Skip to main content

The Conceptual and Experimental Foundations of Vertebrate Embryonic Cell Adhesion Research

  • Chapter
A Conceptual History of Modern Embryology

Part of the book series: Developmental Biology ((DEBO,volume 7))

Abstract

As embryology underwent its transformation from a descriptive to an experimental science, new research programs began to seek a causal understanding of the striking morphogenetic changes that had been observed to occur during embryogenesis. Whether these underlying morphogenetic forces were intrinsic properties of individual cells or whether they were some holistic property of the embryo in toto was a question fueled by several sources. On the one hand, His (1) hypothesized that morphogenetic movements occurred as a result of unequal growth among different populations of cells which led to bending and stretching of tissues, much as pushing and pulling on a sheet of some deformable material could lead to the production of complicated shapes. Roux (2), on the other hand, claimed to have observed specific positive and negative cytotropisms among populations of individual cells isolated from early amphibian embryos. The issue of developmental regulation as a cell-autonomous property, as opposed to a holistic expression of special attributes of embryos, was further exacerbated by the disparate interpretations of Roux (3) and Driesch (4) regarding their experiments on the developmental fate of isolated amphibian and sea urchin embryo blastomeres. While Roux’s interpretation of independent cellular development in these specific cases were not supported by later investigation, his methods nevertheless served as a potent stimulus for further investigation on the individual cellular behaviors that contributed to the overall program of morpho-genesis.

Oh that this too too solid flesh would melt, Thaw and resolve itself into a dew!

Hamlet, Act I, Scene II

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. His, W., 1874, UnsererKörperform, Briefe an einem befreundeten Naturforscher, Vogel, Leipzig.

    Google Scholar 

  2. Roux, W., 1894, Uber den cytotropismus der furchungzellen des grasfrosches (Rana fusca), Wilhelm Roux’ Arch. Entw.-Mech. Org. 1:43–68, 161–202.

    Google Scholar 

  3. Roux, W., 1888, Contributions to the developmental mechanics of the embryo. On the artificial production of half-embryos by destruction of one of the first two blastomeres, and the later development (postgeneration) of the missing half of the body, Virchows Arch. path. Anat. Physiol. kl. Med. 114:113–153. English translation in Willier, B. H., and Oppenheimer, J. M., ed., 1964, Foundations of Experimental Embryology, Prentice-Hall, Englewood Cliffs, NJ, pp. 2–37.

    Google Scholar 

  4. Driesch, H., 1892, The potency of the first two cleavage cells in echinoderm development. Experimental production of partial and double formations, Ztschr. wissenschaft. Zool. 53:160178. English translation in Willier, B. H., and Oppenheimer, J. M., ed., 1964, Foundations of Experimental Embryology, Prentice-Hall, Englewood Cliffs, NJ, pp. 38–50.

    Google Scholar 

  5. Curtis, A. S. G., 1967, The Cell Surface: Its Molecular Role in Morphogenesis, Logos Press and Academic Press, London and New York.

    Google Scholar 

  6. Lilien, J. E., 1969, Toward a molecular explanation for specific cell adhesion, Curr. Top. Dev. Biol. 4: 169–195.

    Article  PubMed  CAS  Google Scholar 

  7. Trinkhaus, J. P., 1969, Cells Into Organs: The Forces that Shape the Embryo, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  8. Edelman, G. M., 1988, Morphoregulatory molecules, Biochemistry 27: 3533–3543.

    Article  PubMed  CAS  Google Scholar 

  9. Rutishauser, U., and Jessel, T. M., 1988, Cell adhesion molecules in vertebrate neural development, Physiol. Rev. 68: 819–857.

    CAS  Google Scholar 

  10. Takeichi, M., 1988, The cadherins: Cell—cell adhesion molecules controlling animal morpho-genesis, Development 102: 639–655.

    PubMed  CAS  Google Scholar 

  11. Edelman, G. M., and Thiery, J. P., 1985, The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants, Wiley, New York.

    Google Scholar 

  12. Wilson, H. V., 1907, On some phenomena of coalescence and regeneration in sponges, J. Exp. Zool. 5: 245–258.

    Article  Google Scholar 

  13. Galtsoff, P. S., 1925, Regeneration after dissociation (an experimental study of sponges), J. Exp. Zool. 42: 183–221.

    Article  CAS  Google Scholar 

  14. Wilson, H. V., 1910, Development of sponges from dissociated cells. Bull. Bur. Fisheries 30: 1.

    Google Scholar 

  15. Willier, B. H., and Oppenheimer, J. M., 1964, Foundations of Experimental Biology, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  16. Wilson, E. B., 1896, The Cell in Development and Inheritance, Macmillan, New York.

    Google Scholar 

  17. Baker, J. R., 1952, The cell theory: A restatement, history, and critique. Part III. The cell as a morphological unit, Q. J. Microscop. Sci. 93: 157–190.

    Google Scholar 

  18. Wilson, E. B., 1925, The Cell in Development and Heredity, 3rd ed., Macmillan, New York.

    Google Scholar 

  19. Loeb, L., 1922, On stereotropism as a cause of cell degeneration and death and on means to prolong the life of cells, Science 55: 22.

    Article  PubMed  CAS  Google Scholar 

  20. Gilbert, S. F., and Greenberg, J. P., 1984, Intellectual traditions in the life sciences. II. Stereocomplementarity, Perspect. Biol. Med. 28: 18–34.

    CAS  Google Scholar 

  21. Loeb, J., 1914, Cluster formation of spermatozoa caused by specific substances from eggs, J. Exp. Zool. 17: 123–140.

    Article  Google Scholar 

  22. Lillie, F. R., 1912, The production of sperm iso-agglutinins by ova, Science 36: 527–530.

    Article  PubMed  CAS  Google Scholar 

  23. Lillie, F. R., 1914, Studies of fertilization. VI. The mechanism of fertilization in Arbacia, J. Exp. Zool. 16: 523–590.

    Article  CAS  Google Scholar 

  24. Harrison, R. G., 1910, The outgrowth of the nerve fibers as a mode of protoplasmic movement, J. Exp. Zool. 9: 787–846.

    Article  Google Scholar 

  25. Langley, J. N., 1895, Note on regeneration of pre-ganglionic fibers of the sympathetic, J. Physiol. 18: 28–284.

    Google Scholar 

  26. Langley, J. N., 1905, On the reaction of cells and of nerve endings to certain poisons, in regards the reaction of striated muscle to nicotine and to curare, J. Physiol. 33: 374–413.

    PubMed  Google Scholar 

  27. Just, E. E., 1939, The Biology of the Cell Surface, Blakiston, Philadelphia.

    Google Scholar 

  28. Just, E. E., 1931, Die rolle des kortikalen cytoplasmas bei vitalen erscheinungen, Natur Wissenschaft. 19:953–962, 980–984, 998–1000.

    Article  Google Scholar 

  29. Manning, K. R., 1983, Black Apollo of Science. The Life of Ernest Everett Just, Oxford University Press, New York.

    Google Scholar 

  30. Gilbert, S. E, 1988, Cellular politics: Ernest Everett Just, Richard Goldschmidt, and the attempt to reconcile embryology and genetics, in: Rainger, R., Benton, K. and Maienschein, J. (eds.), The American Development of Biology, University of Pennsylvania Press, Philadelphia, pp. 311–346.

    Google Scholar 

  31. Holtfreter, J., 1939, Tissue affinity, a means of embryonic morphogenesis, Arch. Exp. Zellforsch. 23: 169–209.

    Google Scholar 

  32. English translation in: Willier, B. H. and Oppenheimer, J. M. (eds.), 1964, Foundations of Experimental Embryology, Prentice-Hall, Englewood Cliffs, NJ, pp. 186–225.

    Google Scholar 

  33. Townes, P. L., and Holtfreter, J., 1955, Directed movements and selective adhesion of embryonic amphibian cells, J. Exp. Zool. 128: 53–120.

    Article  Google Scholar 

  34. Edelman, G. M., 1984, Cell adhesion and morphogenesis: the regulator hypothesis, Proc. Natl. Acad. Sci. USA 81: 1460–1464.

    Article  CAS  Google Scholar 

  35. Holtfreter, J., 1943, A study of the mechanics of gastrulation, Part I, J. Exp. Zool. 94: 261–318.

    Article  Google Scholar 

  36. Holtfreter, J., 1944, A study of the mechanics of gastrulation, Part II, J. Exp. Zool. 95: 171–212.

    Article  Google Scholar 

  37. Holtfreter even dismissed the view expressed by D’Arcy Thompson in his monumental On Growth and Form, which Holtfreter referred to as Thompson’s “otherwise inspiring book,” as reaching “the climax of oversimplification by comparing the egg with a lozenge of gelatine, and by suggesting that invagination is the result of a localized shrinkage of the lozenge” (35).

    Google Scholar 

  38. Moscona, A. A., 1986, Johannes Holtfreter at 85, Cell Differen. 19: 75–77.

    Google Scholar 

  39. Holtfreter, J., 1948, Significance of the cell membrane in embryonic processes, Ann. NY Acad. Sci. 49: 709–760.

    Article  PubMed  CAS  Google Scholar 

  40. Oppenheimer, J. M., 1967, Essays in the History of Embryology and Biology, MIT Press, Cambridge, MA.

    Google Scholar 

  41. Steinberg, M., 1958, On the chemical bonds between animal cells. A mechanism for type-specific association, Am. Naturalist 92: 65–81.

    Article  CAS  Google Scholar 

  42. Frye, L. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse—human heterokaryons, J. Cell Sci. 7: 319–335.

    PubMed  CAS  Google Scholar 

  43. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.

    Article  PubMed  CAS  Google Scholar 

  44. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, D., 1983, Molecular Biology of the Cell, Garland, New York.

    Google Scholar 

  45. Moscona, A. A., 1974, The Cell Surface in Development, Wiley, New York.

    Google Scholar 

  46. Steinberg, M., 1962, On the mechanism of tissue reconstruction by dissociated cells, I. Population kinetics, differential adhesiveness, and the absence of directed migration, Proc. Natl. Acad. Sci. USA 48: 1577–1582.

    CAS  Google Scholar 

  47. Curtis, A. S. G., 1961, Timing mechanisms in the specific adhesion of cells, Exp. Cell Res. (Suppl.) 8: 107–122.

    Article  Google Scholar 

  48. Steinberg, M., 1962, Mechanism of tissue reconstruction by dissociated cells, II. Time-course of events, Science 137: 762–763.

    Article  PubMed  CAS  Google Scholar 

  49. Steinberg, M., 1962, On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments, Proc. Natl. Acad. Sci. USA 48: 1769–1776.

    Article  PubMed  CAS  Google Scholar 

  50. Steinberg, M., 1963, Reconstruction of tissues by dissociated cells, Science 141: 401–408.

    Article  PubMed  CAS  Google Scholar 

  51. Steinberg, M., 1970, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, Exp. Zool. 173: 393–434.

    Google Scholar 

  52. Schiefferdecker, P., 1886, Methode zur isolirung von epithelzellen, Z. f. Mikros. 3: 483.

    Google Scholar 

  53. Rous, P., and Jones, E. S., 1916, A method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells, J. Exp. Med. 23: 549–555.

    Article  PubMed  CAS  Google Scholar 

  54. Moscona, A., 1952, Cell suspensions from organ rudiments of chick embryos, Exp. Cell Res. 3: 535–539.

    Article  CAS  Google Scholar 

  55. Moscona, A., and Moscona, H., 1952, The dissociation and aggregation of cells from organ rudiments of the early chick embryo, J. Anat. 86: 287–301.

    PubMed  CAS  Google Scholar 

  56. Moscona, A., 1961, Rotation-mediated histogenetic aggregation of dissociated cells, Exp. Cell Res. 22: 455–475.

    Article  CAS  Google Scholar 

  57. Moscona, M. H., and Moscona, A. A., 1963, Inhibition of adhesiveness and aggregation of dissociated cells by inhibitors of protein and RNA synthesis, Science 142: 1070–1071.

    Article  PubMed  CAS  Google Scholar 

  58. Moscona, A. A., 1962, Analysis of cell recombinations in experimental synthesis of tissues in vitro, J. Cell Comp. Physiol. 60(Suppl. 1: 65–80.

    Article  Google Scholar 

  59. Lilien, J. E., and Moscona, A. A., 1967, Cell aggregation: its enhancement by a supernatant from cultures of homologoyus cells, Science 157: 70–72.

    Article  PubMed  CAS  Google Scholar 

  60. Lilien, J. E., 1968, Specific enhancement of cell aggregation in vitro, Dev. Biol. 17: 657–678.

    CAS  Google Scholar 

  61. Hausman, R. E., and Moscona, A. A., 1975, Purification and characterization of the retina-specific cell-aggregation factor, Proc. Natl. Acad. Sci. USA 72: 916–920.

    Article  PubMed  CAS  Google Scholar 

  62. Hausman, R. E., and Moscona, M., 1976, Isolation of retina-specific cell-aggregating factor from membranes of embryonic neural retina tissue, Proc. Natl. Acad. Sci. USA 73: 3594–3598.

    Article  PubMed  CAS  Google Scholar 

  63. Balsamo, J., and Lilien, J., 1974, Functional identification of three components which mediate tissue-type specific embryonic cell adhesion, Nature 251: 522–524.

    Article  PubMed  CAS  Google Scholar 

  64. Balsamo, J., and Lilien, J., 1974, Embryonic cell aggregation: kinetics and binding specificity of binding of enhancing factors. Proc. Natl. Acad. Sci. USA 71: 727–731.

    Article  PubMed  CAS  Google Scholar 

  65. Balsamo, J., and Lilien, J., 1975, The binding of tissue-specific adhesive molecules to the cell surface. A molecular basis for specificity, Biochemistry 14: 167–171.

    Article  PubMed  CAS  Google Scholar 

  66. Balsamo, J., McDonough, J., and Lilien, J., 1976, Retinal-tectcl connections in the embryonic chick: Evidence for regionally-specific cell surface components which mimic the pattern of innervation, Dey. Biol. 49: 338–346.

    CAS  Google Scholar 

  67. McDonough, J., and Lilien, J., 1975, Inhibition of mobility of cell-surface receptors by factors which mediate specific cell-cell interactions, Nature 256: 416–417.

    Article  PubMed  CAS  Google Scholar 

  68. McDonough, J., and Lilien, 1,1977, The turnover of a tissue specific cell surface ligand which inhibits lectin induced capping, J. Supramol. Struct. 7: 409–418.

    Google Scholar 

  69. Rutz, R., and Lilien, J., 1979, Functional characterization of an adhesive component from the embryonic chick neural retina, J. Cell Sci. 36: 323–342.

    CAS  Google Scholar 

  70. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270–297.

    Article  PubMed  CAS  Google Scholar 

  71. Roth, S. A., and Weston, J. A., 1967, The measurement of intercellular adhesion, Proc. Natl. Acad. Sci. USA 58: 974–980.

    Article  CAS  Google Scholar 

  72. Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med. 19: 235–278.

    CAS  Google Scholar 

  73. Tyler, A., 1947, An auto-antibody concept of cell structure, growth and differentiation, Growth 10: 7–19.

    Google Scholar 

  74. Burnet, F. M., 1961, Immunological recognition of self, Science 133: 307–311.

    Article  PubMed  CAS  Google Scholar 

  75. Spiegel, M., 1954, The role of specific surface antigens in cell adhesion. Part I. The reaggregation of sponge cells, Biol. Bull. 107: 130–148.

    Article  Google Scholar 

  76. Spiegel, M., 1954, The role of specific surface antigens in cell adhesion. Part II. Studies on embryonic amphibian cells, Biol. Bull. 107: 149–155.

    Article  Google Scholar 

  77. Moscona, A., and M. H. Moscona, 1962, Specific inhibition of cell aggregation by antiserum to suspensions of embryonic cells, Anat. Rec. 142: 319–320.

    Google Scholar 

  78. Gregg, G. J. H., 1956, Serological investigation of cell adhesion in the slime moulds, Dictyostelium discoideum, Dictyostelium purpureum, and Polysphondylium violacaeum, J. Gen. Phys. 39: 813–820.

    CAS  Google Scholar 

  79. Beug, H., Gerisch, G., Kempff, S., Riedel V., and Cremer, G., 1970, Specific inhibition of cell contact formation in Dictyostelium by univalent antibodies, Exp. Cell Res. 63: 147–158.

    Article  CAS  Google Scholar 

  80. Huesgen, A., and Gerisch, G., 1975, Solubilized contact sites A from cell membranes of Dictyostelium discoideum, FEBS Lett. 56: 46–49.

    Article  PubMed  CAS  Google Scholar 

  81. Muller, K., and Gerisch, G., 1978, A specific glycoprotein as the target site of adhesion blocking Fab in aggregating Dictyostelium cells, Nature 274: 445–449.

    Article  PubMed  CAS  Google Scholar 

  82. Beug, H., Katz, F. E., and Gerisch, G., 1973, Dynamics of antigenic membrane sites relating to cell aggregation in Dictyostelium discoideum, J. Cell Biol. 56: 647–658.

    CAS  Google Scholar 

  83. Brackenbury, R., Thiery, J. P., Rutishauser, U., and G. M. Edelman, 1977, Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding, J. Biol. Chem. 252: 6835–6840.

    CAS  Google Scholar 

  84. Thiery, J. P., Brackenbury, R., Rutishauser, U., and Edelman, G M,1977, Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina, J. Biol. Chem. 252: 6841–6845.

    Google Scholar 

  85. Rutishauser, U., and Goridis, C., 1986, NCAM: The molecule and its genetics, Trends Genet. 2: 72–76.

    Article  CAS  Google Scholar 

  86. Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prediger, E. A., Brackenbury, R., and Edelman, G. M., 1987, Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing, Science 236: 799–806.

    Article  PubMed  CAS  Google Scholar 

  87. Williams, A. F., and Barclay, A. N., 1988, The immunoglobulin superfamily-domains for cell surface recognition, Annu. Rev. Immunol. 6: 381–405.

    Article  CAS  Google Scholar 

  88. Ringer, S., 1890, Concerning experiments to test the influence of lime, sodium and potassium salts on the development of ova and growth of tadpoles, J. Physiol. 11: 79–84.

    PubMed  CAS  Google Scholar 

  89. Herbst, C., 1900, Uber das auseinandergehen von furchungs and gewebezellen in kalkfreien medium, Arch. Entw. Mech. 9: 424–463.

    Google Scholar 

  90. Anderson, N. G., 1953, The mass isolation of whole cells from rat liver, Science 117: 627628.

    Google Scholar 

  91. Zwilling, E., 1954, Dissociation of chick embryo cells by means of a chelating compound, Science 120: 219.

    Article  PubMed  CAS  Google Scholar 

  92. Rinaldini, L. M., 1958, The isolation of living cells from animal tissues, Int. Rev. Cytol. 7: 587–647.

    Article  CAS  Google Scholar 

  93. Steinberg, M. S., Armstrong, P. B., and Granger, R. E., 1973, On the recovery of adhesiveness by trypsin-dissociated cells, J. Membrane Biol. 13: 97–128.

    Article  CAS  Google Scholar 

  94. Takeichi, M., 1977, Functional correlation between cell adhesive properties and some cell surface proteins, J. Cell Biol. 75: 464–474.

    CAS  Google Scholar 

  95. Takeichi, M., 1989, personal communication.

    Google Scholar 

  96. Takeichi, M, Ozaki, H. S., Tokunaga, K., and Okada, T. S., 1979, Experimental manipulation of cell surface to affect cellular recognition mechanisms, Dey. Biol. 70: 195–205.

    CAS  Google Scholar 

  97. Urushihara, H., Ozaki, H S, and Takeichi, M., 1979, Immunological detection of cell surface components related with aggregation of chinese hamster and chick embryonic cells, Dey. Biol. 70: 206–216.

    CAS  Google Scholar 

  98. Grunwald, G. B., Geller, R. L., and Lilien, J., 1980, Enzymatic dissection of embryonic cell adhesive mechanisms, J. Cell Biol. 85: 766–776.

    Article  PubMed  CAS  Google Scholar 

  99. Grunwald, G. B., Bromberg, R. E. M., Crowley, N. J., and Lilien, J., 1981, Enzymatic dissection of embryonic cell adhesive mechanisms. II. Developmental regulation of an endogenous adhesive system in the chick neural retina, Dey. Biol. 86: 327–338.

    Google Scholar 

  100. Magnani, J. L., Thomas, W. A., and Steinberg, M. S., 1981, Two distinct adhesion mechanisms in embryonic chick neural retina cells. I. A kinetic analysis, Dev. Biol. 81: 96–105.

    CAS  Google Scholar 

  101. Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1981, Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells, Proc. Natl. Acad. Sci. USA 78: 387–391.

    Article  PubMed  CAS  Google Scholar 

  102. Thomas, W. A., Edelman, B. A., Lobel, S. M., Breitbart, A. S., and Steinberg, M. S., 1981, Two chick embryonic adhesion systems: Molecular vs. tissue specificity, J. Supremo]. Struct. Cell. Biochem. 16: 15–27.

    Article  CAS  Google Scholar 

  103. Thomas, W. A., and Steinberg, M. S., 1981, Two distinct adhesion mechanisms in embryonic neural retina cells. II. An immunological analysis, Dey. Biol. 81: 106–114.

    CAS  Google Scholar 

  104. Thomas, W. A., Thomson, J., Magnani, J. L., and Steinberg, M. S., 1981, Two distinct adhesion mechanisms in embryonic neural retina cells. III. Functional specificity, Dev. Biol. 81: 379–385.

    CAS  Google Scholar 

  105. Grunwald, G. B., Pratt, R. S., and Lilien, J., 1982, Enzymatic dissection of embryonic cell adhesive mechanisms. III. Immunological identification of a component of the calcium-dependent adhesive system of embryonic chick neural retina cells, J. Cell Sci. 55: 69–83.

    CAS  Google Scholar 

  106. Hatta, K., and Takeichi, M., 1986, Expression of N-cadherin adhesion molecule associated with early morphogenetic events in chick development, Nature 320: 447–449.

    Article  PubMed  CAS  Google Scholar 

  107. Crittenden, S. L., Rutishauser, U., and Lilien, J., 1988, Identification of two structural types of calcium-dependent adhesion molecules in the chick embryo, Proc. Natl. Acad. Sci. USA 85: 3464–3468.

    Article  PubMed  CAS  Google Scholar 

  108. Lagunowich, L., and Grunwald, G. B., 1989, Expression of calcium-dependent cell adhesion during ocular development: A biochemical, histochemical and functional analysis, Dey. Biol. 135: 158–171.

    CAS  Google Scholar 

  109. Nose, A., Nagafuchi, A., and Takeichi, M., 1988, Expressed recombinant cadherins mediate cell sorting in model systems, Cell 54: 993–1001.

    Article  PubMed  CAS  Google Scholar 

  110. Friedlander, D. R., Mege, R. M., Cunningham, B. A., and Edelman, G. M., 1989, Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces, Proc. Natl. Acad. Sci. USA 86: 7043–7047.

    Article  PubMed  CAS  Google Scholar 

  111. Landmesser, L., Dahm, L., Tang, J. and Rutishauser, U., 1990, Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron 4: 655–667.

    Article  PubMed  CAS  Google Scholar 

  112. Balsamo, J. and Lilien, J., 1990, N-cadherin in stably associated with and is an acceptor for a cell surface N-acetylgalactosaminyltransferase. J. Biol. Chem. 265: 2923–2928.

    PubMed  CAS  Google Scholar 

  113. Detrick, R. J., Dickey, D., and Kintner, C. R., 1990, The effects of N-cadherin misexpression on morphogenesis in xenopus embryos. Neuron 4: 493–506.

    Article  PubMed  CAS  Google Scholar 

  114. Fujimori, T., Miyatani, S., and Takeichi, M., 1990, Ectopic expression of N-cadherin perturbs histogenesis in xenopus embryos. Development 110: 97–104.

    PubMed  CAS  Google Scholar 

  115. Weiss, P., 1962, From cell to molecule, in: Allen, J. M. (ed.), The Molecular Control of Cellular Activity, McGraw-Hill, New York, pp. 1–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Grunwald, G.B. (1991). The Conceptual and Experimental Foundations of Vertebrate Embryonic Cell Adhesion Research. In: Gilbert, S.F. (eds) A Conceptual History of Modern Embryology. Developmental Biology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6823-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6823-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6825-4

  • Online ISBN: 978-1-4615-6823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics