Skip to main content

Theory and Simulation of Diffusion-Limited Growth

  • Chapter
Book cover Disorder and Fracture

Part of the book series: NATO ASI Series ((NSSB,volume 204))

Abstract

Crack patterns show often apparent similarity to structures grown in diffusion-limited aggregation (DLA). The basis of this similarity is that the equations governing fracture can be considered in some cases as the vectorial versions of those describing DLA-type growth processes. During the last years experiments, computer simulations and theoretical investigations have led to a great deal of information about DLA and related (scalar) processes which may be of relevance for understanding crack patterns. The purpose of this lecture is to give a short introduction to these phenomena; for comprehensive treatment the reader is referred to extensive recent reviews.[1–5]

On leave from Institute for Technical Physics, H-1325 Budapest, Hungary

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Vicsek, Fractal Growth Phenomena, ( World Scientific, Singapore, 1989 )

    MATH  Google Scholar 

  2. J. Feder, Fractals, ( Plenum, New York, 1988 )

    MATH  Google Scholar 

  3. D.A. Kessler, J. Koplik and H. Levine, Adv. Phys. 37, 255, (1988)

    Article  ADS  Google Scholar 

  4. P. Meakin, in Phase Transitions and Critical Phenomena, ed. by C. Domb and J.L. Lebowitz (Academic, New York, 1988) Vol. 12, p. 335

    Google Scholar 

  5. D. Bensimon, L.P. Kadanoff, S. Liang, B. Shraiman and L. Tang, Rev. Mod. Phys. 58, 977, (1986)

    Article  ADS  Google Scholar 

  6. J. Kertész, in Random fluctuation and pattern growth: Experiments and models, ed. H.E. Stanley and N. Ostrowsky ( Kluwer, Dordrecht, 1988 ) p. 42

    Google Scholar 

  7. E. Ben-Jacob, Y. Godbey, N. Goldenfeld, J. Koplik, H. Levine, T. Mueller and L.M. Sander, Phys. Rev. Lett. 55, 1315, (1985)

    Article  ADS  Google Scholar 

  8. G. Radnóczy, T. Vicsek, L.M. Sander and D. Grier, Phys. Rev. A 35, 4012, (1987)

    Article  ADS  Google Scholar 

  9. W.A. Bentley and W.J. Humphreys, Snow Crystals, ( Dover, New York, 1962 )

    Google Scholar 

  10. A. Buka, J. Kertész and T. Vicsek, Nature 343, 424, (1986)

    Article  ADS  Google Scholar 

  11. G. Daccord, J. Nittmann and H.E. Stanley, Phys. Rev. Lett. 56, 336, (1986)

    Article  ADS  Google Scholar 

  12. E. Ben-Jacob, G. Deutscher, P.Garik, N. Goldenfeld and Y. Lereah, Phys. Rev. Lett. 57, 1903, (1986)

    Article  ADS  Google Scholar 

  13. Y. Sawada, A. Dougherty and J.P. Gollub, Phys. Rev. Lett. 56, 1260, (1986)

    Article  ADS  Google Scholar 

  14. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo and Y. Sawada, Phys. Rev. Lett. 53, 286, (1986)

    Article  ADS  Google Scholar 

  15. T. Vicsek and J. Kertész, Eurphys. News 19, 24, (1988)

    Google Scholar 

  16. L. Paterson, J. Fluid. Mech. 113, 513, (1981)

    Article  ADS  Google Scholar 

  17. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400, (1981)

    Article  ADS  Google Scholar 

  18. P. Meakin, J. Colloid Interface Sci. 105, 240, (1985)

    Article  Google Scholar 

  19. S. Tolman and P. Meakin, Phys. Rev. A 40, 428, (1989)

    Article  ADS  Google Scholar 

  20. M. Muthukumar, Phys. Rev. Lett. 50, 839, (1983)

    Article  Google Scholar 

  21. P. Meakin and T. Vicsek, Phys. Rev. A 32, 685, (1985)

    Article  ADS  Google Scholar 

  22. B. Mandelbrot and T. Vicsek, J. Phys. A 22, L377, (1989)

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Plischke and Z. Râcz, Phys. Rev. Lett. 95, 415, (1984)

    Article  ADS  Google Scholar 

  24. Y. Hayakawa, S. Sato and M. Matsushita, Phys. Rev. A 36, 1963, (1987)

    Article  ADS  Google Scholar 

  25. S. Roux, this volume

    Google Scholar 

  26. T. Halsey, Phys. Rev. Lett. 59, 2067, (1987)

    Article  Google Scholar 

  27. N.G. Makarov, Proc. London. Math. 51, 1119, (1985)

    Google Scholar 

  28. R.C. Ball, R.M. Brady, G. Rossi and B.R. Thompson, Phys. Rev. Lett. 55, 1406, (1985)

    Article  ADS  Google Scholar 

  29. P. Meakin, R.C. Ball, P. Ramanlal and. L. Sander, Phys. Rev. A 35, 5233, (1987)

    Article  ADS  Google Scholar 

  30. J. Kertész and T. Vicsek, J. Phys. A 19, L257, (1986)

    Article  ADS  Google Scholar 

  31. J.Nittmann and H.E. Stanley, Nature 321, 663 (1986)

    Article  ADS  Google Scholar 

  32. C. Amitrano, L. de Arcangelis, A. Coniglio and J. Kertész, J. Phys. A 21, L15, (1987)

    Article  Google Scholar 

  33. J.P. Eckmann, P. Meakin, I. Procaccia and R. Zeitak, Phys. Rev. A 39, 3185, (1989)

    Article  MathSciNet  ADS  Google Scholar 

  34. H.J. Herrmann, this volume

    Google Scholar 

  35. H. Van Damme, this volume

    Google Scholar 

  36. M. Barber, J. Donley and J.S. Langer, Phys. Rev. A 40, 366, (1989)

    Article  ADS  Google Scholar 

  37. H.J. Herrmann, J. Kertész and L. de Arcangelis, Europhys. Lett. 10, 147, (1989)

    Article  ADS  Google Scholar 

  38. J. Kertész, in Statistical models for the fracture in disordered media, H.J. Herrmann and S. Roux, eds., North Holland, Amsterdam, (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Kertész, J. (1990). Theory and Simulation of Diffusion-Limited Growth. In: Charmet, J.C., Roux, S., Guyon, E. (eds) Disorder and Fracture. NATO ASI Series, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6864-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6864-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43576-8

  • Online ISBN: 978-1-4615-6864-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics