Skip to main content

Regulation of the Mid-Blastula Transition in Amphibians

  • Chapter

Part of the book series: Developmental Biology ((DEBO,volume 5))

Abstract

Development from a fertilized egg to an adult organism requires expression of the genetic program, which is coordinated both spatially and temporally. The genome must provide the information for the orderly control of the cell cycle and of morphogenic events such as cleavage and gastrulation, as well as of molecular processes such as protein synthesis, DNA replication, and transcription. Cleavage may result in the asymmetric distribution of cytoplasmic components into daughter cells establishing specific cell lineages (see Chapter 1). Cellular interactions that occur during early development add another dimension to the functional regionalization of the embryo (see Chapter 3). During gastrulation, the germ layers become juxtaposed in patterns necessary for such inductive cellular interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, E., and Woodland, H. R., 1977, Changes in the rate of histone synthesis during oocyte maturation and very early development of Xenopus laevis, Dev. Biol. 43:159–174.

    Google Scholar 

  • Anderson, D. M., Richter, J. D., Chamberlain, M. E., Price, D. H., Britten, R. J., Smith, L. D., and Davidson, E. H., 1982, Sequence organization of the poly(A) RNA synthesized and accumulated in lamp-brush chromosome stage Xenopus laevis oocytes, J. Mol. Biol. 155:281–309.

    Article  PubMed  CAS  Google Scholar 

  • Bachvarova, R., and Davidson, E. H., 1966, Nuclear activation at the onset of amphibian gastrulation, J. Exp. Zool. 163:285–296.

    Article  Google Scholar 

  • Ballantine, J. E. M., Woodland, H. R., and Sturgess, E. A., 1979, Changes in protein synthesis during the development of Xenopus laevis, J. Embryol. Exp. Morphol. 51:137–153.

    PubMed  CAS  Google Scholar 

  • Baum, E. Z., and Wormington, W. M., 1985, Coordinate expression of ribosomal protein genes during Xenopus development, Dev. Biol. 111:488–498.

    Article  PubMed  CAS  Google Scholar 

  • Bendig, M. M., 1981, Persistence and expression of histone genes injected into Xenopus Laevis eggs in early development, Nature (Lond.) 292:65–67.

    Article  CAS  Google Scholar 

  • Bendig, M. M., and Williams, J. G., 1984, Differential expression of the Xenopus laevis tadpole and adult β-globin genes when injected into fertilized Xenopus laevis eggs, Mol. Cell. Biol. 4:567–570.

    PubMed  CAS  Google Scholar 

  • Bravo, R., and Knowland, J., 1979, Classes of proteins synthesized in oocytes, eggs, embryos and differentiated tissues of Xenopus laevis, Differentiation 13:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, R., 1979, Genetics of cell type determination, Int. Rev. Cytol 9:107–127.

    Article  Google Scholar 

  • Brock, H. W., and Reeves, R., 1978, An investigation of de novo protein synthesis in the South African clawed toad, Xenopus laevis, Dev. Biol. 66:128–141.

    Article  CAS  Google Scholar 

  • Brown, D. D., and Littna, E., 1964, RNA synthesis during the development of Xenopus laevis, the South African Clawed Toad, J. Mol. Biol. 8:669–687.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. D., and Littna, E., 1966, Synthesis ad accumulation of low molecular weight RNA during embryogenesis of Xenopus laevis, J. Mol. Biol. 20:95–112.

    Article  PubMed  CAS  Google Scholar 

  • Busby, S. J., and Reeder, R. H., 1983, Spacer sequences regulate transcription of ribosomal gene plasmids injected into Xenopus laevis embryos, Cell 34: 989–996

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. H., 1986, Gene Activity in Early Development, 3rd ed., Academic, Orlando.

    Google Scholar 

  • Dawid, I. B., Haynes, S. R., Jamrich, M., Jonas, E., Miyatani, S., Sargent, T., and Winkles, J., 1985, Gene expression in Xenopus embryogenesis.J. Embryol. Exp. Morph. 89(suppl.):113–124.

    Google Scholar 

  • Dolecki, G. J., and Smith, L. D., 1979, Poly(A) + RNA metabolism during oogenesis in Xenopus laevis, Dev. Biol. 69:217–236.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, C., Wang Hui, Y., Wedlich, D., and Hausen, P., 1983, C. C. Wylie, eds.), pp. 329–352, Cambridge University Press, New York.

    Google Scholar 

  • Dumont, J. N., 1972, Oogenesis in Xenopus Jaevis. I. Stages of oocyte development in laboratory maintained animals, J. Morphol. 136:153–179.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, M. B., and Dawid, I. B., 1980, Use of a cloned library for the study of abundant adenylated RNA during Xenopus Iaevis development, Dev. Biol. 76:449–464.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, M. B., Shrutkowski, A., Baumgarten, M., and Dworkin-Rastl, E., 1984, The accumulation of prominent tadpole mRNAs occurs at the beginning of neurulation in Xenopus iaevis embryos, Dev. Biol. 106:289–295.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, M. B., Shrutkowski, A., Dworkin-Rastl, E., 1985, Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis, Proc. Natl. Acad. Sci. USA 82:7636–7640.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin-Rastl, E., Kelley, D. B., and Dworkin, M. B., 1986, Localization of specific mRNA sequences in Xenopus laevis embryos by in situ hybridization, J. Embryoi. Exp. Morphol. 91:153–168.

    CAS  Google Scholar 

  • Edgar, B. A., Kiehle, C. P., and Schubiger, G., 1986, Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development, Cell 44:365–372.

    Article  PubMed  CAS  Google Scholar 

  • Etkin, L. D., and Balcells, S., 1985, Transformed Xenopus embryos as a transient expression system to analyze gene expression at the mid-blastula transition, Dev. Biol. 108:173–178.

    Article  PubMed  CAS  Google Scholar 

  • Etkin, L. D., Pearman, B., Roberts, M., and Bektesh, S., 1984, Replication, integration, and expression of exogenous DNA injected into fertilized eggs of Xenopus laevis, Differentiation 26:194–202.

    Article  PubMed  CAS  Google Scholar 

  • Etkin, L. D., and Pearman, B., and Balcells, S., 1986, Regulation of heterologous genes injected into oocytes and eggs of Xenopus laevis, in: Molecular Genetics of Mammalian Cells (Malacinski, G. ed.), pp. 247–268, Macmillan, New York.

    Google Scholar 

  • Flynn, J. M., and Woodland, H. R., 1980, The synthesis of histone H1 during early amphibian development, Dev. Biol. 75:222–230.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, A., Parisot, R., Newmeyer, D., and DeRobertis, E. M., 1984, Small nuclear U-Ribonucloproteins in Xenopus Iaevis development, J. Mol. Biol. 178:273–285.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, D. J., Kirschner, M. W., and Newport, J. W., 1983, Spontaneous promotion of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs, Cell 34:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, D. J., Kirschner, M. W., Caput, D., Dahlberg, J. E., and Lund, E., 1984, Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis, Cell 38:681–689.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J., 1980, Mechanisms regulating pattern formation in the amphibian egg and early embryo, in: Biological Regulation and Development, Vol. 2 (R. F. Goldberger, ed.), pp. 133–315, Academic, New York.

    Google Scholar 

  • Gerhart, J. C., Wu, M., and Kirschner, M., 1984, Cell cycle dynamics of an M-phase specific cytoplasmic factor in Xenopus Iaevis oocytes and eggs. J. Cell Biol. 98:1247.

    Article  PubMed  CAS  Google Scholar 

  • Golbus, M. S., Calarco, P. G., and Epstein, C. J., 1973, The effects of inhibitors of RNA synthesis (α-amanitin and actinomycin D) on preimplantation mouse embryogenesis, J. Exp. ZooJ. 157:207–216.

    Article  Google Scholar 

  • Gurdon, J. B., Brennan, S., Fairman, S., and Mohun, T., 1984, Transcription of muscle-specific actin genes in early Xenopus development: Nuclear transplantation and cell dissociation, Cell 38:691–700.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J. B., Mohun, T. J., Fairman, S., and Brennan, S., 1985, All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg, Proc. Natl. Acad. Sci. USA 82:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Hara, K., Tydeman, P., and Kirschner, M., 1980, A cytoplasmic clock with the same period as the division cycle in Xenopus eggs, Proc. Natl. Acad. Sci. USA 77:462–466.

    Article  PubMed  CAS  Google Scholar 

  • Holtfreter, J., and Hamburger, V., 1955, Embryogenesis: Progressive Differentiation, in: Analysis of Development (B. Willier, P. Weiss, and V. Hamburger, eds.), pp. 230–296, W. B. Saunders, New York.

    Google Scholar 

  • Jamrich, M., Sargent, T. D., and Dawid, I. B., 1985, Altered morphogenesis and effects of gene activity in Xenopus laevis embryos, Cold Spring Harbor Symp. Quant. Biol. 50:31–36.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, D., Kirschner, M., and Scherson, T., 1987, The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle, Cell 48:399–407.

    Article  PubMed  CAS  Google Scholar 

  • Kobayakawa, Y., and Kubota, H. Y., 1981, Temporal pattern of cleavage and the onset of gastrulation in amphibian embryos developed from eggs with the reduced cytoplasm, J. Embryol. Exp. Morph. 62:83–94.

    PubMed  CAS  Google Scholar 

  • Kreig, P. A., and Melton, D. A., 1985, Developmental regulation of a gastrula specific gene injected into fertilized eggs, EMBO J. 4:3463–3471.

    Google Scholar 

  • Kreig, P., and Melton, D., 1987, An enhancer responsible for activating transcription at the midblastula transition in Xenopus development, Proc. Natl. Acad. Sci. USA 84:2331–2335.

    Article  Google Scholar 

  • Kreig, P. A., Rebagliati, M. R., Weeks, D. L., and Melton, D. A., 1986, Gene activation during Xenopus embryogenesis, in: Gametogenesis and the Early Embryo (J. Gall, ed.), pp. 357–370, Alan R. Liss, New York.

    Google Scholar 

  • Lee, G., Hynes, R., and Kirschner, M., 1984, Temporal and spatial regulation of fibronectin in early Xenopus development, Cell 36:729–740.

    Article  PubMed  CAS  Google Scholar 

  • Masui, Y., and Markert, C., 1971, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, J. Exp. ZooJ. 177:129–140.

    Article  CAS  Google Scholar 

  • Meyerhof, P. G., and Masui, Y., 1979, Chromosome condensation activity in Rana pipiens eggs matured in vivo and in blastomeres arrested by cytostatic factor (CSF), Exp. Cell Res. 123:345.

    Google Scholar 

  • Miake-Lye, R., Newport, J., and Kirschner, M., 1983, Maturation promoting factor induces nuclear envelope breakdown in cycloheximide arrested embryos of Xenopus laevis, J. Cell Biol. 97:81–91.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, B., 1964, Synthetic processes and early development in the mammalian egg, J. Exp. ZooJ. 157:85–100.

    Article  CAS  Google Scholar 

  • Mohun, T., Brownson, S., and Wylie, C. C., 1981, Protein synthesis in interspecies hybrid embryos of the amphibian Xenopus, Exp. Cell. Res. 132:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J., and Kirschner, M., 1982a, A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage, Cell 30:675–686.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J., and Kirschner, M., 1982b, A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription, Cell 30:687–696.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J., and Kirschner, M., 1984, Regulation of the cell cycle during early Xenopus development, Cell 37:731.

    Google Scholar 

  • Newport, J., Spann, T., Kanki, J., and Forbes, D., 1985, The role of mitotic factors in regulating the timing of the midblastula transition in Xenopus, Cold Spring Harbor Symp. Quant. Biol. 50:651–656.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. D., and Faber, J., 1956, Normal tables of Xenopus laevis Daudin, North-Holland, Amsterdam.

    Google Scholar 

  • Perlman, S., and Rosbash, M., 1978, Analysis of Xenopus laevis ovary and somatic cell polyadenylated RNA by molecular hybridization, Dev. Biol. 63:197–212.

    Article  PubMed  CAS  Google Scholar 

  • Reynhout, J. K., and Smith, L. D., 1974, Studies on the appearance of a maturation inducing factor in the cytoplasm of amphibian oocytes exposed to progesterone, Dev. Biol. 38:394–400.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman, J. V., Woodland, H. R., and Sturgess, E. A., 1979, Modulation of histone messenger RNA during the early development of Xenopus laevis, Dev. Biol. 71:71–82.

    Article  PubMed  CAS  Google Scholar 

  • Rusconi, S., and Shaffner, W., 1981, Transformation of frog embryos with a rabbit beta globin gene, Proc. Natl. Acad. Sci. USA 78:5051–5055.

    Article  PubMed  CAS  Google Scholar 

  • Sagata, N., Shiokawa, K., and Yamana, K., 1980, A study of the steady-state population of poly(A)+ RNA during early development of Xenopus laevis, Dev. Biol. 77:431–448.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, T. D., and Dawid, I. B., 1983, Differential gene expression in the gastrula of Xenopus laevis, Science 222:135–139.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, T. D., Jamrich, ML, and Dawid, I. B., 1986, Cell interactions and control of gene activity during early development of Xenopus laevis, Dev. Biol. 114:238–246.

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa, K., Tashiro, K., Misumi, Y., and Yamana, K., 1981, Non-coordinated synthesis of RNAs in pre-gastrular embryos of Xenopus laevis, Dev. Growth Diff. 23:589–597.

    Article  CAS  Google Scholar 

  • Shiokawa, K., Kawazoe, Y., and Yamana, K., 1985, Demonstration that inhibitor of rRNA synthesis in “charcoal-extracts” of Xenopus embryos is artifactually produced ammonium Perchlorate, Dev. Biol. 112:258–260.

    Article  CAS  Google Scholar 

  • Shiokawa, K., Kawazoe, Y., Nomura, H., Miura, T., Nakakura, N., Horiuchi, T., and Yamana, K., 1986, Ammonium ion as a possible regulator of the commencement of rRNA synthesis in Xenopus laevis embryogenesis, Dev. Biol. 115:380–391.

    Article  PubMed  CAS  Google Scholar 

  • Signoret, J., and Lefresne. J., 1971, Contribution à l’étude de la segmentation de l’oeuf d’axolotl. I. Definition de la transition blastuleene, Ann. Embryol. Morphogen. 4:113–123.

    Google Scholar 

  • Smith, L. D., Michael, P., and Williams, M. A., 1983, Does a predetermined germ line exist in amphibians?, in: Current Problems in Germ Cell Differentiation (A. McLaren and C. Wylie, eds.), pp. 19–40, Cambridge University Press, London.

    Google Scholar 

  • Smith, L. D., and Richter, J. D., 1985, Synthesis, accumulation, and utilization of maternal macromolecules during oogenesis and oocyte maturation, in: Biology of Fertilization (A. Monroy and C. Metz, eds.), pp. 141–160, Academic Press, New York.

    Google Scholar 

  • Smith, R. C., 1986, Protein synthesis and messenger RNA levels along the animal-vegetal axis during early Xenopus development, J. Embryol. Exp. Morphol. 95:15–35.

    PubMed  CAS  Google Scholar 

  • Spemann, H., 1938, Embryonic Development and Induction, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Stick, R., and Hausen, P., 1985, Changes in the nuclear lamina composition during early development of Xenopus laevis, Cell 41:191–200.

    Article  PubMed  CAS  Google Scholar 

  • Weeks, D. L. and Melton, D. A., 1987, A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGFβ, Cell 51:861–867.

    Article  PubMed  CAS  Google Scholar 

  • Woodland, H. R., 1974, Changes in the polysome content of developing Xenopus laevis embryos, Dev. Biol. 40:90.

    Google Scholar 

  • Woodland, H. R., and Gurdon, J. B., 1968, The relative rates of synthesis of DNA, sRNA, and rRNA in the endodermal region and other parts of Xenopus laevis embryos, J. Embryol. Exp. Morphol. 19:363.

    Google Scholar 

  • Woodland, H. R., Flynn, J. M., and Wylie, A. J., 1979, Utilization of stored mRNA in Xenopus embryos and its replacement by newly synthesized transcripts: Histone H1 synthesis using interspecies hybrids, Cell 18:165–171.

    Article  PubMed  CAS  Google Scholar 

  • Wormington, M. W., and Brown, D. D., 1983, Onset of 5 sRNA gene regulation during Xenopus embryogenesis, Dev. Biol. 99:248–257.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M., and J. G. Gerhart, 1980, Partial purification and characterization of maturation promoting factor from eggs of Xenopus laevis, Dev. Biol. 79:465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Etkin, L.D. (1988). Regulation of the Mid-Blastula Transition in Amphibians. In: Browder, L.W. (eds) The Molecular Biology of Cell Determination and Cell Differentiation. Developmental Biology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6817-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6817-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6819-3

  • Online ISBN: 978-1-4615-6817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics