Washington State Univ. 32(1), Suppl. No. 1.

    Google Scholar 

  • Nugent, P. E., and Snyder, R. J., 1967, The inheritance of floret doubleness, floret center color and plant habit in Pelargonium hortorum Bailey, Proc. Am. Soc. Hortic. Sci. 91:680.

    Google Scholar 

  • Odland, M. L., and Groff, D. W., 1963, Linkage of vine type and geotropic response with sexes forms in cucumber, Cucumis sativus L., Proc. Am. Soc. Hortic. Sci. 82:358.

    Google Scholar 

  • Parkin, J., 1914, The evolution of the inflorescence, J. Linn. Soc. Bot. 42:511.

    Article  Google Scholar 

  • Pelton, J. S., 1964, Genetic and morphologic studies of angiosperm single-gene dwarfs, Bot. Rev. 30:479.

    Article  Google Scholar 

  • Prazmo, W., 1965, Cytogenetic studies on the genus Aquilegia III. Inheritance of trait distinguishing different complexes in the genus Aquilegia, Acta Soc. Bot. Pol. 34:403.

    Google Scholar 

  • Rana, R. S., 1965, Radiation-induced variation in ray-floret characteristics of annual chrysanthemum, Euphytica 14:296.

    Article  Google Scholar 

  • Rasmusson, J., 1927, Genetically changed linkage value in Pisurn, Hereditas 10:1.

    Article  Google Scholar 

  • Rick, C. M., 1978, The tomato, Sci. Am. 239:77.

    Article  Google Scholar 

  • Riley, R., and Chapman, V., 1958, Genetic control of the cytologically diploid behaviours of hexaploid wheat, Nature 182:713.

    Article  Google Scholar 

  • Robinson, R. W., Munger, H. M., Whitaker, T. W., and Bohn, G. W., 1976, Genes of Cucurbitaceae, Hortscience 11:554.

    Google Scholar 

  • Rosa, T. J., 1928, The inheritance of flower types in Cucumis and Citrullus, Hilgardia 3:233.

    Google Scholar 

  • Rowe, P., and Bowers, J. L., 1965, The inheritance and potential of an irradiation induced tendrilless character in cucumbers, Proc. Am. Soc. Hortic. Sci. 86:436.

    Google Scholar 

  • Ryder, E. J., 1965, The inheritance of five leaf characters in lettuce (Lactuca sativa L.), Proc. Am. Soc. Hortic. Sci. 86:457.

    Google Scholar 

  • Ryder, E. J., 1971, Genetic studies in lettuce (Lectuca sativa L.), J. Am. Soc. Hortic. Sci. 96:826.

    CAS  Google Scholar 

  • Sage, G. C., and De Isturiz, M. J., 1974, The inheritance of anther extrusion in two spring wheat varieties, Theor. Appl. Genet. 45:126.

    Article  Google Scholar 

  • Sampson, D. R., 1958, Inheritance of persistent sepals in green sprouting broccoli, Can. J. Sci. 38:8.

    Article  Google Scholar 

  • Sampson, D. R., 1966, Genetic analysis of Brassica oleraceae using nine genes from sprouting broccoli, Can. J. Genet. Cytol. 8:404.

    Google Scholar 

  • Scarchuk, J., 1974, Inheritance of light yellow corolla and leafy tendrils in gourd (Cucurbita pepo var. ovifera Alef), Hortscience 9:464.

    Google Scholar 

  • Schwanitz, F., and Schwanitz, H., 1955, Ein grossmutation bei Linaria maroccana L.: mut. gratioloides, Beitr. Biol. Pflanz. 31:473.

    Google Scholar 

  • Scott, G. W., 1937, A Genetical and Cytological Study of Petunia with Special Reference to Inheritance of Doubleness, Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

  • Shifriss, O., 1950, Spontaneous mutations in the American variety of Cucumis sativa L., Proc. Am. Soc. Hortic. Sci. 55:351.

    Google Scholar 

  • Silow, R. A., 1946, Evidence on chromosome homology and gene homology in the amphi-ploid New World cottons, J. Genet. 47:213.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B. B., and Jha, A. N., 1978, Abnormal differentiation of floral parts in a mutant strain of soybean, J. Hered. 69:143.

    Google Scholar 

  • Singh, H. B., Ramanujam, S., and Pal, B. P., 1948, Inheritancc of sex forms in Luffa acutangulata Roxb., Nature 161:775.

    Article  PubMed  CAS  Google Scholar 

  • Sink, K. C., Jr., 1973, The inheritance of apetalous flower type in Petunia hybrida Vilm. and linkage test with the gene for flower doubleness and grandiflora characters and its use in hybrid seed production, Euphytica 22:520.

    Article  Google Scholar 

  • Sjodin, J., 1964, Some unifoliate mutants in Vicia faba L.. Hereditas 51:279.

    Article  Google Scholar 

  • Smith, L., 1951, Cytology and genetics of barley, Bot. Rev. 17:1.

    Article  Google Scholar 

  • Snoad, B., 1975, Genetic studies and crop improvement in peas. Sci. Hortic. 27:6.

    Google Scholar 

  • Stace, C. A., 1980. Plant Taxonomy and Biosystematics. Arnold. London.

    Google Scholar 

  • Stebbins, G. L., 1974, Flowering Plants: Evolution Above the Species Level. Belknap. Cambridge, Massachusetts.

    Google Scholar 

  • Stebbins, G. L., and Yagil, E., 1966, The morphogenetic effects of the hooded gene in barley. I. The cause of development in hooded and awned genotypes, Genetics 54:727.

    PubMed  CAS  Google Scholar 

  • Stephens, S. G., 1951, Evolution of the gene: “Homologous” genetic loci in Gossypium, Cold Springs Harbor Symp. Quant. Biol. 16:131.

    Article  CAS  Google Scholar 

  • Stubbe, H., 1952, Ueber einige theoretische und praktische fragen der mutations forschung, Abk. Sachisch. Akad. Wiss. Math.-Nature Kl. (Leipzig) 47:3.

    Google Scholar 

  • Stubbe, H., 1959, Consideration on the genetical and evolutionary aspects of some mutants of Hordeum, Glycine, Lycopersicon and Antirrhinum, Cold Spring Harbor Symp. Quant. Biol. 24:31.

    Article  PubMed  CAS  Google Scholar 

  • Stubbe, H., 1963, Ueber die stabilisinerung des sich variabel manifestierenden merkmals’ polycotylie von Antirrhinum majus L., Kulturpflanzen 11:250.

    Article  Google Scholar 

  • Stubbe, H., 1966, Genetik und Zytologie von Antirrhinum L. sect. Antirrhinum, Gustov Fischer, Jena.

    Google Scholar 

  • Takhtajan, A., 1969, Flowering Plants: Origin and Dispersai Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Tedin, O., 1923, The inheritance of pinnatified leaves in Camellia, Hereditas 4:59.

    Article  Google Scholar 

  • Turcotte, E. L., and Feaster, C. V., 1964. Inheritance of a mutant with rudimentary stigma and style in Pima cotton, Gossypium barbadense L., Crop Sci. 4:377.

    Article  Google Scholar 

  • Vriesenga, J. D., and Honma, S., 1973, Inheritance of tomato inflorescence, J. Hered. 64:158.

    Google Scholar 

  • Vriesenga, J. D., and Honma, S., 1974, Inheritance of tomato inflorescence, II. Flower number and branching, J. Hered. 65:43.

    Google Scholar 

  • Wall, J. R., and York, T. L., 1957, Inheritance of seedling cotyledon position in Phaseolus species, J. Hered. 48:71.

    Google Scholar 

  • Way, R., 1965, Inheritance of the cutleaf character in elderberry. Proc. Am. Soc. Hortic. Sci. 86:329.

    Google Scholar 

  • Whalen, E. D. P., 1972, Inheritance of radiation-induced light sensitive mutant of cucumber, J. Am. Soc. Hortic. Sci. 97:765.

    Google Scholar 

  • Whitaker, T. W., 1950, The genetics of leaf form in cultivated lettuce. I. The inheritance of lobing, Proc. Am. Soc. Hortic. Sci. 56:389.

    Google Scholar 

  • Yagil, E., and Stebbins, G. L., 1969, The morphogenetic effects of the hooded gene in barley. II. Cytological and environmental factors affecting gene expression, Genetics 62:307.

    PubMed  CAS  Google Scholar 

  • Youngner, V. B., 1952, A Study of the Inheritance of Several Characters in the Cucumber, Ph.D. Thesis, University of Minnesota, St. Paul, Minnesota.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hilu, K.W. (1983). The Role of Single-Gene Mutations in the Evolution of Flowering Plants. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6971-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6971-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6973-2

  • Online ISBN: 978-1-4615-6971-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics