Skip to main content

Regulatory Genes and Adaptation

Past, Present, and Future

  • Chapter
Evolutionary Biology

Abstract

Ever since the publication of The Origin of Species, evolutionary biologists have fixed their attention on how natural selection brings about adaptation. The study of adaptation has most often involved both comparative and functional morphology or physiology. As a result, the relevance of special body parts or metabolic systems to the survival of particular organisms has been shown many times in the last 120 years. The genetic basis for most of the adaptations which have been described, however, has not been elucidated, often because the organisms themselves are not amenable to genetic analysis, or because the traits are very complex, i.e., the genetic basis can only be described as polygenic. Thus, the effects of single genes cannot be parsed out, and the evolutionary dynamics of those genes within and between populations cannot be easily examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, I., and Doane, W. W., 1978, Genetic regulation of tissue specific expression of amylase structural genes in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 75:4446–4450.

    PubMed  CAS  Google Scholar 

  • Ahearn, J., and Kuhn, D., 1981, Aldehyde oxidase distribution in the picture-winged Hawaiian Drosophila: Evolutionary trends, Evolution 35:635–646.

    CAS  Google Scholar 

  • Ashburner, M., and Bonner, J., 1979, The induction of gene activity in Drosophila by heat shock, Cell 17:241–254

    PubMed  CAS  Google Scholar 

  • Avise, J. C., 1977, Is evolution gradual or rectangular? Evidence from living fishes, Proc. Natl. Acad. Sci. USA 74:5083–5087.

    PubMed  CAS  Google Scholar 

  • Avise, J., and Ayala, F., 1975, Genetic change and rates of cladogenesis, Genetics 81:757–773.

    PubMed  CAS  Google Scholar 

  • Avise, J. C., and Ayala, F. J., 1976, Genetic differentiation in speciose versus depauperate phylads: Evidence from the California minnows, Evolution 30:46–58.

    Google Scholar 

  • Ayala, F. J., and MacDonald, J., 1980, Continuous variation: Possible role of regulatory genes, Genetica 52/53:1–15.

    Google Scholar 

  • Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promoter region, Nature 290:304–310.

    CAS  Google Scholar 

  • Bentley, M., and Williamson, J. H., 1979, The control of aldehyde oxidase and xanthine dehydrogenase activities by the cinnamon gene inDrosophila melanogaster, Can. J. Genet. Cytol. 21:457–471.

    CAS  Google Scholar 

  • Bewley, G., 1981, Genetic control of the developmental program of L-glycerol-3-phosphate dehydrogenase isozymes in Drosophila melanogaster: Identification of a cis acting temporal element affecting GPDH-3 expression, Dev. Genet. 2:113–130.

    CAS  Google Scholar 

  • Briscoe, D. A., Robertson, A., and Malpica, J.-M., 1975, Dominance at the Adh locus of adultDrosophila melanogaster to environmental alcohol, Nature 255:148–149.

    PubMed  CAS  Google Scholar 

  • Bruce, E., and Ayala, F. J., 1979, Phylogenetic relationships between man and the apes: Electrophoretic evidence, Evolution 33:1040–1956.

    Google Scholar 

  • Bulfield, G., and Trent, J., 1981, Genetic variation in erythorcyte NAD levels in the mouse and its effect on glyceraldehyde phosphate dehydrogenase activity and stability, Biochem. Genet. 19:87–94.

    PubMed  CAS  Google Scholar 

  • Bush, G. L., Case, S. M., Wilson, A. C., and Patton J. L., 1977, Rapid speciation and chromosomal evolution in mammals, Proc. Natl. Acad. Sci. USA 74:3942–3946.

    PubMed  CAS  Google Scholar 

  • Byjlsma, R., 1980, Polymorphism at the G6PD and 6PGD loci in Drosophila melanogaster, IV. Genetic factors modifying enzyme activity, Biochem. Genet. 18:699–716.

    Google Scholar 

  • Carson, H. L., Johnson, W., Nair P., and Sene, F., 1975, Allozymic and chromosomal similarity in two Drosophila species, Proc. Natl. Acad. Sci. USA 72:4521–4525.

    PubMed  CAS  Google Scholar 

  • Cavener, D., 1979, Preference for ethanol in Drosophila melanogaster associated with the alcohol dehydrogenase polymorphism, Behav. Genet. 9:359–365.

    PubMed  CAS  Google Scholar 

  • Cavener, D., and Clegg, M. T., 1978, Dynamics of correlated genetic systems. IV. Multilocus effects of ethanol stress environments, Genetics 90:629–644.

    PubMed  CAS  Google Scholar 

  • Cavener, D. R., and Clegg, M. T., 1981, Multigenic response to ethanol in Drosophila melanogaster, Evolution 35:1–10.

    CAS  Google Scholar 

  • Champion, A. B., Prager, E. M., Wachter, D., and Wilson, A., 1974, Microcomplement fixation, in: Biochemical and Immunological Taxonomy of Animals (C. A. Wright, ed.), pp. 397–414, Academic Press, London.

    Google Scholar 

  • Cherry, L., Case, S., and Wilson, A. C., 1978, Frog perspective on the morphological difference between humans and chimpanzees, Science 200:209–211.

    Google Scholar 

  • Chovnick, A., McCarron, M., Clark, S. H., Hilliker, A. J., and Rushlow, C. A., 1980, Structural and functional organization of a gene in Drosophila melanogaster, in: Development and Neurobiology of Drosophila (O. Siddiqui, P. Bau, Linda Hall, and Jeffrey Hall eds.), pp. 3–23, Plenum, New York.

    Google Scholar 

  • Clarke, B., 1975, The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular polymorphic loci, Genetics (Suppl.) 79:101–113.

    PubMed  Google Scholar 

  • Clarke, B., Camfield, R., Galvin, A., and Pitts, C., 1979, Environmental factors affecting the quantity of alcohol dehydrogenase in Drosophila melanogaster, Nature 280:517–518.

    PubMed  CAS  Google Scholar 

  • Craddock, E., and Johnson, W., 1979, Genetic variation in Hawaiian Drosophila. V. Chromosomal and allozymic diversity in Drosophila sylvestris and its homosequential species, Evolution 33:137–155.

    Google Scholar 

  • David, J., and Bocquet, C., 1977, Genetic tolerance to ethanol in Drosophila melanogaster: Increase by selection and analysis of correlated responses, Genetics 47:43–48.

    Google Scholar 

  • Day, T., Hiller, P., and Clarke, B., 1974, The relative quantities and catalytic activities of enzymes produced by alleles at the alcohol dehydrogenase locus in Drosophila melanogaster, Biochem. Genet. 11:155–165.

    PubMed  CAS  Google Scholar 

  • Devonshire, A., 1977, The properties of a carboxylesterase from the peach potato aphid, Myzus persica (Sulz), and its role in conferring insecticide resistance, Biochem. J. 167:675–683.

    PubMed  CAS  Google Scholar 

  • Dickerson, R., 1971, The structure of cytochrome c and the rates of molecular evolution, J. Mol. Evol. 1:26–45.

    PubMed  CAS  Google Scholar 

  • Dickinson, W. J., 1975, A genetic locus affecting the developmental expression of an enzyme in Drosophila melanogaster, Dev. Biol. 42:31–140.

    Google Scholar 

  • Dickinson, W. J. 1978, Genetic control of enzyme expression in Drosophila; A locus influencing tissue specificity of aldehyde oxidase, J. Exp. Zool. 206:333–342.

    PubMed  CAS  Google Scholar 

  • Dickinson, W. J., 1980, Tissue specificity of enzyme expression regulated by diffusable factors: Evidence in Drosophila hybrids, Science 207:995–997.

    PubMed  CAS  Google Scholar 

  • Dickinson, W. J., 1981, Evolution of patterns of gene expression in Hawaiian picture-winged Drosophila, J. Mol. Evol. 16:73–94.

    Google Scholar 

  • Dierks, P., vanOoyen, A., Mantei, N., and Weissman, C., 1981, DNA sequences preceding the rabbit p-globin gene are required for formation in mouse L cells of p-globin RNA with the correct 5’ terminus, Proc. Natl. Acad. Sci. USA 78:1411–1415.

    PubMed  CAS  Google Scholar 

  • Doane, W. W., 1980, Midgut amylase activity patterns in Drosophila: Nomenclature, Drosophila Information Service 55:36–39

    Google Scholar 

  • Edwards, T. C. R., Candido, E. P. M., and Chovnick, A., 1977, Xanthine dehydrogenase from Drosophila melanogaster, a comparison of the kinetic parameters of the pure enzyme from two wild isoalleles differing at a putative regulatory site, Mol. Gen. Genet. 154:1–6.

    PubMed  CAS  Google Scholar 

  • Ewens, W., 1977, Population genetics theory in relation to the neutralist-selectionist controversy, in: Advances in Human Genetics, Volume 8 (H. Harris and K. Hirschhorn, eds.), pp. 67–131, Plenum Press, New York.

    Google Scholar 

  • Faye, G., Leung, D., Tatchell, K., Hall, B. D., and Smith, M., 1981, Deletion mapping of sequences essential for in vivo transcription of the iso-1 cytochrome c gene, Proc. Natl. Acad. Sci. USA 78:2258–2262.

    PubMed  CAS  Google Scholar 

  • Ferris, S., and Whitt, G., 1979, Evolution of the differential regulation of duplicate genes after polyploidization, J. Mol. Evol. 12:267–317.

    PubMed  CAS  Google Scholar 

  • Fitch, W. M., 1972, Does fixation of neutral mutations form a significant part of observed evolution in proteins?, in: Evolution of Genetic Systems (H. H. Smith, ed.), pp. 186–216, Gordon and Breach, New York.

    Google Scholar 

  • Fitch, W. M., 1975, Molecular evolutionary clocks, in: Molecular Evolution (F. J. Ayala, ed.), Sinnauer, Sunderland, Massachusetts.

    Google Scholar 

  • Flavell, R. A., 1980, The transcription of eukaryotic genes, Nature 285:356–357.

    PubMed  CAS  Google Scholar 

  • Goldstein, L., and Prescott, D. M., 1980 (eds.), Cell Biology, A Comprehensive Treatise. Volume 3, Genetic Expression: The Production ofRNA’s, Academic Press, New York.

    Google Scholar 

  • Goodman, M., and Moore, G., 1977, Use of Chou-Fasman amino acid conformational parameters to analyze the organization of the genetic code and to construct protein geneologies, J. Mol. Evol. 10:7–47.

    PubMed  CAS  Google Scholar 

  • Goodman, M., Moore, G., and Matsuda, G., 1975, Darwinian evolution in the geneology of hemoglobin, Nature 253:603–608.

    PubMed  CAS  Google Scholar 

  • Gottlieb, L., and Greve, L., 1981, Biochemical properties of duplicated isozymes of phosphoglucose isomerase in the plant, Clarkia xantiana, Biochem. Genet. 19:155–172.

    CAS  Google Scholar 

  • Grossman, A., 1981, Analysis of genetic variation affecting the relative activities of fast and slow ADH dimers in Drosophila melanogaster heterozygotes, Biochem. Genet. 18:765–780.

    Google Scholar 

  • Groudine, M., Eisenmann, R., and Weintraub, H., 1981, Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation, Nature 292:311–317.

    PubMed  CAS  Google Scholar 

  • Guarente, L., and Ptashne, M., 1981, Fusion of Escherichia coli lac z to the cytochrome c gene of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 78:2199–2203.

    PubMed  CAS  Google Scholar 

  • Hagenbuchle, O., Tosi, M., Schibler, U., Bovey, R., Wellauer, P., and Young, R., 1981, Mouse liver and salivary gland a-amylase mRNA’s differ only in 5’ non-translated sequences, Nature 289:643–646.

    PubMed  CAS  Google Scholar 

  • Hartl, D., and Dykhuizen, D., 1979, A selectivity driven molecular clock, Nature 281:230–231.

    PubMed  CAS  Google Scholar 

  • Holmgren, R., Corces, V., Morimoto, R., Blackman, R., and Meselson, M., 1981, Sequence homologies in the 5’ regions of four Drosophila heat shock genes, Proc. Natl. Acad. Sci. USA 78:3775–3778.

    PubMed  CAS  Google Scholar 

  • Hoorn, A. J. W., and Scharloo, W., 1981, The functional significance of amylase polymorphism inDrosophila melanogaster. VI. Duration of development and amylase activity in larvae when starch is a limiting factor, Genetica 55:195–202.

    Google Scholar 

  • Ingolia, T., Craig, E. A., and McCarthy, B. J., 1980, Sequence of three copies of the gene for the major Drosophila heat shock induced protein and their flanking regions, Cell 21:669–679.

    PubMed  CAS  Google Scholar 

  • Ish-Horowicz, D., and Pinchin, S. M., 1980, Genomic organization of the 87A7 and 87C1 heat induced loci of Drosophila melanogaster, J. Mol. Biol. 142:231–245.

    PubMed  CAS  Google Scholar 

  • Jack, R. S., Gehring, W. J., and Brach, C., 1981, Protein component from Drosophila larval nuclei showing sequence specificity for a short region near a major heat shock protein gene, Cell 24:321–331.

    PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3:318–356.

    PubMed  CAS  Google Scholar 

  • Johnson, F., Schaffer, H., 1973, Isozyme variability in species of the genus Drosophila. VII. Genotype-environment relationships in populations of D. melanogaster from the eastern U.S., Biochem. Genet. 10:149–163.

    PubMed  CAS  Google Scholar 

  • Keene, M. A., Corces, V., Lowenhaupt, K., and Elgin, S., 1981, DNase-1 hypersensitive sites in Drosophila chromatin occur at the 5’ ends of regions of transcription, Proc. Natl. Acad. Sci. USA 78:143–146.

    PubMed  CAS  Google Scholar 

  • King, M. J., and Wilson, A., 1975, Evolution at two levels. Molecular similarities and biological differences between humans and chimpanzees, Science 188:107–116.

    PubMed  CAS  Google Scholar 

  • Koehn, R., 1979, Physiology and biochemistry of enzyme variation: The interface of ecology and population genetics, in: The Interface of Ecology and Genetics (P. Brussard and O. Solbrig, eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Langley, C. H., and Fitch, W. M., 1974, An examination of the constancy of the rate of molecular evolution, J. Mol. Evol. 3:161–177.

    PubMed  CAS  Google Scholar 

  • Laurie-Ahlberg, C. C., and Merrell, D., 1979, Aldehyde oxidase allozymes, inversions and DDT resistance in some laboratory populations of Drosophila melanogaster, Evolution 33:342–349.

    CAS  Google Scholar 

  • Laurie-Ahlberg, C. C., Maroni, G., Bewley, G. C., Lucchesi, J. C., and Weir, B. S., 1980, Quantative variations of enzyme activities in natural populations of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 77:1073–1077.

    PubMed  CAS  Google Scholar 

  • Leigh-Brown, A. J., and Ish-Horowicz, D., 1981, Evolution of the 87A and 87C heat-shock loci inDrosophila, Nature 290:677–682.

    PubMed  CAS  Google Scholar 

  • Lis, J., Prestige, L., and Hogness, D., 1978, A novel arrangement of tandemly repeated genes at a major heat shock site in D. melanogaster, Cell 14:901–919.

    CAS  Google Scholar 

  • Lis, J., Neckamayer, W., Mirault, M. E., Artavanis-Tsakonas, S., Lall, P., Martin, G., and Schedl, P., 1981, DNA sequences flanking the starts of the hsp 70 and ap heat shock genes are homologous, Dev. Biol. 83:291–300.

    PubMed  CAS  Google Scholar 

  • Maclntyre, R. J., 1976, Evolution and ecological value of duplicate genes, Annu. Rev. Ecol. Syst. 7:421–468.

    Google Scholar 

  • Maclntyre, R. J., and Dean, M. R., 1978, Evolution of acid phosphatase-1 in the genus Drosophila as estimated by subunit hybridization: Interspecific tests, J. Mol. Evol. 12:143–171.

    Google Scholar 

  • Marie, J., Simon, M.-P., Dreyfuss, J.-C., and Kahn, A., 1981, One gene but two messenger RNA’s encode liver L and red cell L’ pyruvate kinase subunites, Nature 292:70–72.

    PubMed  CAS  Google Scholar 

  • Markert, C. L., Shaklee, J., and Whitt, G., 1975, Evolution of a gene, Science 189:102–114.

    PubMed  CAS  Google Scholar 

  • McCarron, M., O’Donnell, J., Chovnick, A., Bhullar, B. S., Hewitt, J., and Candido, E. P. M., 1979, Organization of the rosy locus in Drosophila melanogaster: Further evidence in support of a cis acting control element adjacent to the xanthine dehydrogenase structural element, Genetics 91:275–293.

    PubMed  CAS  Google Scholar 

  • McDonald, J. F., and Avise, J. C., 1976, Evidence for the adaptive significance of enzyme activity levels: Interspecific variation in Gpdh and Adh in Drosophila, Biochem. Genet. 14:347–355.

    PubMed  CAS  Google Scholar 

  • McDonald, J. F., and Ayala, F. J., 1978, Genetic and biochemical basis of enzyme activity variation in natural populations. I. Alcohol dehydrogenase in Drosophila melanogaster, Genetics 89:371–388.

    CAS  Google Scholar 

  • McDonald, J. F., Chambers, G. K., David, J., and Ayala, F. J., 1977, Adaptive response due to changes in gene regulation: A study with Drosophila, Proc. Natl. Acad. Sci. USA 74:4562–4566.

    PubMed  CAS  Google Scholar 

  • McDonald, J. F., Anderson, S. M., and Santos, M., 1980, Biochemical differences between products of the Adh locus in Drosophila, Genetics 95:1013–1022.

    PubMed  CAS  Google Scholar 

  • McKenzie, J., and McKechnie, S., 1978, Ethanol tolerance and the Adh polymorphism in a natural population of D. melanogaster, Nature 272:75–76.

    PubMed  CAS  Google Scholar 

  • McKeown, M., and Firtel, R., 1981, Differential expression and 5’ end mapping of actin genes in Dictyostelium, Cell 24:799–807.

    PubMed  CAS  Google Scholar 

  • Miller, S., Pearcy, R., and Berger, E., 1975, Polymorphism at the a-glycerophosphate dehydrogenase locus in Drosophila melanogaster. I. Properties of adult enzymes, Biochem. Genet 13:175–188.

    PubMed  CAS  Google Scholar 

  • Minty, A., and Newmark, P., 1980, Gene regulation: New, old and remote controls, Nature 288:210–211.

    PubMed  CAS  Google Scholar 

  • Nair, P., Carson, H. L., and Sene, F., 1977, Isozyme polymorphism due to regulatory influence, Am. Nat. 111:789–791.

    Google Scholar 

  • Nevins, J. R., and Wilson, M. C., 1981, Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing, Nature 290:113–118.

    PubMed  CAS  Google Scholar 

  • O’Brien, S., and Maclntyre, R., 1978, Genetics and biochemistry of enzymes and specific proteins of Drosophila, in: The Genetics and Biology of Drosophila, Volume 2a (M. Ashburner and T. R. F. Wright, eds.), pp. 396–552, Academic Press, New York.

    Google Scholar 

  • O’Malley, B., Towle, H., and Schwartz, R., 1977, Regulation of gene expression in eucaryotes, Annu. Rev. Genet. 11:239–275.

    PubMed  Google Scholar 

  • Paigen, K., 1979, Acid hydrolases as models of genetic control, Annu. Rev. Genet. 13:417–466.

    PubMed  CAS  Google Scholar 

  • Peters, J., Shallow D., Andrews, S., and Evans, L., 1981, A gene (Neu-l) on chromosome 17 of the mouse affects acid a-glucosidase and codes for neuraminidase, Genet. Res. Camb. 38:47–56.

    CAS  Google Scholar 

  • Phillip, D. P., Childers, W. F., and Whitt, G. S., 1979, Evolution of patterns of differential gene expression: A comparison of temporal and spatial pattern of isozyme locus expression in two closely related fish species (northern largemouth bass, Micropterus salmoides salmoides and smallmouth bass, Micropterus dolomieui), J. Exp. Zool. 210:473–488.

    Google Scholar 

  • Place, A. R., and Powers, D. A., 1979, Genetic variation and relative catalytic efficiencies: Lactate dehydrogenase B allozymes ofFundulus heteroclitus, Proc. Natl. Acad. Sci. USA 76:2354–2358.

    PubMed  CAS  Google Scholar 

  • Powell, J., 1979, Population genetics of Drosophila amylase. II. Geographic patterns in D. pseudoobscura, Genetics 92:613–622.

    PubMed  CAS  Google Scholar 

  • Powell, J., and Lichtenfels, J., 1979, Population genetics ofDrosophila amylase. I. Genetic control of tissue specific expression inD. pseudoobscura, Genetics 92:603–612.

    PubMed  CAS  Google Scholar 

  • Prescott, D. M., and Goldstein, L., (eds.), 1980, Cell Biology, A Comprehensive Treatise, Volume 4, Genetic Expression: Translation and the Behavior of Proteins, Academic Press, New York.

    Google Scholar 

  • Razin, A., and Riggs, A. D., 1980, DNA methylation and gene function, Science 210:604–610.

    PubMed  CAS  Google Scholar 

  • Robinson, R., and Davidson, N., 1981, An analysis of a Drosophila tRNA gene cluster: Two tRNAleu genes contain intervening sequences, Cell 23:251–259.

    PubMed  CAS  Google Scholar 

  • Romero-Herrera, A. E., Lehmann, H., Joysey, K., and Friday, A. E., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis, Nature 246:389–395.

    PubMed  CAS  Google Scholar 

  • Samal, B., Worcel, A., Louis, C., and Schedl, P., 1981, Chromatin structure of the histone genes of D. melanogaster, Cell 23:401–409.

    PubMed  CAS  Google Scholar 

  • Sampsell, B., 1977, Isolation and genetic characterization of alcohol dehydrogenase thermostability variants occurring in natural populations of Drosophila melanogaster, Biochem. Genet. 15:971–988.

    PubMed  CAS  Google Scholar 

  • Sampsell, B., 1981, Survival differences between Drosophila with different Adh thermostability variants, Drosophila Information Service 56:114–115.

    Google Scholar 

  • Sampsell, B., and Milkman, R., 1978, Van der Waals bonds as unit factors in allozyme thermostability variation, Biochem. Genet. 16:1139–1141.

    PubMed  CAS  Google Scholar 

  • Schneider, W., Nichols, B. P., and Yanofsky C., 1981, Procedure for production of hybrid genes and proteins and its use in assessing significance of amino acid differences in homologous tryptophan synthetase polypeptides, Proc. Natl. Acad. Sci. USA 78:2169–2173.

    PubMed  CAS  Google Scholar 

  • Scott, M., and Pardue, M. L., 1981, Translational control in lysates of Drosophila melanogaster cells, Proc. Natl. Acad. Sci USA 78:3353–3357.

    PubMed  CAS  Google Scholar 

  • Sene, F. M., and Carson, H. L., 1977, Genetic variation in Hawaiian Drosophila. IV. Allozymic similarity between D. silvestris and D. heteroneura from the island of Hawaii, Genetics 86:187–198.

    PubMed  CAS  Google Scholar 

  • Snyder, L., 1978, Genetics of hemoglobin in the deer mouse, Peromyscus maniculatus, II. Multiple alleles at regulatory loci, Genetics 89:531–550.

    PubMed  CAS  Google Scholar 

  • Swank, R. T., Novak, E., Brandt, E., and Skudlarek, M., 1978, Genetics of lysosomal functions, in: Protein Turnover and Lysosomal Function (D. Doyle and H. Segal, eds.), pp. 251–271, Academic Press, New York.

    Google Scholar 

  • Templeton, A., 1979, The unit of selection inDrosophila mercatorum, II. Genetic revolution and the origin of coadapted genomes in parthenogenetic strains, Genetics 92:1265–1282.

    PubMed  CAS  Google Scholar 

  • Thompson, J. N., and Kaiser, T. N. 1977, Selection acting upon slow migrating Adh alleles differing in enzyme activity, Heredity 38:191–195.

    PubMed  CAS  Google Scholar 

  • Tsai, S., Tsai, M.-J., and O’Malley, B., 1981, Specific 5’ flanking sequences are required for faithful initiation of in vitro transcription of the ovalbumin gene, Proc. Natl. Acad. Sci. USA 78:879–883.

    PubMed  CAS  Google Scholar 

  • Turner, J., Johnson, M., and Eanes, W., 1979, Contrasted modes of evolution in the same genome: Allozymes and adaptive change in Heliconius, Proc. Natl. Acad. Sci. USA 76:1924–1928.

    PubMed  CAS  Google Scholar 

  • Van Delden, W., and Kamping, A., 1980, The alcohol dehydrogenase polymorphism in populations of Drosophila melanogaster, IV. Survival at high temperature, Genetica 51:179–185.

    Google Scholar 

  • Vigue, C. L., and Johnson, F., 1973, Isozyme variability in species of the genus Drosophila. VI. Frequency-property-environment relationships of allelic alcohol dehydrogenases in D. melanogaster, Biochem. Genet. 9:213–227.

    PubMed  CAS  Google Scholar 

  • Walker, P. R., 1977, The regulation of enzyme synthesis in animal cells, Essays Biochem. 13:39–70.

    PubMed  CAS  Google Scholar 

  • Wallace, B., 1963, Genetic diversity, genetic uniformity and heterosis, Canad. J. Genet. Cytol. 5:239–253.

    Google Scholar 

  • Weintraub, H., Larson, A., and Groudine, M., 1981, a-Globin-gene switching during the development of chicken embryos: Expression and chromosome structure, Cell 24:333–344.

    PubMed  CAS  Google Scholar 

  • Whitt, G. S., Shaklee, J. B., and Markert, C. L., 1975, Evolution of the lactate dehydrogenase isozymes of fishes, in: lsozymes, Volume IV, Genetics and Evolution (C. L. Markert, ed.), pp. 381–400, Academic Press, New York.

    Google Scholar 

  • Whitt, G. S., Phillip, D. P., and Childers, W. F., 1977, Allelic expression at enzyme loci in an intertidal sunfish hybrid, J. Hered. 64:55–61.

    Google Scholar 

  • Wilson, A., 1975, Gene regulation in evolution, in: Molecular Evolution (F. J. Ayala, ed.), Sinauer, Sunderland, Massachussets.

    Google Scholar 

  • Wilson, A. C., Carlson, S., and White, T., 1977, Biochemical evolution, Annu. Rev. Biochem. 46:573–639.

    PubMed  CAS  Google Scholar 

  • Wilson, P. G., and McDonald, J., 1981, A comparative study of enzyme activity variation between a-glycerophosphate and alcohol dehydrogenases in Drosophila melanogaster, Genetica 55:75–79.

    CAS  Google Scholar 

  • Wold, F., 1981, In vivo chemical modification of proteins, Annu. Rev. Biochem. 50:783–814.

    PubMed  CAS  Google Scholar 

  • Wu, C., Wong, Y.-C., and Elgin, S., 1979, The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity, Cell 16:807–814.

    PubMed  CAS  Google Scholar 

  • Young, J. P. W., Koehn, R., and Arnheim, N., 1979, Biochemical characterization of “LAP”, a polymorphic aminopeptidase from the blue mussel, Mytilus edulis, Biochem. Genet. 17:305–323.

    CAS  Google Scholar 

  • Young, R., Hagenbuchle, O., and Schribler, D., 1981, A single mouse a-amylase gene specifies two different tissue specific mRNA’s, Cell 23:451–458

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Macintyre, R.J. (1982). Regulatory Genes and Adaptation. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6968-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6968-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6970-1

  • Online ISBN: 978-1-4615-6968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics