The Role of Single-Gene Mutations in the Evolution of Flowering Plants

  • Khidir W. Hilu


Although a general concordance has been achieved concerning the mechanisms underlying evolution at the intraspecific level, transspecific evolution is still a controversial and quite intriguing issue. The controversy is caused by the relatively short time span in which higher taxa evolved and the rarity or lack of morphological intermediates in the fossil record. Two major schools of thought exist regarding macroevolution, one favoring gradual evolution, the other saltation. The former process is based on the accumulation over a long period of time of small mutations, while the latter is considered to occur relatively rapidly as to the result of the isolation of peripheral populations (Mayr, 1942, 1954, 1982) that have undergone large-magnitude mutations [in the extreme case, Goldschmidt’s (1940) “hopeful monsters”] and have been filtered by natural selection (Eldredge and Gould, 1972; Gould, 1977). The history and details of these concepts are discussed by Mayr (1982).


Flowering Plant Stamen Primordia Disc Floret Inferior Ovary Hopeful Monster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard, R. W., 1952, Inheritance of four morphological characters in lima beans, Hilgardia 22:383.Google Scholar
  2. Anstey, T. H., and Moore, J. F., 1954, Inheritance of glossy foliage and cream petals in green sprouting broccoli, J. Hered. 45:39.Google Scholar
  3. Bailey, L. H., 1977, Manual of Cultivated Plants, MacMillan, New York.Google Scholar
  4. Bassett, M. J., 1981, Inheritance of a lanceolate leaf mutation in the common bean. J. Hered. 72:431.Google Scholar
  5. Beale, G. H., 1940, The genetics of Verbena, J. Genet. 40:337.CrossRefGoogle Scholar
  6. Bohn, G. W., 1961, Inheritance and origin of nectarless muskmelon, J. Hered. 52:233.Google Scholar
  7. Borgonakar, D. S., Harlan, J. R., and de Wet, J. M. J., 1962, A cytogenetical study of hybrids between Dieanthium annulation and D. fecundum, Proc. Okla. Acad. Sci. 42:13.Google Scholar
  8. Brown, H. B., and Cotton, J. R., 1937, “Round leaf” cotton. Notes on the appearance and behaviour of a peculiar new strain, J. Hered. 28:45.Google Scholar
  9. Cain, A. J., 1982, Porcupine biology. Nature 297:707.CrossRefGoogle Scholar
  10. Campbell, C. G., and Nonnecke, I. L., 1974, Inheritance of an enhanced branching character in the tomato (Lycopersicon esculantum Mill.), J. Am. Soc. Hortic. Sci. 99:358.Google Scholar
  11. Ceccarelli, S., 1978, Single-gene inheritance of anther extrusion in barley, J. Hered. 69:210.Google Scholar
  12. Chailakhyan, M. K. H., 1979, Genetic and hormonal regulation of growth, flowering, and sex expression in plants, Am. J. Bot. 66:717.CrossRefGoogle Scholar
  13. Chu, M. C., and Thompson, A. E., 1972, Morphology and genetics of fleshy calyx and their relation to crack resistance in tomatoes, J. Am. Soc. Hortic. Sci. 97:197.Google Scholar
  14. Clayberg, C. D., 1975, Genetics of corolla traits in gloxinia. J. Hered. 66:10.Google Scholar
  15. Coffett, T. A., and Hammons, R. O., 1974, Inheritance of pod constriction in peanuts, J. Hered. 65:94.Google Scholar
  16. Collins, G. N., and Kempton, J. H., 1914. A teosinte-maize hybrid. J. Agric. Res. 19:1.Google Scholar
  17. Cowan, R. S., 1968. Swartzia (Leguminosae. Caesalpinoideae, Swartzieae). Flora Neotrop. Monogr. 1:1.Google Scholar
  18. Crane, M. B., 1915, Heredity of type of inflorescences and fruits in the tomato. J. Genet. 5:1.CrossRefGoogle Scholar
  19. Cronquist, A., 1968. The Evolution and Classification of Flowering Plants, Houghton Mifflin, Boston, Massachusetts.Google Scholar
  20. Cronquist, A., 1980. Asteraceae, in: Vascular Flora of Southeastern United States, Vol. I (A. E. Radford, H. E. Ahles, and G. R. Bell, eds.). University of North Carolina Press. Chapel Hill, North Carolina.Google Scholar
  21. Cronquist, A., 1981, An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.Google Scholar
  22. Currence, T. M., 1932, Linkage relation of growth habit in tomato plants, Proc. Am. Soc. Hortic. Sci. 29:501.Google Scholar
  23. Dennery, E. B., and Hecht, A., 1970, Genetic basis of anomalous flowering in Oenothera, J. Hered. 61:199.Google Scholar
  24. Den Nijs, T. P. M., Leue, E. F., and Peloquin, S. J., 1980. Topiary, a mutant character in Solanum infundibuliforme, J. Hered. 71:57.Google Scholar
  25. de Wet, J. M. J., and Harlan, J. R., 1976. Cytogenetic evidence for the origin of teosinte (Zea mays ssp. mexicana), Euphytica 25:447.CrossRefGoogle Scholar
  26. Dickson, M. H., 1968, Eight newly described genes in broccoli, Proc. Am. Soc. Hort. Sci. 93:356.Google Scholar
  27. Dobzhansky, T., Ayala, F. J., Stebbins, G. L., and Valentine, J. W., 1977. Evolution, Freeman, San Francisco, California.Google Scholar
  28. Donnelly, E. D., Watson, J. E., and McGuire, J. A., 1972, Inheritance of hard seed in Vicia, J. Hered. 63:361.Google Scholar
  29. Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology (T. J. M. Schopf, ed.), pp. 82–115, Freeman, San Francisco, California.Google Scholar
  30. Enns, H., and Larter, E. N., 1961. Note on the inheritance of DS; a gene governing meiotic chromosome behaviour in barley, Can. J. Plant Sci. 40:570.CrossRefGoogle Scholar
  31. Eyster, W. H., and Burpee, D., 1936, Inheritance of doubleness in the flowers of nasturium, J. Hered. 27:51.Google Scholar
  32. Fatokun, C. A., Aken’Ova, M. E., and Chheda, H. R., 1979, Supernumerary inflorescence: A mutant of agronomic significance in okra, J. Hered. 70:270.Google Scholar
  33. Foster, A. S., and Gifford, E. M., 1974, Comparative Morphology of Vascular Plants, Freeman, San Francisco, California.Google Scholar
  34. Freeman, D. C., Harper, K. T., and Charnov, E. L., 1980, Sex change in plants: Old and new observations and new hypotheses, Oecologia 47:222.CrossRefGoogle Scholar
  35. Gajewski, W., 1953, Torche obserwacji nad zaburzeniami w rozwoju kwiatow u Geum L., Acta Soc. Bot. Pol. 22:587.Google Scholar
  36. George, W. L., 1970, Genetic and environmental modification of determinate plant habit in cucumbers, J. Am. Soc. Hortic. Sci. 95:583.Google Scholar
  37. Goldschmidt, R. B., 1940, The Material Basis of Evolution, Yale University Press, New Haven, Connecticut.Google Scholar
  38. Gottschalk, W., 1977, Die Bedeutung der Genmutation fur die. Evolution der Pflanzen, Gustav Fisher, Stuttgart.Google Scholar
  39. Gould, S. J., 1977, The return of hopeful monsters, Nat. Hist. 86:22.Google Scholar
  40. Grant, V., 1952, Isolation and hybridization between Aquilegia formosa and A. pubescens, Al Aliso 2:341.Google Scholar
  41. Grant, V., 1975, Genetics of Flowering Plants, Columbia University Press, New York.Google Scholar
  42. Hammons, R. O., 1971, Inheritance of inflorescence in main stem leaf axile in Arachis hypogaeae L., Crop Sci. 11:570.CrossRefGoogle Scholar
  43. Hanson, A. A., and Hanson, R. G., 1952, Abnormal petiole and petioliole development in red clover, Trifolium pratense L., J. Hered. 43:58.Google Scholar
  44. Harlan, J. R., 1968, On the origin of barley, in: Barley: Origin, Botany, Culture, Winter Hardiness, Genetics, and Utilization, U.S. Department of Agriculture Handbook 338, Washington, D.C.Google Scholar
  45. Harlan, J. R., 1975, Crops and Man, Crop Science Society of America, Madison, Wisconsin.Google Scholar
  46. Harlan, J. R., 1982, Human interference with grass systematics, in: Grasses and Grasslands (J. Estes, R. Tyrl, and J. Brunken, eds.), University of Oklahoma Press, Norman, Oklahoma.Google Scholar
  47. Heslop-Harrison, J., 1972, Sexuality of angiosperms, in: Physiology of Development: From Seeds to Sexuality (F. C. Steward, ed.), Academic, New York.Google Scholar
  48. Honma, S., and Bukovac, M. J., 1966, Inheritance of gibberellin induced heterostyly in the tomato, Euphytica 15:362.CrossRefGoogle Scholar
  49. Huelsen, W. A., and Gills, M. C., 1929, Inheritance of kernel arrangement in sweet corn, Illinois Agricultural Experiment Station Bulletin, No. 320.Google Scholar
  50. Hutchins, A. E., 1940, Inheritance in cucumber, J. Agric. Res. 60:117.Google Scholar
  51. Jackson, R. C., and Dimas, C. T., 1981, Experimental evidence for systematic placement of the Haplopappus phyllocephalus complex, Syst. Bot. 6:8.CrossRefGoogle Scholar
  52. Janick, J., 1955, Inheritance of sex in tetraploid spinach, Proc. Am. Soc. Hortic. Sci. 66:361.Google Scholar
  53. Janick, J., and Stevenson, E. C., 1954, A genetic study of the heterogametic nature of the staminate plant in spinach (Spinacia oleraceae L.), Proc. Am. Soc. Hortic. Sci. 63:444.Google Scholar
  54. Jaynes, R., 1974, Inheritance of flower and foliage characteristics in mountain laurel (Kalmia latifolia L.), J. Am. Soc. Hortic. Sci. 99:209.Google Scholar
  55. Jaynes, R., 1981, Inheritance of ornamental traits in mountain laurel, Kalmia latifolia, J. Hered. 72:245.Google Scholar
  56. John, C. W., and Palmer, R. G., 1982, Floral development of a flower-structure mutant in soybean, Glycine max (L.) Merr. (Leguminosae), Am. J. Bot. 69:829.CrossRefGoogle Scholar
  57. Karper, R. E., and Stephens, J. C., 1936, Floral abnormalities in sorghum, J. Hered. 27:183.Google Scholar
  58. Kelaney, M. A., 1925, Inheritance in Nicotiana tabacum VI. A Mendelian analysis of certain flower form, flower and filament color, and leaf base characters, Univ. Calif. Publ. Bot. 11:31.Google Scholar
  59. Kelly, P. J., 1922, Astylis phlox, J. Hered. 13:339.Google Scholar
  60. Kohel, R. J., 1965, Inheritance of accessory involecure mutant in American Upland cotton, Gossypium hirsutum L., Crop Sci. 5:119.CrossRefGoogle Scholar
  61. Kubicki, B., 1969a, Investigations on sex determination in cucumber (Cucumis sativus L.) IV. Multiple alleles of locus Acr, Genet. Pol. 10:23.Google Scholar
  62. Kubicki, B., 1969b, Investigation on sex determination in cucumber (Cucumis sativus L.) V. Genes controlling intensity of femaleness, Genet. Pol. 10:69.Google Scholar
  63. Kubicki, B., 1969c, Investigation on sex determination in cucumber (Cucumis sativus L.) VIII. Trimonoecism, Genet. Pol. 10:123.Google Scholar
  64. Kubicki, B., 1969d, Sex determination in muskmelon (Cucumber melo L.), Genet. Pol. 10:145.Google Scholar
  65. Kubicki, B., 1969e, Comparative studies in cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.), Genet. Pol. 10:167.Google Scholar
  66. Kubicki, B., 1974, New sex types in cucumber and their uses in breeding work. in: Proceedings of the XIXth International Horticultural Congress. Vol. 3 (R. Antoszewski, ed.), p. 475, Research Institute of Pomology, Skierniewice. Poland.Google Scholar
  67. Kumar, L. S. S., 1961, Die verebung eines Phaseolus-types mit drei kotyledon sowie uber die Wirkung von drei neven genen. Agric. Hortic. Genet. 19:333.Google Scholar
  68. Ladizinsky, G., 1979, The genetics of several morphological traits in the lentil, J. Hered. 70:135.Google Scholar
  69. Lai, C. H., Janick, J., and Weiler, T. C., 1974, Inheritance of photoperiodic response and stem striping in Salvia splendens Sello, Hort science 9:573.Google Scholar
  70. Lamm, R., 1937, Length factors in dwarf peas, Hereditas 23:72.Google Scholar
  71. Lamm, R., 1947, Studies on linkage relations of the Cy-factors in Pisum, Hereditas 23:405.Google Scholar
  72. Lamprecht, H., 1938, Über Hülseneigenschaften bie Pisum, ihre Vererbung und ihr Züchterischer Wert, Der Züchter, 10:150.Google Scholar
  73. Lamprecht, H., 1945, Intra-and interspecific genes, Agric. Hortic. Genet. 3:45.Google Scholar
  74. Lamprecht, H., 1957, Artifizielle Umwandlung einer Spezies in eine andere, Agric. Hort. Genet. 15:194.Google Scholar
  75. Lawrance, G. H. M., 1951, Taxonomy of Vascular Plants, MacMillan, New York.Google Scholar
  76. Linqvist, K., 1951, The mutation “Micro” in Pisum, Hereditas 37:389.CrossRefGoogle Scholar
  77. Little, T. M., and Kantor, J. H., 1941, Inheritance of earliness of flowering in the sweet pea, J. Hered. 32:379.Google Scholar
  78. Liu, P. B. W., and Loy, J. B., 1972, Inheritance and morphology of two dwarf mutants in watermelon, J. Am. Soc. Hortic. Sci. 97:745.Google Scholar
  79. Luckwill, L. C., 1943, The evolution of cultivated tomato, J. R. Hortic. Soc. 68:19.Google Scholar
  80. MacArthur, J. W., 1928, Linkage studies with the tomato, Genetica 13:410.Google Scholar
  81. Martini, M. L., and Harlan, H. V., 1942, Barley freaks, J. Hered. 33:339.Google Scholar
  82. May, K. W., and Kasha, K. J., 1980, The cytological expression and inheritance of desy-napsis in a clone of diploid timothy (Phleum nodosum L.), Euphytica 29:233.CrossRefGoogle Scholar
  83. Mayr, E., 1942, Systematics and the Origin of Species, Columbia University Press, New York.Google Scholar
  84. Mayr, E., 1954, Change of genetic environment and evolution, in: Evolution as a Process (J. Huxley, A. C. Hardey, and E. B. Ford, eds.), pp. 157–180, Allen and Unwin, London.Google Scholar
  85. Mayr, E., 1982, The Growth of Biological Thought: Diversity, Evolution, and Inheritance, Belknap, Cambridge, Massachusetts.Google Scholar
  86. McClintock, B., 1967, The role of the nucleus genetic systems regulating gene expression during development, Dev. Biol. (Suppl.) 1:84.Google Scholar
  87. Miller, G. A., and George, W. L., Jr., 1979, Inheritance of dwarf and determinate growth habit in cucumber, J. Am. Soc. Hortic. Sci. 104:114.Google Scholar
  88. Miyake, K., and Imai, Y., 1926, On a monstrous flower and its linkage in the Japanese morning glory, J. Genet. 16:63.CrossRefGoogle Scholar
  89. Mockaitis, J. M., and Kivilaon, A., 1965, A green corolla mutant in Cucumis melo L., Naturwissenschaften 52:434.CrossRefGoogle Scholar
  90. Moh, C. C., and Nilan, R. A., 1953, Multiovary in barley: A mutant induced by atomic bomb irradiation, J. Hered. 44:183.Google Scholar
  91. Monti, L. M., and Devreux, M., 1969, Stamina pistilloida: A new mutation induced in pea, Theor. Appl. Genet. 39:17.CrossRefGoogle Scholar
  92. Munz, P., 1946, The cultivated and wild colombines, Gentes Herb. 7:.Google Scholar
  93. Murty, G. S., and Jain, K. B. L., 1960, Genetic studies in barley. II. Inheritance of fertility of the lateral florets and certain other characters, J. Ind. Bot. Soc. 39:281.Google Scholar
  94. Natarella, N. J., and Sink, K. C., 1971, The morphogenesis of double flowering in Petunia hybrida Hort., J. Am. Soc. Hortic. Sci. 96:600.Google Scholar
  95. Nilan, R. A., 1964, The cytology and genetics of barley, Res. Studies, Washington State Univ. 32(1), Suppl. No. 1.Google Scholar
  96. Nugent, P. E., and Snyder, R. J., 1967, The inheritance of floret doubleness, floret center color and plant habit in Pelargonium hortorum Bailey, Proc. Am. Soc. Hortic. Sci. 91:680.Google Scholar
  97. Odland, M. L., and Groff, D. W., 1963, Linkage of vine type and geotropic response with sexes forms in cucumber, Cucumis sativus L., Proc. Am. Soc. Hortic. Sci. 82:358.Google Scholar
  98. Parkin, J., 1914, The evolution of the inflorescence, J. Linn. Soc. Bot. 42:511.CrossRefGoogle Scholar
  99. Pelton, J. S., 1964, Genetic and morphologic studies of angiosperm single-gene dwarfs, Bot. Rev. 30:479.CrossRefGoogle Scholar
  100. Prazmo, W., 1965, Cytogenetic studies on the genus Aquilegia III. Inheritance of trait distinguishing different complexes in the genus Aquilegia, Acta Soc. Bot. Pol. 34:403.Google Scholar
  101. Rana, R. S., 1965, Radiation-induced variation in ray-floret characteristics of annual chrysanthemum, Euphytica 14:296.CrossRefGoogle Scholar
  102. Rasmusson, J., 1927, Genetically changed linkage value in Pisurn, Hereditas 10:1.CrossRefGoogle Scholar
  103. Rick, C. M., 1978, The tomato, Sci. Am. 239:77.CrossRefGoogle Scholar
  104. Riley, R., and Chapman, V., 1958, Genetic control of the cytologically diploid behaviours of hexaploid wheat, Nature 182:713.CrossRefGoogle Scholar
  105. Robinson, R. W., Munger, H. M., Whitaker, T. W., and Bohn, G. W., 1976, Genes of Cucurbitaceae, Hortscience 11:554.Google Scholar
  106. Rosa, T. J., 1928, The inheritance of flower types in Cucumis and Citrullus, Hilgardia 3:233.Google Scholar
  107. Rowe, P., and Bowers, J. L., 1965, The inheritance and potential of an irradiation induced tendrilless character in cucumbers, Proc. Am. Soc. Hortic. Sci. 86:436.Google Scholar
  108. Ryder, E. J., 1965, The inheritance of five leaf characters in lettuce (Lactuca sativa L.), Proc. Am. Soc. Hortic. Sci. 86:457.Google Scholar
  109. Ryder, E. J., 1971, Genetic studies in lettuce (Lectuca sativa L.), J. Am. Soc. Hortic. Sci. 96:826.Google Scholar
  110. Sage, G. C., and De Isturiz, M. J., 1974, The inheritance of anther extrusion in two spring wheat varieties, Theor. Appl. Genet. 45:126.CrossRefGoogle Scholar
  111. Sampson, D. R., 1958, Inheritance of persistent sepals in green sprouting broccoli, Can. J. Sci. 38:8.CrossRefGoogle Scholar
  112. Sampson, D. R., 1966, Genetic analysis of Brassica oleraceae using nine genes from sprouting broccoli, Can. J. Genet. Cytol. 8:404.Google Scholar
  113. Scarchuk, J., 1974, Inheritance of light yellow corolla and leafy tendrils in gourd (Cucurbita pepo var. ovifera Alef), Hortscience 9:464.Google Scholar
  114. Schwanitz, F., and Schwanitz, H., 1955, Ein grossmutation bei Linaria maroccana L.: mut. gratioloides, Beitr. Biol. Pflanz. 31:473.Google Scholar
  115. Scott, G. W., 1937, A Genetical and Cytological Study of Petunia with Special Reference to Inheritance of Doubleness, Ph.D. Thesis, University of California, Berkeley.Google Scholar
  116. Shifriss, O., 1950, Spontaneous mutations in the American variety of Cucumis sativa L., Proc. Am. Soc. Hortic. Sci. 55:351.Google Scholar
  117. Silow, R. A., 1946, Evidence on chromosome homology and gene homology in the amphi-ploid New World cottons, J. Genet. 47:213.PubMedCrossRefGoogle Scholar
  118. Singh, B. B., and Jha, A. N., 1978, Abnormal differentiation of floral parts in a mutant strain of soybean, J. Hered. 69:143.Google Scholar
  119. Singh, H. B., Ramanujam, S., and Pal, B. P., 1948, Inheritancc of sex forms in Luffa acutangulata Roxb., Nature 161:775.PubMedCrossRefGoogle Scholar
  120. Sink, K. C., Jr., 1973, The inheritance of apetalous flower type in Petunia hybrida Vilm. and linkage test with the gene for flower doubleness and grandiflora characters and its use in hybrid seed production, Euphytica 22:520.CrossRefGoogle Scholar
  121. Sjodin, J., 1964, Some unifoliate mutants in Vicia faba L.. Hereditas 51:279.CrossRefGoogle Scholar
  122. Smith, L., 1951, Cytology and genetics of barley, Bot. Rev. 17:1.CrossRefGoogle Scholar
  123. Snoad, B., 1975, Genetic studies and crop improvement in peas. Sci. Hortic. 27:6.Google Scholar
  124. Stace, C. A., 1980. Plant Taxonomy and Biosystematics. Arnold. London.Google Scholar
  125. Stebbins, G. L., 1974, Flowering Plants: Evolution Above the Species Level. Belknap. Cambridge, Massachusetts.Google Scholar
  126. Stebbins, G. L., and Yagil, E., 1966, The morphogenetic effects of the hooded gene in barley. I. The cause of development in hooded and awned genotypes, Genetics 54:727.PubMedGoogle Scholar
  127. Stephens, S. G., 1951, Evolution of the gene: “Homologous” genetic loci in Gossypium, Cold Springs Harbor Symp. Quant. Biol. 16:131.CrossRefGoogle Scholar
  128. Stubbe, H., 1952, Ueber einige theoretische und praktische fragen der mutations forschung, Abk. Sachisch. Akad. Wiss. Math.-Nature Kl. (Leipzig) 47:3.Google Scholar
  129. Stubbe, H., 1959, Consideration on the genetical and evolutionary aspects of some mutants of Hordeum, Glycine, Lycopersicon and Antirrhinum, Cold Spring Harbor Symp. Quant. Biol. 24:31.PubMedCrossRefGoogle Scholar
  130. Stubbe, H., 1963, Ueber die stabilisinerung des sich variabel manifestierenden merkmals’ polycotylie von Antirrhinum majus L., Kulturpflanzen 11:250.CrossRefGoogle Scholar
  131. Stubbe, H., 1966, Genetik und Zytologie von Antirrhinum L. sect. Antirrhinum, Gustov Fischer, Jena.Google Scholar
  132. Takhtajan, A., 1969, Flowering Plants: Origin and Dispersai Oliver and Boyd, Edinburgh.Google Scholar
  133. Tedin, O., 1923, The inheritance of pinnatified leaves in Camellia, Hereditas 4:59.CrossRefGoogle Scholar
  134. Turcotte, E. L., and Feaster, C. V., 1964. Inheritance of a mutant with rudimentary stigma and style in Pima cotton, Gossypium barbadense L., Crop Sci. 4:377.CrossRefGoogle Scholar
  135. Vriesenga, J. D., and Honma, S., 1973, Inheritance of tomato inflorescence, J. Hered. 64:158.Google Scholar
  136. Vriesenga, J. D., and Honma, S., 1974, Inheritance of tomato inflorescence, II. Flower number and branching, J. Hered. 65:43.Google Scholar
  137. Wall, J. R., and York, T. L., 1957, Inheritance of seedling cotyledon position in Phaseolus species, J. Hered. 48:71.Google Scholar
  138. Way, R., 1965, Inheritance of the cutleaf character in elderberry. Proc. Am. Soc. Hortic. Sci. 86:329.Google Scholar
  139. Whalen, E. D. P., 1972, Inheritance of radiation-induced light sensitive mutant of cucumber, J. Am. Soc. Hortic. Sci. 97:765.Google Scholar
  140. Whitaker, T. W., 1950, The genetics of leaf form in cultivated lettuce. I. The inheritance of lobing, Proc. Am. Soc. Hortic. Sci. 56:389.Google Scholar
  141. Yagil, E., and Stebbins, G. L., 1969, The morphogenetic effects of the hooded gene in barley. II. Cytological and environmental factors affecting gene expression, Genetics 62:307.PubMedGoogle Scholar
  142. Youngner, V. B., 1952, A Study of the Inheritance of Several Characters in the Cucumber, Ph.D. Thesis, University of Minnesota, St. Paul, Minnesota.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Khidir W. Hilu
    • 1
  1. 1.Department of BiologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations