Skip to main content

Cellular Mechanisms of Relaxation: Lessons from Frogs, Birds, and Mammals

  • Chapter
Diastolic Relaxation of the Heart

Abstract

Much progress has been made in the elucidation of the cellular mechanisms of development and relaxation of twitch tension in cardiac muscle. The onset of contraction is preceded by a rise in cytosolic calcium ion concentration, [Ca2+]i [1]. This rise in [Ca2+]i, in mammalian ventricular myocytes appears primarily to be due to release of Ca2+ from intracellular stores contained within the sarcoplasmic reticulum (SR), the release being triggered by influx of extracellular Ca2+ across the sarcolemma via the slow calcium channel during phase 2 of the cardiac action potential. In frog myocardium, little of the Ca2+ involved in excitation-contraction coupling is derived from intracellular stores because of a very sparse SR, and therefore most of the rise in [Ca2+]i occurs because of transsarcolemmal Ca2+ influx via the slow Ca2+ channel and possibly via an electrogenic Na+−Ca2+ exchange [2]. Calcium bound to sarcolemmal sites may also be of importance in the excitation-contraction coupling process [3], possibly by providing a source for Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fabiato A, Fabiato F (1979). Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 41: 473–484.

    Article  PubMed  CAS  Google Scholar 

  2. Horakova M, Vassort G (1979). Na-Ca exchange in the regulation of cardiac contractility. J Gen Physiol 73: 403–424.

    Article  Google Scholar 

  3. Langer GA, Nudd LM (1983). Effects of cations, phospholipases, and neuraminidase on calcium binding to “gas-dissected” membranes from cultured cardiac cells. Circ Res. 53: 482–490.

    PubMed  CAS  Google Scholar 

  4. Carafoli, E (1985). The homeostasis of calcium in heart cells. J Mol Cell Cardiol 17: 203–212.

    Article  PubMed  CAS  Google Scholar 

  5. Miura DS, Biedert S, Barry WH (1981). Effects of calcium overload on relaxation in cultured heart cells. J Mol Cell Cardiol 13: 949–961.

    Article  PubMed  CAS  Google Scholar 

  6. Barry WH, Pober J, Marsh JD, Frankel SR, Smith TW (1980). Effects of graded hypoxia on contraction of cultured chick embryo ventricular cells. Am J Physiol 239: H651 - H657.

    PubMed  CAS  Google Scholar 

  7. Barry WH, Rasmussen CAF Jr, Ishida H, Bridge JHB (1986). External Na-independent Ca extrusion in cultured ventricular cells. J Gen Physiol 88: 393–411, 1986.

    Google Scholar 

  8. Grynkiewicz G, Poenie M, Tsien RY (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  9. Peeters GA, Hlady V, Bridge JHB, Barry WH (1986). Simultaneous measurement of calcium transients and cell motion in cultured cells. Am J Physiol, (in press).

    Google Scholar 

  10. Clusin WT (1981). The mechanical activity of chick embryonic myocardial cell aggregates. J Physiol 320: 149–174.

    PubMed  CAS  Google Scholar 

  11. Isenberg G (1982). Ca entry and contraction as studied in isolated bovine ventricular myocytes. Z Naturforsch 37: 502–512.

    CAS  Google Scholar 

  12. Barry WH, Smith TW (1984). Movement of Ca2+ across the sarcolemma: effects of abrupt exposure to zero external Na concentration. J Mol Cell Cardiol 16: 155–164.

    Article  PubMed  CAS  Google Scholar 

  13. Lakatta EG, Capogrossi MC, Kort AA, Stern MD (1985). Spontaneous myocardial calcium oscillations: Overview with emphasis on ryanodine and caffeine. Fed Proc 44: 2977–2983.

    Google Scholar 

  14. Manasek FJ (1969). Histogenesis of the embryonic myocardium. Am J Cardiol 25: 149–168.

    Article  Google Scholar 

  15. Holland PC (1979). Biosynthesis of the Ca2+ and Mg’-dependent adenosine triphosphatase of sarcoplasmic reticulum in cell cultures of embryonic chick heart. J Biol Chem 254: 7604–7610.

    PubMed  CAS  Google Scholar 

  16. Rasmussen CAF Jr, Sutko JL, Barry WH (1987). Effects of ryanodine and caffeine on contractility, membrane voltage, and calcium exchange in cultured heart cells. Circ Res 60: 495–504.

    PubMed  CAS  Google Scholar 

  17. Roulet MJ, Mongo KG, Vassort G, Ventura-Clapier R (1979). The dependence of twitch relaxation on sodium ions and on internal Ca2+ stores in voltage clamped frog atrial fibers. Pfluegers Arch 379: 259–268.

    Article  CAS  Google Scholar 

  18. Barry WH, Hasin Y, Smith TW (1985). Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res 56: 231–241.

    PubMed  CAS  Google Scholar 

  19. Cleeman L, Pizarro G, Morad M (1984). Optical measurements of extra-cellular calcium depletion during a single heart beat. Science 226: 172–177.

    Article  Google Scholar 

  20. Robertson SP, Johnson JD, Potter JD (1981). The time course of Ca’ exchange with cal-modulin, troponin, parvalbumin and myosin in response to transient increases in Ca“. Biophys J 34: 559–569.

    Article  PubMed  CAS  Google Scholar 

  21. Fabiato A (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245: C1 – C14.

    PubMed  CAS  Google Scholar 

  22. Fabiato A (1984). Effects of spermine in skinned cardiac cells suggest that mitochondria do not participate in beat-to-beat Ca2+ regulation in intact cardiac cells but control [free Ca2+]. J Gen Physiol 84:37–38a (abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Barry, W.H. (1987). Cellular Mechanisms of Relaxation: Lessons from Frogs, Birds, and Mammals. In: Grossman, W., Lorell, B.H. (eds) Diastolic Relaxation of the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6832-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6832-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6834-6

  • Online ISBN: 978-1-4615-6832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics