Skip to main content

From Flow to Fracture and Fragmentation in Colloidal Media

1: Non-Newtonian Fingering and Visco-Elastic Fracturing

  • Chapter
Book cover Disorder and Fracture

Part of the book series: NATO ASI Series ((NSSB,volume 204))

Abstract

Colloidal materials can show themselves in a wide range of physical states of matter. When stabilized as dilute suspensions in simple liquids, they form weakly non-newtonian fluids. At higher concentrations, larger departure from newtonian behavior is observed and they often form viscoelastic, shear-thinning pastes. At still higher concentration they can form physical gels. Finally, when all the dispersion liquid is removed, by evaporation for instance, they may form coherent and fragile solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Van Olphen, Introduction to Clay Colloid Chemistry, Wiley, New York, (1963).

    Google Scholar 

  2. G. Brown Ed., Clay Minerals: Their Structure, Behavior and Use, The Mineralogical Society, London, (1984).

    Google Scholar 

  3. F. Wittman, this volume.

    Google Scholar 

  4. R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Wiley, New York, (1987).

    Google Scholar 

  5. C.H. Pons, D. Tessier, H. Ben Rhaiem and D. Tchoubar, Proc. Int. Clay Conf., H. van Olphen and F. Veniale Eds., Elsevier, Amsterdam, p. 165–186, (1982).

    Google Scholar 

  6. J. Kertész, this volume.

    Google Scholar 

  7. D. Mader, Hydraulic Proppant Fracturing and Gravel Packing, Elsevier, Amsterdam, (1989).

    Google Scholar 

  8. G.M. Homsy, Ann. Rev. Fluid Mech., 19, 271, (1987).

    Article  ADS  Google Scholar 

  9. R.L. Chuoke, P. Van Meurs and C.J. Van Der Poel, J. Pet. Technol., 11, 64, (1959).

    Google Scholar 

  10. L. Paterson, J. Fluid Mech., 113, 513, (1981).

    Article  ADS  Google Scholar 

  11. G. Daccord, J. Nittman and H.E. Stanley, Phys. Rev. Lett., 56, 336, (1986).

    Article  ADS  Google Scholar 

  12. T. Halsey, private communication.

    Google Scholar 

  13. I. Prigogine, Introduction to the Thermodynamics of Irreversible Processes, Thomas, Springfield, (1955).

    Google Scholar 

  14. L. Paterson, Phys. Fluids, 28, 26, (1985).

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Maugis, this volume.

    Google Scholar 

  16. R.L. Chuoke, as quoted in Ref.[8].

    Google Scholar 

  17. P.G. Saffman and G.I. Taylor, Proc. R. Soc. London, A 245, 312, (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P. Tabeling, G. Zocchi and A. Libchaber, J.Fluid Mech., 177, 67, (1987).

    Article  ADS  Google Scholar 

  19. S. Liang, Phys. Rev. A, 33, 2663, (1986).

    Article  ADS  Google Scholar 

  20. D. Bensimon, Phys. Rev. A, 33, 1302, (1986).

    Article  ADS  Google Scholar 

  21. H. Van Damme, E. Alsac, C. Laroche and L. Gatineau, Europhys. Lett., 5, 25, (1988).

    Article  ADS  Google Scholar 

  22. H. Van Damme, E. Alsac et C. Laroche, C.R. Acad. Sc., Série I I, 309, 11, (1989).

    Google Scholar 

  23. J. Sera, Image Analysis and Mathematical Morphology, Academic Press, New York, (1982).

    Google Scholar 

  24. R.E. Horton, Bull. Geol. Soc. America, 56, 275, (1945) and A. N. Strahler, ibid., 63, 1117, (1952).

    Google Scholar 

  25. J. Vannimenus and X.G. Viennot, J. Stat. Phys.

    Google Scholar 

  26. E.L. Hinrichsen, K.J. Malay, J. Feder and T. Jossang, J. Phys. A, 22, L271, (1989).

    Article  ADS  Google Scholar 

  27. E. Lemaire and H. Van Damme, in preparation.

    Google Scholar 

  28. P.G. de Gennes, Europhys. Lett., 3, 195, (1987).

    Google Scholar 

  29. H. Van Damme, C. Laroche, L. Gatineau and P. Levitz, J. Physique, 48, 1121, (1987).

    Article  Google Scholar 

  30. H. Van Damme, C. Laroche and L. Gatineau, Rev. Phys. Appl., 22, 241, (1987).

    Article  Google Scholar 

  31. J. Nittmann, G. Daccord and H.E. Stanley, Nature, 314, 141, (1985).

    Article  ADS  Google Scholar 

  32. E. Lemaire and H. Van Damme, C.R. Acad. Sc., 309, Série I I, 859, (1989).

    Google Scholar 

  33. T. Vicsek, in Random Fluctuations and Pattern Growth: Experiments and Models, H.E. Stanley and N. Ostrowsky Eds., pp 312–319, Kluwer, Dordrecht (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Van Damme, H., Lemaire, E. (1990). From Flow to Fracture and Fragmentation in Colloidal Media. In: Charmet, J.C., Roux, S., Guyon, E. (eds) Disorder and Fracture. NATO ASI Series, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6864-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6864-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43576-8

  • Online ISBN: 978-1-4615-6864-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics