Skip to main content

The Rise of Classical Descriptive Embryology

  • Chapter
A Conceptual History of Modern Embryology

Part of the book series: Developmental Biology ((DEBO,volume 7))

Abstract

The chick egg is an enticing object for study. Nineteenth-century microscopists accepted the challenge with enthusiasm and exquisite results. They were, however, not the first. Aristotle, Fabricius of Aquapendente, and William Harvey had all immersed themselves in similar activities. Their investigations led them back to the very beginnings of an individual life. Harvey, for example, in the mid-seventeenth century spoke of the primordial heart as the punctam saliens, that is, the first leaping point of life, but years later he recognized blood islands in the area opaca at the periphery of the early embryo as living antecedents to the heart itself. With the advent of the early compound microscope, Marcello Malpighi charted a more exacting course through the early stages of development, which can still be traced easily through his incomparable illustrations. Eighteenth-century successors, Albrecht Von Haller, Lazzaro Spallanzani, and Caspar Friedrich Wolff, added further refinements in observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. Aristotle, Generation of Animals (A. L. Peck, trans.), Harvard University Press, Cambridge, MA. 1943.

    Google Scholar 

  2. Fabricius ab Aquapendente, Hieronymus, 1621, De Formatione Ovi et Pulli, Padua.

    Google Scholar 

  3. Harvey, W.,1651, Exercitationes de generatione animalium, Pulleyn, London; an English translation may be found in Works of William Harvey (R. Willis, trans.), Sydenham Society, London, 1847.

    Google Scholar 

  4. Malpighi, M., 1673, Dissertatio epistolica de formatione pulii in ovo, J. Martyn, London; an English translation may be found in Adelmann, H. B., Marcello Malpighi and the Evolution of Embryology, 5 vols., Cornell University Press, Ithaca, NY, 1966.

    Google Scholar 

  5. von Haller, A., 1758, Sur la formation du coeur dans le pulet; sur l’oeil, sur la structure du jaune, etc., 2 vols., M. M. Bousquet, Lausanne.

    Google Scholar 

  6. Spallanzani, L, 1785–1786, Experiences pour servir à l’histoire de la generation des animaux et des plantes, Chirol, G; an English translation may be found in Tracts on the Nature of Animals and Vegetables, William Creech and Ar. Constable, Edinburgh, 1799.

    Google Scholar 

  7. Wolff, C. F., 1759, 1764, Theorie von der Generation, Theoria Generationis in zwo Abhandlungen erklärt un bewiesen, Hendel, Halle; facsimile reprint, Robert Herrlinger (Bernstiel, F. W., ed., Berlin), Georg Olms, Hildesheim, 1966.

    Google Scholar 

  8. Row, S. A., 1981, Matter, Life, and Generation. 18th-Century Embryology and the Haller-Wolff Debate, Cambridge University Press, Cambridge, provides a particularly useful discussion of these works.

    Google Scholar 

  9. Wolff (1759,1764) had only two plates, one each for plant and animal development, with a total of 48 separate figures. Fifty-three years later Pander (1817) included 11 professionally executed lithograph plates, which presented 82 figures of chick development.

    Google Scholar 

  10. Ben David, J., 1971, The Scientist’s Role in Society: A Comparative Study, Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  11. McClelland, C. E., 1980, State, Society, and University in Germany 1700–1914, Cambridge University Press, Cambridge

    Google Scholar 

  12. Turner, R. S., 1971, The growth of professorial research in Prussia, 1818–1848-Causes and context, Hist. Stud. Phys. Sci. 3: 137–182

    Google Scholar 

  13. Clark, W., 1986, From the medieval “Universitas Scholarium” to the German research university, Ph.D. dissertation, University of California/Los Angeles

    Google Scholar 

  14. Leventhal, R. S., 1986, The emergence of philological discourse in the German states, 1770–1810, Isis 77: 243–260.

    Article  Google Scholar 

  15. Kay, A., 1970, Burdach, Karl Friedrich, DSB 2:594–597 and Risse, G. B., 1971, Döllinger, Ignaz, DSB 4: 146–147

    Google Scholar 

  16. Lenoir, T., 1982, The Strategy of Life. Teleology and Mechanics in Nineteenth Century German Biology, D. Reidel, Dordrecht, Holland, pp. 65–71

    Google Scholar 

  17. Meyer, A. W., 1956, Human Generation: Conclusions of Burdach, Döllinger and von Baer, Stanford University Press, Stanford, CA, provides English translations of embryological treatises by Burdach, Döllinger, and von Baer and useful introductions to each treatise.

    Google Scholar 

  18. Burdach, C. E, 1826–1840, Die Physiologie als Erfahrungswissenschaft, 6 vols., Leopold Voss, Leipzig.

    Google Scholar 

  19. von Baer, K. E., 1886, Nachtrichten über Leben und Schriften des Herrn Geheimraths Dr. Karl Ernst von Baer, mitgetheilt von ihm selbst, Friedrich Vieweg und Sohn, Braunschweig. References are made to the English version, Autobiography of Dr. Karl Ernst von Baer, (Oppenheimer, J. M., ed.), 1986, Science History Publications, Canton, Mass. For von Baer’s extensive comments on his anatomical studies under Döllinger and Pander’s work on the chick egg, see Chapter 8.

    Google Scholar 

  20. Pander, C., 1817, Beiträge zur Entwickelungsgeschichte des Hühnchens im Eye, H. L. Brönner, Würzburg. Pander’s dissertation consisted of a Latin version of this work; the dissertation, however, did not contain d’Alton’s engravings. von Baer, 1986, p. 138, describes Pander as arriving in Würzburg in the early summer of 1816. Pander signed the Preface of his Beiträge on Sept. 15, 1817.

    Google Scholar 

  21. Pander, 1817, p. 12.

    Google Scholar 

  22. Charles O’Malley has discussed this issue with respect to Vesalius’s Fabrica. C. D. O’Malley, 1964, Andreas Vesalius of Brussels, 1514–1564, University of California Press, Berkeley and Los Angeles; pp. 124–129.

    Google Scholar 

  23. See particularly Pander, 1817, Plate IX, Fig. iii.

    Google Scholar 

  24. Joseph Wilhelm) Eduard d’Alton (1770–1840) became professor of archaeology and history of art in Bonn and wrote Naturgeschichte des Pferdes 2 vols., 1810–1816, and Vergleichende Osteologie, 1820–1828, both of which he illustrated. Because of his osteological work he became a correspondent of Goethe from 1820–1827.

    Google Scholar 

  25. von Baer, 1986, pp. 273–277.

    Google Scholar 

  26. von Baer, 1986, pp. 210–211.

    Google Scholar 

  27. Corner, G., 1944, Ourselves Unborn. An Embryologist’s Essay on Man, Yale University Press, New Haven, CT, pp. 9–15.

    Google Scholar 

  28. de Graff, R., 1672, De mulierum organis generationi inservientibus tractatus novus, Hack, Leiden

    Google Scholar 

  29. Roger, J., 1963, Les sciences de la vie dans la pensee Française du XVIIIe Siecle, Armand Colin, Paris, pp. 256–262.

    Google Scholar 

  30. Sarton, G., 1931, The discovery of the mammalian egg and the foundation of modern embryology, Isis 16: 315–330.

    Article  Google Scholar 

  31. Kruta, V., 1971, K. E. von Baer and J. E. Purkyne. An analysis of their relations as reflected in their unpublished letters, Lychnos, pp. 93–120. See also Santon, 1931, pp. 318–319. For comments on and a translation of the second edition of Purkinje’s Symbolae, see Pukinje, J. E., 1830, Contributions to the history of the bird’s egg previous to incubation (Bartelmez, G. W., trans.), in: Essays in Biology. In Honor of Herbert M. Evans, University of California Press, Berkeley and Los Angeles, 1943, pp. 51–93.

    Google Scholar 

  32. von Baer, 1986, p. 218.

    Google Scholar 

  33. von Baer, K. E., 1827, On the genesis of the ovum of mammals and of man (O’Malley, C. D., trans.), 1956 with an Introduction by Cohen, I. B., Isis 47:117–157. Emphasis is von Baer’s. See also von Baer (trans.), 1828, Commenter, in: Meyer, 1956, pp. 104–114; quotation appears on p. 114.

    Google Scholar 

  34. The three microscopists were the French biologist J. V. Coste (1833), Purkinje’s student A. Bernhard (1834), and Thomas Wharton Jones (1835). For further details see Kruta, 1971, p. 102.

    Google Scholar 

  35. von Baer, 1828, Commenter, pp. 116–117. In places von Baer is ambiguous about the role of the spermatozoa. In one rhapsodical passage he hypothetically suggests a correspondence between the “spermatic animalcules” and the germinal vesicle. It is likely that von Baer intended sarcasm at this point.

    Google Scholar 

  36. Winsor, M. P., 1976, Starfish, Jellyfish, and the Order of Life, Yale University Press, New Haven, CT, pp. 22–24. Cuvier’s basic types were derived from anatomical and physiological considerations. They included Vertebrata, Articulata, Mollusca, and Radiata. Von Baer’s four types were derived to a great extent from his embryological studies.

    Google Scholar 

  37. Raikov, B. E., 1968, Karl Ernst von Baer 1792–1876. Sein Leben und sein Werk, J. Barth, Leipzig, pp. 60–80, and T. Lenoir, 1982, pp. 72–95.

    Google Scholar 

  38. von Baer, K. E., 1834?, Das allgemeine Gesetz der Natur in aller Entwickelung. This is reprinted in von Baer, 1864–1876, Reden gehalten in wissenschaftlichen Versammlungen und kleinere Aufsätze vermischten Inhalts, 3 vols., H. Schmitzdorff, St. Petersburg, 1: 35–74.

    Google Scholar 

  39. von Baer, K. E., 1828–1837, Über Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion, 2 vols., Gebrüdern Borntrager, Königsberg. A convenient, though somewhat stilted, English synopsis of von Baer’s classic may be found in Blaykher, L. Y., 1955, History of Embryology in Russia from the Middle of the Eighteenth to the Middle of the Nineteenth Century, trans. and ed., H. I. Youssef and B. A. Malek, with an Introduction by J. Maienschein, Smithsonian Institution Libraries, 1982, Chapters 14–24.

    Google Scholar 

  40. von Baer, 1986, pp. 232–241, describes at length the misunderstandings with Burdach and unsatisfactory arrangements von Baer had over his contribution to Burdach’s Physiologie. The experience also led to an uneasy relationship between von Baer and Rathke.

    Google Scholar 

  41. von Baer, 1828–1837, Vol. I, p. 38.

    Google Scholar 

  42. In modern terminology we would talk about the successive tucking under of the splanchnopleure and somatopleure. This process would include elements of the endoderm, mesoderm, and ectoderm.

    Google Scholar 

  43. von Baer, 1828–1837, Vol. I, p. 88.

    Google Scholar 

  44. Ibid., p. 140.

    Google Scholar 

  45. Whereas the description of the sequential development of the chick took 140 pages, the Scholia and Corollaries took 124 pages. The remaining 10 pages were devoted to explanations of the two copper plates and corrections.

    Google Scholar 

  46. Oppenheimer, J. M., 1955, Problems, concepts and their history, in: Analysis of Development ( Willier, B. H., Weiss, P., and Hamburger, V., eds.), Saunders, Philadelphia, pp. 1–24.

    Google Scholar 

  47. von Baer, 1828–1837, Vol. I, p. 149.

    Google Scholar 

  48. Ibid., p. 148. Emphasis is von Baer’s.

    Google Scholar 

  49. von Baer often called the vegetative plate the “plastic” plate.

    Google Scholar 

  50. von Baer, 1828–1837, Vol. I, p. 157.

    Google Scholar 

  51. This was clearly the climax of the Scholia. The Fifth and Sixth Scholia are the only ones that have been translated into English. See Huxley, T. (trans.), Fragments relating to philosophical zoology. Selected from the Works of K. E. von Baer, in: Scientific Memoirs, Selected from the Transactions of Foreign Academies of Science, and from Foreign Journals of Natural History (Henfrey, A. and Huxley, T. H., eds.), Taylor and Francis, London, 1853, Vol. 1, pt. II, pp. 186–238.

    Google Scholar 

  52. von Baer, Entwickelungsgeschichte, Vol. I, pp. 208–209.

    Google Scholar 

  53. Lenoir, 1982, pp. 72–95.

    Google Scholar 

  54. These laws have been taken verbatim from Huxley’s translation of the Fifth Scholium, p. 214.

    Google Scholar 

  55. von Baer, 1828–1837, Vol. I, p. 225, presents such a branching taxonomy shortly after enunciating his laws.

    Google Scholar 

  56. Ibid., p. 231.

    Google Scholar 

  57. Ibid., p. 265.

    Google Scholar 

  58. Ibid., pp. 263–264. I have followed, with minor revisions, Huxley’s translation, pp. 237–238.

    Google Scholar 

  59. Rathke, 1818, was a 24-page medical dissertation entitled “De Salamandrarum corporibus adiposis, ovariis, et oviductibus eorumque evolutione,” with two tables (Berlin). Stieda, L., 1888, Rathke: Martin Heinrich R., Allgemeine Deutsche Biogr. 27:352–355, presents a brief but useful sketch of Rathke’s life and career.

    Google Scholar 

  60. Key sections of works on the embryology of the urogenital system can be followed in Adelmann, H., 1966, Marcello Malpighi and the Evolution of Embryology, 5 vols., Cornell University Press, Ithaca, NY, Vol. 4. For Rathke see pp. 1801–1831,1837–1851, 1931–1943, 1963–1976.

    Google Scholar 

  61. See particularly Rathke, H., 1825a, Kiemen bei Säugethieren, Oken’s Isis, col. 747–749; 1825b, Keimen bei Vögeln, Ibid., pp. 1100–1101; 1825c, Beobachtungen and Betrachtungen über die Entwicklung der Geschlechtswerkzeuge bei den Wirbelthieren, Neueste Schriften. naturforsch. Gesellsch., Danzig, 1 (Heft 4):1–146; 1828a, Bemerkungen zu dem Aufsatze des Herrn Prof. Huschke. Ueber die Kiemenbögen and Kiemengefässe beim bebrüteten Hühnchen, Ibid., 21:8085; 1828b, Ueber das Dasein von Kiemenandeutungen bei menschlichen Embryonen, Ibid., 21:col. 108–109; and 1832, Anatomisch-Philosophische Untersuchungen über den Kiemen-apparat and das Zungenbein der Wirbelthiere, Eduard Frantzen, Riga and Dorpat. All these works are partly reproduced and translated in Adelmann, 1966.

    Google Scholar 

  62. Rathke, H., 1829, Untersuchungen über die Bildung and Entwickelung des Flusskrebses, L. Voss, Leipzig.

    Google Scholar 

  63. For example: “Since the true kidneys sprout and develop in addition to the Wolffian or Oken bodies, we may see a nice confirmation of the statement that the higher animals are only developments of the lower ones.” Rathke, 1825c, quoted in Adelmann, 1966, Vol. IV, p. 1826.

    Google Scholar 

  64. von Baer, 1986, p. 237, makes a revealing comparison between his own and Rathke’s style of research at the time he was writing critically of Burdach’s treatment of his own contribution to the latter’s Physiology: “... Rathke had always been in the habit of having his investigations published as soon as possible, while I, striving for general results which always require much comparative work, was in no hurry….”

    Google Scholar 

  65. See Lenoir, 1982, pp. 96–102, for a detailed and philosophically oriented discussion of Rathke’s discovery of the gill clefts.

    Google Scholar 

  66. See Russell, E. S., 1916, Form and Function, John Murray, London, pp. 151–156, for a discussion of Rathke’s cautious criticisms of the vertebral theory of the skull.

    Google Scholar 

  67. In the development of the idealized vertebrate there exist sequentially three kidneys. (1) The pronephros, or “head kidney,” opens into the body cavity via a segmental or primitive duct. With the exception of fish, the pronephros soon disappears in most vertebrates, but the primitive duct forms the foundation for later genital and urinary passages. (2) The mesonephros, or Wolffian body, consists of segmentally arranged glandular tubules that open at one end into the body cavity and at the other into an efferent common tubule, which eventually joins the primitive duct. The mesonephros functions as an embryonic kidney and remains a prominent structure in adult amphibians. (3) The metanephros, or proper kidney, of amniotes is a caudal outgrowth of the primitive duct and assumes much of the same tubular appearance as the mesonephros. What makes the relationship of these three sets of kidneys complicated is that they rarely appear together in an easily identifiable sequence. Furthermore, as development progresses in certain fish, amphibians, and higher vertebrates, the segmental or primitive duct soon divides longitudinally into an easily recognized duct, known as the mesonephric or Wolffian duct and the thread-like Müllerian duct. In male birds and mammals the anterior portion of the Wolffian duct becomes the vas deferens, which transports semen from the testes to the ureter, and the Müllerian duct degenerates. In female birds the Müllerian duct becomes the oviduct and the anterior portion of the Wolffian duct degenerates. In female birds furthermore, the system becomes asymmetrical as the right Müllerian duct and ovary disappear. In mammals the caudal ends of the two Müllerian ducts become the vagina and uterus. The Wolffian body in amphibians remains the functioning kidney and eventually develops Malphigian bodies and convoluted tubules, which together form the complex filtering system for the blood. True mammalian kidneys develop later as an offshoot from the posterior portion of the segmental, or primitive, duct. As the true kidneys assume their renal functions, the two Wolffian bodies degenerate, and their anterior ends along with the collecting and transverse tubules become appropriated by the testes to form the epididymides and the vas deferens.

    Google Scholar 

  68. See Balfour, F. M., 1881–1882, A Treatise on Comparative Embryology, 2 vols., Macmillan, London, Chapter 24 for a general account of the end-of-the-century understanding of the development of the urogenital system.

    Google Scholar 

  69. Rathke, H., 1818, published his dissertation in Latin, De salamandarum corporibus adiposis, ovariis, et oviductibus eorumque evolutione. Dissertatio inauguralis, Berolini, typis Heusleri viduae. Much of its contents appeared in an expanded form in Ueber die Entstehung und Entwickelung der Geschlechtstheile bei den Urodelen, Neueste Schriften d. naturforsch. Geselisch., Danzig, 1920:1–108. Later important works in this first stage of research include: 1825d, Beobachtungen und Betrachtungen über die Entwicklung der Geschlechtswerkzeuge bei den Wirbelthieren, Ibid.:1–146 and 1832–1833, Abhandlungen zur Bildungs-und EntwickelungsGeschichte des Menschen und der Thiere, F. C. W. Vogel, Leipzig. The latter work consists of a series of monographs, including one of the urogenital system of snakes, lizards, and turtles and one on mammals. Since all of these works are difficult to find, I have followed the translations and discussion of them in Adelmann, 1966, Vol. 4, pp. 1758–2028.

    Google Scholar 

  70. Lenoir, 1982, pp. 95–111.

    Google Scholar 

  71. Rathke, H., 1839, Entwickelungsgeschichte des Natter (Coluber Natrix), Gebrüder Bornträger, Koenigsberg. See also Adelmann, 1966, Vol. 4, pp. 1963–1976.

    Google Scholar 

  72. See letter from Rathke to Müller, Feb. 18, 1829, portions of which are reprinted in Adelmann, 1966, Vol. 4, pp. 1860–1861.

    Google Scholar 

  73. Ibid., p. 1962; Brian Bracegirdle, 1978, A History of Microtechnique, Cornell University Press, Ithaca, New York, pp. 76–81.

    Google Scholar 

  74. Rathke, 1839, in Adelmann, 1966, Ibid., Vol. 4, p. 1966.

    Google Scholar 

  75. Adelmann, 1966, Vol. 4, p. 2240.

    Google Scholar 

  76. Müller, J. P., 1829, Ueber die Wolffschen Körper bei den Embryonen der Frösche und Kröten, Arch. Anat. Phys., Jhg. 1829, pp. 65–70, and Müller, 1830, Bildungsgeschichte der Genitalien aus anatomischen Untersuchungen an Embryonen des Menschen und der Thiere, Düsseldorf. In 1829 and 1830 Müller made substantial modifications to the sequence envisioned by Rathke. He discovered the pronephros in frogs and toads but equated this erroneously with the Wolffian body of higher vertebrates. More significantly, he recognized that the segmental duct gives rise to two distinct ducts. His conclusions about their fates in birds corresponds to our modern understanding, but for mammals Müller failed to make a clear distinction between their ultimate fates. For an incisive discussion of Müller’s achievements and confusions, see Adelman, 1966, Vol. 4, pp. 1851–1901. For a valuable discussion of the philosophical context of Müller’s 1830 work, see Lenoir, 1982, pp. 103–111.

    Google Scholar 

  77. Adelmann, 1966, Vol. 3, p. 1802.

    Google Scholar 

  78. Schwann, T., 1839, Mikroskopische Untersuchungen über die Uebereinstimmung in der Strucktur und dem Wachsthum der Thiere und Pflanzen, Sander, Berlin, the English translation appeared in 1847 as Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants (Smith, H., trans.), Sydenham Society, London

    Google Scholar 

  79. Müller, J., 1838, Ueber den feineren Bau und Formen der Krankhaften Geschwülste, G. Reimer, Berlin

    Google Scholar 

  80. Churchill, E. B., 1976, Rudolf Virchow and the pathologist’s criteria for the inheritance of acquired characteristics, J. Hist. Med., 31: 117–148

    CAS  Google Scholar 

  81. Duschesneau, E, 1987, Genèse de la théorie cellulaire, Bellarmin, Monteal, provides a recent assessment documenting the importance of embryology for the cell theory.

    Google Scholar 

  82. Koelliker, A., 1841, Beiträge zur Kenntnis der Geschlechtsverhältnisse und der Samenflüssigkeit virbelloser Tiere, nebst einem Versuche über das Wesen und die Bedeutung der sogenannten Samentiere, W. Logier, Berlin.

    Google Scholar 

  83. Remak, R., 1850–1855, Untersuchungen über die Entwicklung der Wirbelthiere, 3 pts., G. Reimer, Berlin.

    Google Scholar 

  84. Farley, J., 1982, Gametes and Spores. Ideas about Sexual Reproduction 1750–1914, Johns Hopkins University Press, Baltimore, pp. 34–71, and Robinson, G., 1979, A Prelude to Genetics Coronado Press, Lawrence, KS, pp. 47–70.

    Google Scholar 

  85. Robinson, 1979; Coleman, W., 1965, Cell, nucleus, and inheritance: An historical study, Proc. Am. Phil. Soc. 109: 124–158

    Google Scholar 

  86. Churchill, F. B., 1987, From heredity theory to “Vererbung.” The transmission problem, 1850–1915, Isis 78: 337–364.

    PubMed  CAS  Google Scholar 

  87. Whitman, C. O., 1894, The inadequacy of the cell-theory of development. Biol. Lect. MBL, Woods Hall, 1893, pp. 105–124

    Google Scholar 

  88. Morgan, T. H., 1896, Studies of the partial’ larvae of Sphaerechinus. Arch. Entwick. 2: 110.

    Google Scholar 

  89. Steenstrup, J. J. S., 1845, On the Alternation of Generations: or the Propagation and development of Animals through Alternation of Generations: A Peculiar Form of Fostering the Young in the Lower Classes of Animals (trans. from the German version of C. H. Lorenzen by G. Busk ), The Ray Society, London. Both the original Danish and German editions appeared in 1842.

    Google Scholar 

  90. See Winsor, M. P., 1976, pp. 44–72; Farley, J., 1982, pp. 72–109; Churchill, F. B., 1979, Sex and the single organism, biological theories of sexuality in mid-nineteenth century, Stud. Hist. Biol. 3:139–177; and Churchill, 1989, The guts of the matter. Infusoria from Ehrenberg to Bütschli: 1838–1876, J. Hist. Biol. 22: 189–213.

    Google Scholar 

  91. Kisch, B., 1954, Forgotten leaders in modern medicine. Valentin, Gruby, Remak, Auerbach, Trans. Am. Phil. Soc. NS 54:139–317, provides an account of Remak’s life and examines Remak’s contributions to neuroanatomy, but Kisch is less critical in his evaluation of Remak’s version of the cell theory and stops short of analyzing Remak’s important embryological contributions. For briefer accounts of the latter see, Oppenheimer, J., 1940, The non-specificity of the germ-layers, reprinted in Oppenheimer, 1967, and selected sections in Adelmann, 1966. Erich Hintzsche, 1975, presents a balanced, though brief, discussion of Remak’s embryological accomplishments in the DSB, 9:367–370. Duchesneau, 1987, pp. 255–278, provides a detailed study of Remak’s growing recognition of the direct division of the nucleus and cell.

    Google Scholar 

  92. Huxley, T. H., 1849, On the anatomy and the affinities of the family of Medusae, reprinted in The Scientific Memoirs of Thomas Henry Huxley, (Foster, Michael and Lankester, E. R., eds.), Macmillan, London. Quotation appears in Vol. 1, p. 24

    Google Scholar 

  93. Allman, G. J., 1853, On the anatomy and physiology of Cordylophora, a contribution to our knowledge of tubularian zoophytes, Roy. Soc. Trans. 143: 368.

    Google Scholar 

  94. Sloan, P. R., 1985, Darwin’s invertebrate program, 1826–1836: preconditions for transformism, The Darwinian Heritage (Kohn, D., ed.), Princeton University Press, Princeton, NJ, pp. 71–120.

    Google Scholar 

  95. Richmond, M. L., 1988, Darwin’s study of Cirripedia, in The Correspondence of Charles Darwin (Burkhardt, F. and Smith, S., eds.), Cambridge University Press, Cambridge, U.K., Vol. 4:1847–1850, pp. 388–409.

    Google Scholar 

  96. Oppenheimer, J. M., 1959, An embryological enigma in the Origin of Species, reprinted in Oppenheimer, 1967

    Google Scholar 

  97. Dov Ospovat, 1976, The influence of Karl Ernst von Baer’s embryology, 1828–1859, J. Hist. Biol. 9: 1–28

    Article  PubMed  CAS  Google Scholar 

  98. Sloan, P. R., 1986, has exhaustively detailed the importance of Richard Owen’s presentation of German developmental biology for Darwin in “Darwin, vital matter, and transformism of species,” J. Hist. Biol. 19:369–445.

    Google Scholar 

  99. See also P. R. Sloan, Richard Owen’s Hunterian Lectures, 2 May-4 June, 1837, forthcoming

    Google Scholar 

  100. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge, MA, pp. 69–74. Darwin attributed a story about confusing the early embryos of mammals, birds, and reptiles to Louis Agassiz. In later editions he referred instead to von Baer.

    Google Scholar 

  101. Darwin, C., 1859, On the Origin of Species by Means of Natural Selection, John Murray, London, p. 450 (facsimile reprint by Harvard University Press, 1964 ).

    Google Scholar 

  102. Müller, E, 1964, Für Darwin. Quotation is taken from the English version: Facts and Arguments for Darwin, John Murray, London, 1869, p. 111.

    Google Scholar 

  103. von Baer was one of the most noteworthy holdouts against a material theory of evolution; thus he opposed any pattern suggesting genetic continuity.

    Google Scholar 

  104. For a lucid description of the transformation of von Baer’s laws to Haeckel’s biogenetic law, see Gould, 1977, Chapter 4. Haeckel did not use the expression “das biogenetisches Grundgesetz” in either his Generelle Morphologie or the first edition of Natürliche Schöpfungsgeschichte (1868), but it appears in the second edition (1870) of the latter work.

    Google Scholar 

  105. Haeckel, E., 1866, Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie, 2 vols., George Reimer, Berlin, Vol. 2, p. 300. I have followed with minor changes the translation of Russell, E. S., 1916, pp. 253–254. See also Gould, Steven Jay, 1977, p. 81.

    Google Scholar 

  106. Lenoir, 1982, pp. 12–16.

    Google Scholar 

  107. Fritz Müller (1864) also recognized the exceptions to a strict parallel between ontogeny and phylogeny (p. 114).

    Google Scholar 

  108. Oppenheimer, J. M., 1940, The non-specificity of the germ-layers, reprinted in Essays in the History of Embryology and Biology, M.I.T. Press, Cambridge, MA, p. 263.

    Google Scholar 

  109. Chernyak, L., and Tauber, A. I., 1988, History of Immunology. The birth of immunology: Metchnikoff, the embryologist, Cell. Immunol. 117: 218–233.

    Article  PubMed  CAS  Google Scholar 

  110. Kleinenberg, N., 1872, Hydra. Eine anatomisch-entwicklungsgeschiteliche Untersuchung, Engelmann, Leipzig.

    Book  Google Scholar 

  111. Haeckel, E., 1873, On the Calcispongiae, their position in the animal kingdom, and their relation to the theory of descendance, Ann. Mag. Nat. Hist. S. 4, 11:430. This brief article was simply an English announcement of Haeckel’s two-volume work on Calcispongiae, which appeared the preceding year in German. Analytically is italicized by Haeckel, synthetically is italicized by the author.

    Google Scholar 

  112. Haeckel, E., 1874, Die Gastraea-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblätter, Jenaische Zeitschr. 8: 1–55.

    Google Scholar 

  113. Balfour, F. M., 1876, On the origin and history of the urinogenital organs of vertebrates, J. Anat. Phys. 10:17–48. See particularly Balfour’s comments on the relationship between the Wolffian duct in birds and selachians (pp. 46–48 ).

    Google Scholar 

  114. Weismann, A., 1883, Die Entstenhung der Sexualzellen bei den Hydromedusen. Zugleich ein Beitrag zur Kenntniss des Baues und der Lebenserscheinungen dieser gruppe, Gustav Fischer, Jena: for a recent analysis of this trend, see Churchill, 1987

    Google Scholar 

  115. Churchill, E. B., 1985, Weismann’s continuity of the germ-plasm in historical perspective, Freiburger Universitätsblätter, Heft 87 /88: 107–124

    Google Scholar 

  116. Churchill, E. B., 1986, Weismann, Hydromedusae, and the biogenetic imperative: A reconsideration, in: A History of Embryology, ( Horder, T. J., Witkowski, J. A., and Wylie, C. C., eds.), Cambridge University Press, Cambridge, MA, pp. 7–33.

    Google Scholar 

  117. For more negative evaluations of Weismann’s use of the biogenetic law see Gould, 1977, pp. 102–109

    Google Scholar 

  118. Berrill, N. J., and Liu, C. K., 1948, Germplasm, Weismann, and Hydrözoa, Q. Rev. Biol. 23: 124–132.

    Article  PubMed  CAS  Google Scholar 

  119. His, W., 1874, Unsere Körperfarm und das Physiologiesche Problem ihrer Entstehung. Briefe an einen befreundeten Naturforscher, F. C. W. Vogel, Leipzig.

    Book  Google Scholar 

  120. Rauher, A., 1880, Formbildung and Formstorung in der Entwickelung von Wirbelthieren, Wilhelm Engelmann, Leipzig.

    Google Scholar 

  121. Maienschein, J., 1978, Cell lineage, ancestral reminiscence, and the biogenetic law, J. Hist. Biol. 11: 129–158.

    Article  Google Scholar 

  122. Oppenheimer, J. M., 1936, Historical introduction to the study of teleostean development, Osiris 2: 124–148

    Article  Google Scholar 

  123. Oppenheimer, J. M., 1968, Some historical relationships between teratology and experimental embryology, Bull. Hist. Med. 42: 145–159

    PubMed  CAS  Google Scholar 

  124. Churchill, E B., 1973, Chabry, Roux, and the experimental method in nineteenth-century embryology, in: Foundations of Scientific Method: The Nineteenth Century, ( Giere, R. N., and Westfall, R. S., eds.), Indiana University Press, Bloomington, IN, pp. 161–205

    Google Scholar 

  125. Fischer, J-L., and Smith, J., 1984, French embryology and the Mechanics of Development from 1887–1910

    Google Scholar 

  126. L. Chabry, Y. Delage and E. Batallion, Hist. Phil. Life Sciences, 6: 25–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Churchill, F.B. (1991). The Rise of Classical Descriptive Embryology. In: Gilbert, S.F. (eds) A Conceptual History of Modern Embryology. Developmental Biology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6823-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6823-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6825-4

  • Online ISBN: 978-1-4615-6823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics