Skip to main content

Some Relationships between Density-Independent Selection and Density-Dependent Population Growth

  • Chapter

Abstract

The theory of density-independent selection is that part of the modern theory of natural selection with the most distinguished heritage. Thus, any theoretical treatment which is in the classical tradition is identified today by what it is not; it is not a theory about density-dependent selection. The latter theory is quite young, the analytical development starting with Anderson (1971), Roughgarden (1971), and Charlesworth (1971). Thus, we have a “traditionalist-modernist” characterization, which in some disciplines could represent a valid comparison between competing ideas. However, the field of population biology is different. Here, many theories can be simultaneously “true.” To be specific, both density-dependent selection and density-independent selection could be true not only when considering different species, but even when one considers the genetic variance as this may be expressed over different loci within the same local population of one species, and the two modes of selection may vary in importance from one local population to another.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, W. W., 1971, Genetic equilibrium and population growth under density-dependent selection, Am. Nat 105 (946): 489–499.

    Article  Google Scholar 

  • Asmussen, A. A., and Feldman, M. W., 1977, Density dependent selection. 1. A stable feasible equilibrium may not be attainable, J. Theor. Biol 64: 603–618.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, K., 1961, An analysis of factors which determine success in competition for food among larvae of Drosophila melanogaster, Arch. Neéri. Zool 14: 200–281.

    Article  Google Scholar 

  • Bell, A. E., Moore, C. H., and Warren, D. C., 1955, The evaluation of new methods for improvement of quantitative characteristics, Cold Spring Harbor Symp. Quant. Biol 20: 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Bulmer, M. G., 1972, Multiple niche polymorphism, Am. Nat 106 (948): 254–257.

    Article  Google Scholar 

  • Bundgaard, J., and Christiansen, F. B., 1972, Dynamics of polymorphisms. I. Selection components in an experimental population of Drosophila melanogaster, Genetics 71: 439–460.

    PubMed  CAS  Google Scholar 

  • Bush, G. L., 1969, Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis, Evolution 23: 237–251.

    Article  Google Scholar 

  • Cantello, W. W., and Childress, D., 1974, Laboratory and field studies with a compound chromosome strain of Drosophila melanogaster, Theor. Appl. Genet 45: 1–6.

    Article  Google Scholar 

  • Caspari, E., 1950, On the selective value of the alleles Rt and rt in Ephestia kuhniella, Am. Nat. 84(818): 367–380.

    Article  Google Scholar 

  • Caspari, E., 1952, Pleiotropic gene action, Evolution 6 (1): 1–18.

    Article  Google Scholar 

  • Charlesworth, B., 1970, Selection in populations with overlapping generations. I. The use of Malthusian parameters in population genetics, Theor. Pop. Biol 1: 352–370.

    Article  CAS  Google Scholar 

  • Charlesworth, B., 1971, Selection density regulated populations, Ecology 52: 469–474.

    Article  Google Scholar 

  • Charlesworth, B., 1972, Selection in populations with overlapping generations. III. Conditions for genetic equilibrium, Theor. Pop. Biol 3: 377–395.

    Article  CAS  Google Scholar 

  • Charlesworth, B., and Giesel, J. T., I972a, Selection in populations with overlapping generations. II. Relations between gene frequency and demographic variables, Am. Nat 106: 388–401.

    Article  Google Scholar 

  • Charlesworth, B., and Giesel, J. T., 1972, Selection in populations with overlapping generations. IV. Fluctuations in gene frequency with density-dependent selection, Am. Nat 106: 402–412.

    Article  Google Scholar 

  • Childress, D., 1972, Changing population structure through the use of compound chromosomes, Genetics 72 (1): 183–186.

    PubMed  CAS  Google Scholar 

  • Christiansen, F. B., 1975, Hard and soft selection in a subdivided population, Am. Nat 109: 11–16.

    Article  Google Scholar 

  • Christiansen, F. B., and Fenchel, R. M., 1977, Theories of Populations in Biological Communities, Springer Verlag, New York.

    Book  Google Scholar 

  • Clark, L. R., Geier, D. W., Hughes, R. D., and Morris, R. F., 1967,The ecology of insect populations, Methuen, London.

    Google Scholar 

  • Clarke, B., 1972,Density-dependent selection, Am. Nat 106 (947):1–13.

    Article  Google Scholar 

  • Clegg, M. T., and Allard, R. W., 1973, Viability versus fecundity selection in the slender wild oat, Avena barbata L., Science 181: 667–668.

    CAS  Google Scholar 

  • Clegg, M. T., Kahler, A. L., and Allard, R. W., 1978. Estimation of life cycle components of selection in an experimental plant population, Genetics 89: 765–792.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., and Kimura, M., 1965, The theory of genetic loads, Proc. 11th Intl. Cong. Genet 3: 495–505.

    Google Scholar 

  • Crow, J. F., and Kimura, M., 1970, An Introduction to Population Genetics Theory,Harper and Row, New York.

    Google Scholar 

  • De Benedictis, P., 1977a, Studies in the dynamics of genetically variable populations. I. Frequency and density dependent selection in experimental populations of Drosophila melanogaster, Genetics 87 (2): 343–356.

    Google Scholar 

  • De Benedictis, P., 1977b, Studies in the dynamics of genetically variable populations. II. Growth of experimental populations of Drosophila melanogaster experiencing intense natural selection, Biol. Bull 153 (2): 265–281.

    Article  Google Scholar 

  • Dempster, E. R., 1955, Maintenance of genetic heterogeneity, Cold Spring Harbor Symp. Quant. Biol 20: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1976, The theoretical population genetics of variable selection and migration, Annu. Rev. Genet 10: 253–280.

    Article  PubMed  CAS  Google Scholar 

  • Fitz-Earle, M., 1975, Minimum frequency of compound autosomes in Drosophila melanogaster to achieve chromosomal replacement in cages, Genetics 45: 191–201.

    Google Scholar 

  • Fitz-Earle, M., and Holm, D. G., 1976, The application of compound autosomes to insect control including the first experimental successes with compound-fragment combinations, Proc. 15th Intl. Cong. of Entomol, Washington, D.C.

    Google Scholar 

  • Fitz-Earle, M., and Holm, D. G., 1978, Exploring the potential of compound; free-arm combinations of chromosome 2 in Drosophila melanogaster for insect control and the survival to pupae of whole-arm trisomics, Genetics 89 (3): 499–510.

    PubMed  CAS  Google Scholar 

  • Fitz-Earle, M., Holm, D. G., and Suzuki, D. T., 1973, Genetic control of insect populations. I. Cage studies of chromosomal replacement by compound autosomes in Drosophila melanogaster, Genetics 74 (3): 461–475.

    PubMed  CAS  Google Scholar 

  • Foster, G. G., Whitton, M. J., Prout, T., and Gill, R., 1972, Chromosome rearrangements for the control of insect pests, Science 176: 875–880.

    Article  PubMed  CAS  Google Scholar 

  • Gill, D. E., 1974, Intrinsic rate of increase, saturation density, and competitive ability. II. The evolution of competitive ability, Am. Nat 108 (959): 103–116.

    Article  Google Scholar 

  • Gilpin, M. E., Case, T. J., and Ayala, F. J. 1976, O-selection, Math. Biosci 32: 131–139.

    Article  Google Scholar 

  • Hansche, P. E., Beres, V., and Brooks, R. M., 1966, Heritability and genetic correlation in the sweet cherry, Am. Soc. Hort. Sci 88: 173–183.

    Google Scholar 

  • Hansche, P. E., Beres, V., and Forde, H. I., 1972, Estimates of quantitative genetic properties of walnut and their implications for cultivar improvement, J. Am. Soc. Hort. Sci 97 (2): 279–285.

    Google Scholar 

  • Hansche, P., Hesse, C. O., and Beres, V., 1975, Inheritance of fruit size, soluble solids, and ripening data in Prunus domestica cv. Agen, J. Am. Soc. Hort. Sci 100 (5): 522–524.

    Google Scholar 

  • Hassel, M. P., 1975, Density-dependence in single species populations, J. Anim. Ecol 44: 283–295.

    Article  Google Scholar 

  • Hassel, M. P., Lawton, J. H., and May, R. M., 1976, Patterns of dynamical behavior in single-species population, J. Anim. Ecol 45: 471–486.

    Article  Google Scholar 

  • Hedrick, P. W., Ginevan, M. E., and Ewing, E., 1976, Genetic polymorphism in heterogeneous environments, Annu. Rev. Ecol. Syst 7: 1–32.

    Article  Google Scholar 

  • King, C. E., and Anderson, W. W., 1971, Age-specific selection. II. The interaction between r and K during population growth, Am. Nat 105 (942): 137–156.

    Article  Google Scholar 

  • King, J. L., 1967, Continuously distributed factors affecting fitness. Genetics 55: 483–492.

    PubMed  CAS  Google Scholar 

  • Levene, H., 1953, Genetic equilibrium when more than one ecological niche is available, Am. Nat 87: 331–333.

    Article  Google Scholar 

  • Lewontin, R. C., and Hubby, J. L., 1966, A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura, Genetics 54: 595–609.

    PubMed  CAS  Google Scholar 

  • MacArthur, R., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton.

    Google Scholar 

  • May, R. M., 1975, Biological populations obeying difference equations: Stable points, stable cycles, and chaos, J. Theor. Biol 51: 511–524.

    Article  PubMed  CAS  Google Scholar 

  • May, R. M., and Oster, G. G., 1976, Bifurcations and dynamic complexity in simple ecological models, Am. Nat 110 (974): 573–599.

    Article  Google Scholar 

  • Mayr, E., 1972, Populations, Species and Evolution, p. 118, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • McKenzie, J. A., 1976, The release of a compound chromosome stock in a vineyard cellar population of Drosophila melanogaster, Genetics 82 (4): 685–695.

    PubMed  CAS  Google Scholar 

  • Milkman, R., 1967, Heterosis as a major cause of heterozygosity in nature, Genetics 55: 493–495.

    PubMed  CAS  Google Scholar 

  • Morton, N., Crow, J., and Muller, H. J., 1956, An estimate of the mutational damage in man from data on consanguinous marriages, Proc. Natl. Acad. Sci. USA 42: 855–863.

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1976a, The evolution of one locus and two locus systems, Genetics 83: 583–600.

    PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1976b, The evolution of one locus and two locus systems. II, Genetics 85: 347–354.

    Google Scholar 

  • Parsons, P. A., 1977, Resistance to cold temperature stress in populations of D. melanogaster and D. simulans, Aust. J. Zool. 25: 693–698.

    Article  Google Scholar 

  • Polivanov, S., and Anderson, W. W., 1969, Selections in experimental populations. II. Components of selection and their fluctuations in two populations of Drosophila melanogaster, Genetics 63: 919–932.

    PubMed  CAS  Google Scholar 

  • Prout, T., 1971, The relation between fitness components and population prediction in Drosophila, Genetics 68: 127–167.

    PubMed  CAS  Google Scholar 

  • Prout, T., 1978, The joint effects of the release of sterile males and immigration of fertilized females on a density regulated population, Theor. Pop. Biol 13 (1): 40–71.

    Article  CAS  Google Scholar 

  • Proverbs, M. D., Logan, D. M., and Corty, B. E., 1973, Some biological observations relating to codling moth control by the sterility principle, in: Computer Models and Application of the Sterile Male Technique, pp. 149–165, International Atomic Energy Agency, STI/PUB 340, Vienna.

    Google Scholar 

  • Roughgarden, J., 1971, Density dependent natural selection, Ecology 52 (3):453–468.

    Article  Google Scholar 

  • Roughgarden, J., 1976, Resource partitioning among competing species. A coevolutionary approach, Theor. Pop. Biol 9 (3):388–424.

    Article  CAS  Google Scholar 

  • Schoener, T. W., 1973, Population growth regulated by intraspecific competition for energy or time: Some simple representations, Theor. Pop. Biol 4 (1): 56–84.

    Article  CAS  Google Scholar 

  • Smouse, P. E., 1976, The implications of density-dependent population growth for frequency and density-dependent selection, Am. Nat 110: 849–860.

    Article  Google Scholar 

  • Southwood, T. R. E., May, R. M., Hassell, M. P., and Conway, G. R., 1974, Ecological strategies and population parameters, Am. Nat 108 (964): 791–804.

    Article  Google Scholar 

  • Sved, J. A., Reed, T. E., and Bodmer, W. F., 1967, The number of balanced polymorphisms that can be maintained in natural populations, Genetics 55: 469–481.

    PubMed  CAS  Google Scholar 

  • Varley, G. C., and Gradwell, G. R., 1963, Predatory insects as density dependent mortality factors, Proc. 16th Int. Congr. Zool 1: 240.

    Google Scholar 

  • Varley, C. G., Gradwell, G. R., and Hassell, M. P., 1973, Insect Population Ecology, University of California Press, Berkeley.

    Google Scholar 

  • Wallace, B., 1968, Topics in Population Genetics, Norton, New York.

    Google Scholar 

  • Wallace, B., 1975, Hard and soft selection revisited, Evolution 29: 465–473.

    Article  Google Scholar 

  • Wilbur, H. M., Tinkle, D. W., and Collins, J. P., 1974, Environmental certainty, trophic level, and resource availability in life history evolution, Am. Nat 108 (964): 805–817.

    Article  Google Scholar 

  • Williams, G. C., 1966, Adaptation and Natural Selection, Princeton University Press, Princeton.

    Google Scholar 

  • Wills, C., 1978, Rank-order selection is capable of maintaining all genetic polymorphisms, Genetics 89 (2): 403–417.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Prout, T. (1980). Some Relationships between Density-Independent Selection and Density-Dependent Population Growth. In: Hecht, M.K., Steere, W.C., Wallace, B. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6962-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6962-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6964-0

  • Online ISBN: 978-1-4615-6962-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics