Skip to main content

Part of the book series: Developmental Biology ((DEBO,volume 6))

  • 71 Accesses

Abstract

The history and evolution of cell populations in vitro stem initially from characteristics of the tissues or organs used for explantation. As developmental products, each of these carries a spectrum of identifying markers: distinctive patterns of enzyme activities or unique metabolic products, diagnostic cytoarchitecture or elements of fine structure, and other specificities recognizable microscopically or biochemically. Phenotypic changes in early cultures of animal cells thus commonly derive from forward or retrograde shifts in state of differentiation, rather than from alterations at the genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benya, P.D., and Shaffer, J. D., 1982, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels, Cell 30:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Burdon, R. H., and Adams, R. L. P., 1980, Eukaryotic DNA methylation, Trends Biochem. Sci. 5: 294–297.

    Article  CAS  Google Scholar 

  • Carrel, A., and Ebeling, A. H., 1922, Pure cultures of large mononuclear leucocytes, J. Exp. Med. 36: 365–378.

    Article  PubMed  CAS  Google Scholar 

  • Champy, C., 1912, Sur les phénomènes cytologique qui s’observent dans les tissus cultivés en dehors de l’organisme, C.R. Soc. Biol. 72:987–988.

    Google Scholar 

  • Chandler, L. A., and Jones, P. A., 1988, Hypomethylation of DNA in the regulation of gene expression, in: Developmental Biology: A Comprehensive Synthesis, Vol. 5: The Molecular Biology of Cell Determination and Cell Differentiation (L. W. Browder, ed.), pp. 335–349, Plenum, New York.

    Google Scholar 

  • Compere, S. J., and Palmiter, R. D., 1981, DNA methylation controls the inducibility of the mouse metallothionein-1 gene in lymphoid cells, Cell 25:233–240.

    Article  PubMed  CAS  Google Scholar 

  • Constantinides, P. G., Jones, P. A., and Gevers, W., 1977, Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment, Nature (Lond.) 267:364–366.

    Article  PubMed  CAS  Google Scholar 

  • Coon, H. G., 1966, Clonal stability and phenotypic expression of chick cartilage cells in vitro, Proc. Natl. Acad. Sci. USA 55:66–73.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. L., Weintraub, H., and Lassar, A. B., 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell 51:987–1000.

    Article  PubMed  CAS  Google Scholar 

  • Doerfler, W., 1983, DNA methylation and gene activity, Annu. Rev. Biochem. 52:93–124.

    Article  PubMed  CAS  Google Scholar 

  • Ebeling, A. H., 1925, A pure strain of thyroid cells and its characteristics, J. Exp. Med. 41:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, K. E., Hageman, E. C., and Larson, B. L., 1961, Functional biochemical changes in bovine mammary cell cultures, Exp. Cell Res. 25:555–570.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T., Enami, J., Pitelka, D. R., and Nandi, S., 1977, Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes, Proc. Natl. Acad. Sci. USA 74:4466–4470.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T., and Pitelka, D. R., 1977, Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes, In Vitro 13:316–328.

    Article  PubMed  CAS  Google Scholar 

  • Fell, H. B., and Robison, R., 1929, The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro, Biochem. J. 23:767–787.

    PubMed  CAS  Google Scholar 

  • Fisher, A., 1922, A three months old strain of epithelium, J. Exp. Med. 35:367–372.

    Article  Google Scholar 

  • Foulds, L., 1954, The experimental study of tumor progression: A review, Cancer Res. 14:327–339.

    PubMed  CAS  Google Scholar 

  • Foulds, L., 1958, The natural history of cancer, J. Chron. Dis. 8:2–37.

    Article  PubMed  CAS  Google Scholar 

  • Friend, C., Scher, W., Holland, J. G., and Sato, T., 1971, Hemoglobin synthesis in murine virus induced leukemia cells in vitro: Stimulation of erythroid differentiation by dimethyl-sulfox-ide, Proc. Natl. Acad. Sci. USA 68:378–382.

    PubMed  CAS  Google Scholar 

  • Gerber-Huber, S., May, F. E. B., Westley, B. R., Felber, B. K., Hosbach, H. A., Andres, A., and Ryffell, G. U., 1983, In contrast to other Xenopus genes the estrogen-inducible vitellogenin genes are expressed when totally methylated, Cell 33:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, M. M. (ed.), 1985, Molecular Cell Genetics, Wiley, New York.

    Google Scholar 

  • Harris, M., 1964, Cell Culture and Somatic Variation, Holt, Rinehart, and Winston, New York.

    Google Scholar 

  • Harris, M., 1982, Induction of thymidine kinase in enzyme-deficient Chinese hamster cells, Cell 29: 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M., 1984, High-frequency induction by 5-azacytidine of proline independence in CHO-K1 cells, Somatic Cell Mol. Genet. 10:615–624.

    Article  CAS  Google Scholar 

  • Harris, M., 1986, Induction and reversion of asparagine auxotrophs in CHO-K1 and V79 cells, Somatic Cell Mol Genet. 12:459–466.

    Article  CAS  Google Scholar 

  • Harris, M., and Collier, K., 1980, Phenotypic evolution of cells resistant to bromodeoxyuridine, Proc. Natl. Acad. Sci, USA 77:4206–4210.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L., and Moorhead, P. S., 1961, The serial cultivation of human diploid strains, Exp. Cell Res. 25:585–621.

    Article  Google Scholar 

  • Holtzer, H., Abbott, J., Lash, J., and Holtzer, S., 1960, The loss of phenotypic traits by differentiated cells in vitro. I. Dedifferentiation of cartilage cells, Proc. Natl. Acad. Sci. USA 46:1533–1542.

    Article  PubMed  CAS  Google Scholar 

  • Hsaio, W. W., Gattoni-Celli, S., Kirschmeier, P., and Weinstein, I. B., 1984, Effects of 5-azacytidine on methylation and expression of specific DNA sequences in C3H 10T1/2 cells, Mol. Cell. Biol. 4:634–641.

    Google Scholar 

  • Jones, P. A., 1985, Altering gene expression with 5-azacytidine, Cell 40:485–486.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A., and Taylor, S. M., 1980, Cellular differentiation, cytidine analogs and DNA methylation, Cell 20:85–93.

    Article  PubMed  CAS  Google Scholar 

  • Kao, F., and Puck, T. T., 1967, Genetics of somatic mammalian cells. IV. Properties of Chinese hamster cell mutants with respect to the requirement for proline, Genetics 55:513–524.

    PubMed  CAS  Google Scholar 

  • Landolph, J. R., and Jones, P. A., 1982, Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T1/2 clone 8 and V79 cells, Cancer Res. 42:817–823.

    PubMed  CAS  Google Scholar 

  • Lassar, A. B., Paterson, B. M., and Weintraub, H., 1986, Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts, Cell 47:649–656.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. Y. P., Lee, W., Kaetzel, C. S., Parry, C., and Bissell, M. J. 1985, Interaction of mouse mammary epithelial cells with collagen substrate: Regulation of casein gene expression and secretion, Proc. Natl. Acad. Sci. USA 82:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. Y., Parry, G., and Bissell, M. J., 1984, Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata, J. Cell Biol. 98:146–155.

    Article  PubMed  CAS  Google Scholar 

  • Levay-Young, B. K., Imagawa, W., Yang, J., Richards, J. E., Guzman, R. C., and Nandi, S., 1987, Primary culture systems for mammary biology studies, in: Cellular and Molecular Biology of Experimental Mammary Cancer (C. Ip, D. Medina, G. Heppner, and E. Anderson, eds.), pp. 181–203, Plenum, New York.

    Chapter  Google Scholar 

  • Littlefield, J. W., 1976, Variation, Senescence, and Neoplasia in Cultured Somatic Cells, Harvard University Press, Cambridge.

    Google Scholar 

  • Luria, S. E., and Delbrück, M., 1943, Mutations of bacteria from virus sensitivity to virus resistance, Genetics 28:491–511.

    PubMed  CAS  Google Scholar 

  • Marks, P. A., Murate, T., Kaneda, T., Ravetch, J., and Rifkind, R. A., 1985, Modulation of gene expression during terminal cell differentiation: Murine erythroleukemia, M. D. Anderson Symp. Fund. Cancer Res. 37:327–340.

    CAS  Google Scholar 

  • McCann, J., Choi, E., Yamasaki, E., and Ames, B. N., 1975, Detection of carcinogens in the Salmo-nella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sci. USA 72:5135–5139.

    Article  PubMed  CAS  Google Scholar 

  • McGhee, J. D., and Ginder, G. D., 1979, Specific DNA methylation sites in the vicinity of the chicken β-globin genes, Nature (Lond.) 280:419–420.

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos, G., and Pitot, H. C., 1975, Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations, Exp. Cell Res. 94:70–78.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J., 1983, Eukaryotic Cell Genetics, Academic, Orlando, Florida.

    Google Scholar 

  • Mascona, A., 1956, Development of heterotypic combinations of dissociated embryonic check cells, Proc. Soc. Exp. Biol. Med. 92:410–416.

    Google Scholar 

  • Moscona, A., 1962, Cellular interactions in experimental histogenesis, Int. Rev. Pathol. 1:371–428.

    CAS  Google Scholar 

  • Puck, T. T., 1972, The Mammalian Cell as a Microorganism, Holden-Day, San Francisco.

    Google Scholar 

  • Reeves, R., and Cserjesi, P., 1979, Sodium butyrate induces new gene expression in Friend erythroleukemic cells, J. Biol. Chem. 254:4283–4290.

    PubMed  CAS  Google Scholar 

  • Pinney, D. F., Pearson-White, S. H., Konieczney, S. F., Latham, K. E., and Emerson, C. F., Jr., 1988, Myogenic linkage determination and differentiation: Evidence for a regulatory gene pathway, Cell 53:781–793.

    Article  PubMed  CAS  Google Scholar 

  • Reuben, R. C., Rifkind, R. A., and Marks, P. A., 1980, Chemically induced murine erythroleukemic differentiation, Biochim. Biophys. Acta 605:325–346.

    PubMed  CAS  Google Scholar 

  • Riggs, A. D., and Jones, P. A., 1983, 5-Methycytosine, gene regulation, and cancer, Adv. Cancer Res. 40:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Rothfels, K. H., Kupelwieser, E. B., and Parker, R. C., 1963, Effects of X-irradiated feeder layers on mitotic activity and development of aneuploidy in mouse-embryo cells in vitro, Can. Cancer Conf. 5:191–223.

    PubMed  CAS  Google Scholar 

  • Sager, R., and Kovac, P., 1982, Pre-adipocyte determination either by insulin or by 5-azacytidine, Proc. Natl. Acad. Sci. USA 79:480–484.

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch, L., 1976, On the nature of hereditable variation in cultured somatic cells, Cell 7:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Stockdale, F. E., Abbott, J., Holtzer, S., and Holtzer, H., 1963, The loss of phenotypic traits by differentiated cells. II. Behavior of chondrocytes and their progeny in vitro, Dev. Biol. 7:293–302.

    Article  CAS  Google Scholar 

  • Sugiyama, R. H., Arfin, S. M., and Harris, M., 1983, Properties of asparagine synthetase in as-paragine-independent variants of Jensen rat sarcoma cells induced by 5-azacytidine, Mol. Cell. Biol. 3:1937–1942.

    PubMed  CAS  Google Scholar 

  • Taylor, J. H., 1984, DNA Methylation and Cellular Differentiation, Springer-Verlag, New York.

    Google Scholar 

  • Taylor, S. M., Constantinides, P. A., and Jones, P. A., 1984, 5-Azacytidine, DNA methylation and differentiation, Curr. Top. Microbiol. Immunol. 108:115–127.

    Article  PubMed  CAS  Google Scholar 

  • Tapscott, S. J., Davis, R. L., Thayer, M. J., Cheng, P., Weintraub, H., and Lassar, A. B., 1988, MyoD1: A nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242:405–411.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. M., and Jones, P. A., 1979, Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine, Cell 17:771–779.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. M., and Jones, P. A., 1982, Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine, J. Cell. Physiol. 111:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Todaro, C. J., and Green, H., 1963, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines, J. Cell Biol. 17:299–313.

    Article  PubMed  CAS  Google Scholar 

  • Trinkaus, J. P., and Groves, P. W., 1955, Differentiation in culture of mixed aggregates of dissociated tissue cells, Proc. Natl. Acad. Sci. USA 41:787–495.

    Article  PubMed  CAS  Google Scholar 

  • Vesely, J., and Cihak, A., 1978, 5-azacytidine: Mechanism of action and biological effects in mammalian cells, Pharmacol. Ther. A 2:813–840.

    CAS  Google Scholar 

  • Weiss, P., 1939, Principles of Development, Holt, Rinehart, and Winston, New York.

    Google Scholar 

  • Weiss, P., 1950, Perspectives in the field of morphogenesis, Q. Rev. Biol. 25:177–198.

    Article  PubMed  CAS  Google Scholar 

  • Wigler, M., Levy, D., and Perucho, M., 1981, The somatic replication of DNA methylation. Cell 24: 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Wise, T. L., 1985, The molecular basis for the loss of thymidine kinase activity in BUdR resistant Chinese hamster cells and for reactivation of thymidine kinase in revertants, Doctoral thesis, University of California, Berkeley.

    Google Scholar 

  • Wise, T. L., and Harris, M., 1988, Deletion and hypermethylation of the thymidine kinase gene in V79 Chinese hamster cells resistant to bromodeoxyuridine, Somatic Cell Mol. Genet. 14:567–581.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Harris, M. (1989). Phenotypic Changes in Cell Culture. In: Genomic Adaptability in Somatic Cell Specialization. Developmental Biology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6820-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6820-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6822-3

  • Online ISBN: 978-1-4615-6820-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics