Skip to main content

Cellular Interactions in Establishment of Regional Patterns of Cell Fate during Development

  • Chapter
Book cover The Molecular Biology of Cell Determination and Cell Differentiation

Part of the book series: Developmental Biology ((DEBO,volume 5))

  • 229 Accesses

Abstract

The central problem in developmental biology remains: How does the fertilized egg develop into an embryo with the correct spatial pattern of cellular differentiation? Two general solutions to this problem have been proposed. The first involves cytoplasmic localization, wherein specific determinants are physically localized within the egg cell and differentially inherited by the cleavage products. Thus, cells that inherit a muscle cell determinant would form muscle, whereas those that inherit the neuroplasm would form nervous tissue. Organisms that use cytoplasmic localization as the major mechanism for specification of cell fate are relatively few, with ascidians being perhaps the best example (see Chapter 1). Most species therefore make use of a mechanism involving a sequence of inductive interactions, in which the generation of new cell types results from interactions between two existing cell types. This process requires that an initial polarity, or asymmetry, be present in the fertilized egg or imposed on the embryo by its environment. This asymmetry might occur as a cytoplasmic localization, but it need not be as specific as the ascidian system, which specifies individual cell types; it would be sufficient, for example, to imagine a gradient of a substance the high point of which defines the prospective dorsal side of the egg and whose minimum value defines the ventral side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R. M., Phillips, C. R., and Wessells, N. K., 1986, Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo, Science 231:613–616.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K. V., and Nusslein-Volhard, C., 1984, Information for the dorso-ventral pattern of the Drosophila embryo is stored as maternal mRNA, Nature (Lond.) 311:223–227.

    Article  CAS  Google Scholar 

  • Asashima, M., and Grunz, H., 1983, Effects of inducers on inner and outer gastrula and ectoderm layers of Xenopus laevis, Differentiation 23:206–212.

    Article  PubMed  CAS  Google Scholar 

  • Azar, Y., and Eyal-Giladi, H., 1981, Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast-rotation experiments, J. Embryol. Exp. Morphol. 61:133–144

    Google Scholar 

  • Balak, K., Jacobson, M., Sunshine, J., and Rutishauser, U., 1987, Neural cell adhesion molecule expression in Xenopus embryos.Dev. Biol. 119:540–550.

    Article  PubMed  CAS  Google Scholar 

  • Banville, D., and Williams, J. G., 1985, Developmental changes in the pattern of larval β-globin gene expression in Xenopus laevis. Identification of two early larval β-globin mRNA sequences. J. Mol. Biol 184:611–620.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, A. E., and Hunter, W. M., 1973, The labelling of proteins to high specific activities by conjugation to a 125I-containing acylating agent, Biochem. J. 133:529–539.

    PubMed  CAS  Google Scholar 

  • Born, J., Davids, M., and Tiedemann, H., 1987, Affinity chromatography of embryonic inducing factors on heparin-Sepharose, Cell Diff. 21:131–136.

    Article  CAS  Google Scholar 

  • Born, J., Geithe, H. P., Tiedemann, H., Tiedemann, H., and Kocher-Becker, U., 1972, Isolation of a vegetalizing inducing factor, Biol. Chem. Hoppe-Seyler 353:1075–1084.

    Article  CAS  Google Scholar 

  • Boterenbrood, E. C., and Nieuwkoop, P. D., 1973, The formation of the mesoderm in urodelean amphibians. V. Its regional induction by the endoderm, Roux Arch. 173:319–332.

    Article  Google Scholar 

  • Brun, R. B., and Garson, J. A., 1984, Notochord formation in the Mexican Salamander (Ambystoma mexicanum) is different from notochord formation in Xenopus laevis, J. Exp. Zool. 229:235–240.

    Article  Google Scholar 

  • Capco, D. G., 1982, The spatial pattern of RNA in fully grown oocytes of an amphibian, Xenopus laevis, J. Exp. Zool. 219:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Capco, D. G., and Jäckie, H., 1982, Localized protein synthesis during oogenesis of Xenopus laevis—Analysis by in situ translation, Dev. Biol. 94:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Capco, D. G., and Jeffery, W. R., 1982, Transient localizations of messenger RNA in Xenopus laevis oocytes, Dev. Biol. 89:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. D., and Klein, W. H., 1982, A gradient of poly(A)+ RNA sequences in Xenopus laevis eggs and embryos, Dev. Biol. 91:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco, A. E., and Malacinski, G. M., 1987, Localization of Xenopus homoeo-box gene transcripts during embryogenesis and in the adult nervous system, Dev. Biol. 121:69–81.

    Article  PubMed  CAS  Google Scholar 

  • Cleine, J. H., and Slack, J. M. W., 1985, Normal fates and states of specification of different regions in the axolotl gastrula, J. Embryol. Exp. Morphol. 86:247–269.

    PubMed  CAS  Google Scholar 

  • Cooke, J., 1973, Morphogenesis and regulation in spite of continued mitotic inhibition in Xenopus embryos. Nature 242:55–57.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J., 1979, Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment and control of the cell cycle, during mesoderm formation, J. Embryol. Exp. Morphol. 53:269–289.

    PubMed  CAS  Google Scholar 

  • Cooke, J., and Smith, J. C., 1987, The mid-blastula cell cycle transition, and the character of the mesoderm, in UV-induced non-axial Xenopus development, Development 99:197–210.

    PubMed  CAS  Google Scholar 

  • Cooke, J., and Webber, J. A., 1985, Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorso-anterior and of posterior blastomere pairs, isolated at the 4-cell stage, J. Embryol. Exp. Morphol. 88:85–112.

    PubMed  CAS  Google Scholar 

  • Dale, L., and Slack, J. M. W., 1987a, Fate map for the 32-cell stage of Xenopus laevis, Development 99:527–551.

    PubMed  CAS  Google Scholar 

  • Dale, L., and Slack, J. M. W., 1987b, Regional specification within the mesoderm of early embryos of Xenopus laevis, Development 100:279–295.

    PubMed  CAS  Google Scholar 

  • Dale, L., Smith, J. C., and Slack, J. M. W., 1985, Mesoderm induction in Xenopus laevis: A quantitative study using a cell lineage label and tissue-specific antibodies, J. Embryoi. Exp. Morphol. 89:289–312.

    CAS  Google Scholar 

  • Dworkin-Rastl, E., Kelley, D. B., and Dworkin, M. B., 1986, Localization of specific mRNA sequences in Xenopus laevis embryos by in situ hybridization, J. Embryoi. Exp. Morphol. 91:153–168.

    CAS  Google Scholar 

  • Eyal-Giladi, H., 1984, The gradual establishment of cell commitments during the early stages of chick development, Cell Diff. 14:245–255.

    Article  CAS  Google Scholar 

  • Faulhaber, I., 1972, Die Induktionsleistung subcellularer Fraktion aus der Gastrula von Xenopus laevis, Roux Arch. 171:87–103.

    Article  Google Scholar 

  • Faulhaber, I., and Lyra, L., 1974, Ein Vergleich der Induktionsfahigkeit von Hullenmaterial der Dotterplattchen—und der Microsomenfraktion aus Furchungs—sowie Gastrula—und Neu-rulastadien des Krallenfrosches Xenopus iaevis, Roux Arch. 176:151–157.

    Article  Google Scholar 

  • Gallera, J., 1971, Primary induction in birds, Adv. Morph. 9:149–180.

    CAS  Google Scholar 

  • Geithe, H. P., Asashima, M., Asahi, K-L, Born, J., Tiedemann, H., and Tiedemann, H., 1981, A vegetalizing inducing factor. Isolation and chemical properties, Biochem. Biophys. Acta 676:350–356.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J. C., 1980, Mechanisms regulating pattern formation in the amphibian egg and early embryo, in: Biochemical Reguiation and Deveiopment, Vol. 2, (R. F. Goldberger, ed.), pp. 133–293, Plenum, New York.

    Google Scholar 

  • Gerhart, J., Ubbels, G., Black, S., Hara, K., and Kirschner, M., 1981, A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis, Nature (Lond.) 292:511–516.

    Article  CAS  Google Scholar 

  • Gimlich, R. L., and Braun, J., 1985, Improved fluorescent compounds for tracing cell lineage, Dev. Biol. 109:509–514.

    Article  PubMed  CAS  Google Scholar 

  • Gimlich, R. L., and Cooke, J., 1983, Cell lineage and the induction of second nervous systems in amphibian development. Nature (Lond.) 306:471–473.

    Article  CAS  Google Scholar 

  • Gimlich, R. L., and Gerhart, J. C., 1984, Early cellular interactions promote embryonic axis formation in Xenopus laevis, Dev. Biol. 104:117–130.

    Article  PubMed  CAS  Google Scholar 

  • Grunz, H., 1983, Changes in the differentiation pattern of Xenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor, Roux Arch. 192:130–137.

    Article  Google Scholar 

  • Gurdon, J. B., 1987, Embryonic induction—molecular prospects, Deveiopment 99:285–306.

    CAS  Google Scholar 

  • Gurdon, J. B., Brennan, S., Fairman, S., and Mohun, T. J., 1984, Transcription of muscle-specific actin genes in early Xenopus development: Nuclear transplantation and cell dissociation, Cell 38:691–700.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J. B., Fairman, S., Mohun, T. J., and Brennan, S., 1985a, The activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula, Cell 41:913–922.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J. B., and Fairman, S., 1986, Muscle gene activation by induction and the nonrequirement for cell division. J. Embryol. Exp. Morphoi. 97(suppl.):75–84.

    Google Scholar 

  • Gurdon, J. B., Mohun, T. J., Fairman, S., and Brennan, S., 1985b, All components required for the eventual activation of muscle-specific actin genes are localized in the sub-equatorial region of an uncleaved amphibian egg, Proc. Natl. Acad. Sci. USA 82:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Heasman, J., Wylie, C. C., Hausen, P., and Smith, J. C., 1984, Fates and states of determination of single vegetal pole blastomeres of X. laevis, Cell 37:185–194.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, G., and Jacobson, M., 1979, Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages, Dev. Biol. 71:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Holtfreter, J., 1933, Die totale Exogastrulation, eine Selbstablosung des Ektoderms von Ento-mesoderm, Roux Arch. 129:699–793.

    Article  Google Scholar 

  • Hopkins, C. R., and Hughes, R. C. (eds.), 1985, Growth Factors: Structure and Function, J. Cell Sci. (Suppl. 3).

    Google Scholar 

  • Hornbruch, A., Summerbell, D., and Wolpert, L., 1979, Somite formation in the early chick embryo following grafts of Hensen’s node, J. Embryol. Exp. Morphol. 51:51–62.

    PubMed  CAS  Google Scholar 

  • Jacobson, M., 1982, Origins of the nervous system in amphibians, in: Neuronal Development (N. C. Spitzer, ed.), pp. 45–99, Plenum, New York.

    Google Scholar 

  • Jacobson, M., 1983, Clonal organization of the central nervous system of the frog. III. clones stemming from individual blastomeres of the 128-, 256-, and 512-cell stages, J. Neurosci. 3:1019–1038.

    PubMed  CAS  Google Scholar 

  • Jacobson, M., 1984, Cell lineage analysis of neural induction: Origins of cells forming the induced nervous system, Dev. Biol. 102:122–129.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., and Hirose, G., 1978, Origin of the retina from both sides of the embryonic brain: A contribution to the problem of crossing at the optic chiasma, Science 202:637–639.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., and Hirose, G., 1981, Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32-and 64-cell stages, J. Neurosci. 1:271–284.

    PubMed  CAS  Google Scholar 

  • Jacobson, M., and Rutishauser, U., 1986, Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos, Dev. Biol. 116:524–531.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. A., 1985, Epidermal development in Xenopus Jaevis: The definition of a monoclonal antibody to an epidermal marker, J. Embryol. Exp. Morphoi. 89(suppl.):155–166.

    Google Scholar 

  • Jones, E. A., and Woodland, H. R., 1986, Development of the ectoderm in Xenopus: Tissue specification and the role of cell association and division, Cell 44:345–355.

    Article  PubMed  CAS  Google Scholar 

  • Kageura, H., and Yamana, K., 1983, Pattern regulation in isolated halves and blastomeres of early Xenopus laevis, J. Embryol. Exp. Morphoi. 74:221–234.

    CAS  Google Scholar 

  • Kageura, H., and Yamana, K., 1984, Pattern regulation in defect embryos of Xenopus laevis, Dev. Biol. 101:410–415.

    Article  PubMed  CAS  Google Scholar 

  • Katz, M. J., Lasek, R. J., Osdoby, P., Whittaker, J. R., and Caplan, A. I., 1982, Bolton-Hunter reagent as a vital stain for developing systems, Dev. Biol. 90:419–429.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, I., 1976, Fish swimbladder: An excellent mesodermal inductor in primary embryonic induction, J. Embryol. Exp. Morphol. 36:315–320.

    PubMed  CAS  Google Scholar 

  • Keller, R. E., 1975, Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer, Dev. Biol. 42:222–241.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R. E., 1976, Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer, Dev. Biol. 51:118–137.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R. E., 1986, The cellular basis of amphibian gastrulation, in: Developmental Biology: A Comprehensive Synthesis, Vol. 2 (L. Browder, ed.), pp. 241–327, Plenum, New York.

    Google Scholar 

  • Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J., 1985, The function and mechanism of convergent extension during gastrulation of Xenopus Jaevis, J. Embryol. Exp. Morph. 89 (suppl.):185–209.

    PubMed  Google Scholar 

  • Kimelman, D. and Kirschner, M., 1987, Synergistic induction of mesoderm by FGP and TGF-α and the identification of an mRNA coding for FGF in the early Xenopus embryo, Cell 51:869–877.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, D., Kirschner, M., and Scherson, T., 1987, The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle, Cell 48:399–407.

    Article  PubMed  CAS  Google Scholar 

  • King, M. L., and Barklis, E., 1985, Regional distribution of maternal messenger RNA in the amphibian oocyte, Dev. Biol. 112:203–212.

    Article  CAS  Google Scholar 

  • Kintner, C. R., and Brockes, J. P., 1984, Monoclonal antibodies identify blastemal cells derived from dedifferentiating muscle in newt limb regeneration, Nature (Lond.) 308:67–69.

    Article  CAS  Google Scholar 

  • Kintner, C. R., and Melton, D. A., 1987, Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction, Development 99:311–325.

    PubMed  CAS  Google Scholar 

  • Le Douarin, N., 1973, A biological cell labelling technique and its use in experimental embryology, Dev. Biol. 30:217–222.

    Article  PubMed  Google Scholar 

  • McLaren, A., 1976, Discussion, in: Embryogenesis in Mammals (CIBA Foundation Symposium 40, new series), pp. 103–104, Elsevier/North-Holland Biomedical, Amsterdam.

    Google Scholar 

  • Malacinski, G. M., and Youn, B. W., 1982, The structure of the amphibian notochord and a reevaluation of its presumed role in early embryogenesis, Differentiation 21:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Mangold, O., 1933, Uber die Induktions—Fähigkeit der verschiedened Bezirke der Neurula von Urodelen, Naturwissenschaften 21:761–766.

    Article  Google Scholar 

  • Mangold, O., and Spemann, H., 1927, Uber Induktion von Medullarplatte durch Medullarplatte im jungeren Keim, ein Beispiel homoeogenetischer oder assimilatorische Induktion, Roux Arch. 111:341–422.

    Article  Google Scholar 

  • Moen, T. L., and Namenwirth, M., 1977, The distribution of soluble proteins along the animalvegetal axis of frog eggs, Dev. Biol. 58:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Mohun, T. J., Garrett, N., and Gurdon, J. B., 1986, Upstream sequences required for tissue-specific activation of the cardiac actin gene in Xenopus laevis embryos, EMBO J. 5:3185–3193.

    PubMed  CAS  Google Scholar 

  • Mohun, T. J., Brennan, S., Dathan, N., Fairman, S., and Gurdon, J. B., 1984, Cell type-specific activation of actin genes in the early amphibian embryo, Nature (Lond.) 311:716–721.

    Article  CAS  Google Scholar 

  • Nakamura, O., 1978, Epigenetic formation of the organizer, in: Organizer—A Milestone of a Half-Century from Spemann (O. Nakamura and S. Toivonen, eds.), pp. 179–220, Elsevier/North-Holland Biomedical, Amsterdam.

    Google Scholar 

  • Nakamura, O., Takasaki, H., and Mizohata, T., 1970, Differentiation during cleavage in Xenopus laevis. I. Acquisition of self-differentiation capacity of the dorsal marginal zone, Proc. Jpn Acad. 46:694–699.

    Google Scholar 

  • Newport, J., and Kirschner, M., 1982, A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage, Cell 30:675–686.

    Article  PubMed  CAS  Google Scholar 

  • Nicolet, G., 1970, Analyse autoradiographique de 1a destination des cellules invaginäes an niveau du noeud de Hensen de la ligne primitive acheväe de l’embryon de poulet, J. Embryol. Exp. Morphol. 23:79–108.

    Google Scholar 

  • Nieuwkoop, P. D., 1952c, Activation and organization of the central nervous system in amphibians. III. Synthesis of a new working hypothesis, J. Exp. Zool. 120:83–108.

    Article  Google Scholar 

  • Nieuwkoop, P. D., 1969, The formation of mesoderm in Urodelean amphibians. I. Induction by the endoderm, Roux Arch. 162:341–373.

    Article  Google Scholar 

  • Nieuwkoop, P. D., 1973, The “organization centre” of the amphibian embryo, its origin, spatial organization and morphogenetic action, Adv. Morph. 10:1–39.

    CAS  Google Scholar 

  • Nieuwkoop, P. D., and Ubbels, G. A., 1972, The formation of mesoderm in Urodelean amphibians. IV. Quantitative evidence for the purely “ectodermal” origin of the entire mesoderm and of the pharyngeal endoderm, Roux Arch. 169:185–199.

    Article  Google Scholar 

  • Nieuwkoop, P. D., and others, 1952a, Activation and organization of the central nervous system in amphibians. I. Induction and activation, J. Exp. Zool. 120:1–31.

    Article  Google Scholar 

  • Nieuwkoop, P. D., and others, 1952b, Activation and organization of the central nervous system in amphibians. II. Differentiation and organization, J. Exp. Zool. 120:33–81.

    Article  Google Scholar 

  • Nieuwkoop, P. D., Johnen, A. G., and Albers, B., 1985. The Epigenetic Nature of Early Chordate Development, Cambridge University Press, Cambridge.

    Google Scholar 

  • Pasteeis, J., 1942, New observations concerning the maps of presumptive areas of the young amphibian gastrula (Amblystoma and Discoglossus),J. Exp. Zool. 89:255–281.

    Article  Google Scholar 

  • Pasteeis, J., 1949, Observations sur la localisation de la plaque prechordele et l’entoblaste presomptifs au cours de la gastrulation chez Xenopus laevis, Arch. Biol. (Liege) 60:235–250.

    Google Scholar 

  • Phillips, C. R., 1982, The regional distribution of poly(A) and total RNA concentrations during early Xenopus development, J. Exp. Zool. 223:265–275.

    Article  PubMed  CAS  Google Scholar 

  • Pudney, M., Varma, M. G. R., and Leake, C. J., 1973, Establishment of a cell line (XTC-2) from the South African clawed toad, Xenopus laevis, Experientia 29:466–467.

    Article  CAS  Google Scholar 

  • Rebagliati, M. R., Weeks, D. L., Harvey, R. P., and Melton, D. A., 1985, Identification and cloning of localized maternal RNAs from Xenopus eggs, Cell 42:769–777.

    Article  PubMed  CAS  Google Scholar 

  • Recanzone, G., and Harris, W. A., 1985, Demonstration of neural induction using nuclear markers in Xenopus, Roux Arch. 194:344–345.

    Article  Google Scholar 

  • Sargent, T. D., Jamrich, M., and Dawid, I. B., 1986, Cell interactions and the control of gene activity during early development of Xenopus laevis, Dev. Biol. 114:238–246.

    Article  PubMed  CAS  Google Scholar 

  • Saxen, L., and Toivonen, S., 1958, The dependence of the embryonic induction action of HeLa cells on their growth media, J. Embryol. Exp. Morphol. 6:616–633.

    PubMed  CAS  Google Scholar 

  • Saxen, L., and Toivonen, S., 1962, Primary Embryonic Induction, Logos, London.

    Google Scholar 

  • Scharf, S. R., and Gerhart, J. C., 1980, Determination of the dorsal—ventral axis in eggs of Xenopus laevis: Complete rescue of UV-impaired eggs by oblique orientation before first cleavage, Dev. Biol. 79:181–198.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, S. R., and Gerhart, J. C., 1983, Axis determination in eggs of Xenopus Jaevis: A critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation, Dev. Biol 99:75–87.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, W., Tiedemann, H., and Tiedemann, H., 1981, High performance gel permeation of proteins, Mol. Biol. Rep. 8:7–10.

    Article  Google Scholar 

  • Sirlin, J. L., 1956, Tracing morphogenetic movements by means of labelled cells, Roux Arch. 148:489–493.

    Article  Google Scholar 

  • Slack, C., and Warner, A., 1973, Intracellular and intercellular potentials in the early amphibian embryo, J. Physiol. (Lond.) 232:313–330.

    CAS  Google Scholar 

  • Slack, J. M. W., 1983, From Egg to Embryo, Cambridge University Press, Cambridge.

    Google Scholar 

  • Slack, J. M. W., 1985, Peanut lectin receptors in the early amphibian embryo: Regional markers for the study of embryonic induction, Cell 41:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J. M. W., and Forman, D., 1980, An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos, J. Embryol. Exp. Morphol. 56:283–299.

    PubMed  CAS  Google Scholar 

  • Slack, J. M. W., Dale, L., and Smith, J. C., 1984, Analysis of embryonic induction by using cell lineage markers, Philos. Trans. R. Soc. Lond. (Biol.) 307:331–336.

    Article  CAS  Google Scholar 

  • Slack, J. M. W., Cleine, J. H., and Smith, J. C., 1985, Regional specificity of glycoconjugates in Xenopus and axolotl embryos, J. Embryol. Exp. Morphol. 89(suppl.):137–153.

    PubMed  Google Scholar 

  • Slack, J. M. W., Darlington, B. G., Heath, J. K., and Godsave, S. F., 1987, Mesoderm induction in early Xenopus embryos by heparin-binding growth factors, Nature (Lond.) 326:197–200.

    Article  CAS  Google Scholar 

  • Smith, J. C., 1985, Mechanisms of pattern formation in the early amphibian embryo, Sci. Prog. 69:511–532.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., 1987, A mesoderm-inducing factor is produced by a Xenopus cell line, Development 99:3–14.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., and Malacinski, G. M., 1983, The origin of the mesoderm in an anuran, Xenopus laevis and a urodele, Ambystoma mexicanum, Dev. Biol. 98:250–254.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. C., and Slack, J. M. W., 1983, Dorsalization and neural induction: properties of the organizer in Xenopus laevis, J. Embryol. Exp. Morphol. 78:299–317.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., and Watt, F. M., 1985, Biochemical specificity of Xenopus notochord, Differentiation 29:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. C., Dale, L., and Slack, J. M. W., 1985, Cell lineage labels and region-specific markers in the analysis of inductive interactions, J. Embryol. Exp. Morphol. 89(suppl.):317–331.

    PubMed  Google Scholar 

  • Smith, L. J., 1980, Embryonic axis orientation in the mouse and its correlation with blastocyst relationships to the uterus. I. Relationships between 82 hours and 4.25 days, J. Embryol. Exp. Morphol. 55:257–277.

    PubMed  CAS  Google Scholar 

  • Smith, L. J., 1985, Embryonic axis orientation in the mouse and its correlation with blastocyst relationships to the uterus. II. Relationships from 4.25 to 9.5 days, J. Embryol. Exp. Morphol. 89:15–35.

    PubMed  CAS  Google Scholar 

  • Spemann, H., 1938, Embryonic Development and Induction, reprinted in 1967 by Hafner, New York.

    Google Scholar 

  • Spemann, H., and Mangold, H., 1924, Uber Induktion von Embryonenanlagen durch Implantation artfremder Organisatoren, Roux Arch. 100:599–638.

    Google Scholar 

  • Stiles, C. D., 1983, The molecular biology of platelet-derived growth factor, Cell 33:653–655.

    Article  PubMed  CAS  Google Scholar 

  • Sudarwati, S., and Nieuwkoop, P. D., 1971, Mesoderm formation in the Anuran Xenopus laevis (Daudin), Roux Arch. 166:189–204.

    Article  Google Scholar 

  • Symes, K., and Smith, J. C., 1987, Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis, Development, 101:339–349.

    Google Scholar 

  • Tarin, D., 1971, Histological features of neural induction in Xenopus Iaevis, J. Embryol. Exp. Morphol. 26:543–570.

    PubMed  CAS  Google Scholar 

  • Tiedemann, H., and Tiedemann, H., 1959, Versuche zur Gewinnung eines mesodermalen Induktionsstoffes aus Huhnerembryoen, Biol. Chem. Hoppe-Seyler 314:156–176.

    Article  CAS  Google Scholar 

  • Toivonen, S., 1953, Bone-marrow of the guinea-pig as a mesodermal inductor in implantation experiments with embryos of Triturus, J. Embryol. Exp. Morphol. 1:97–104.

    Google Scholar 

  • Ubbels, G. A., Hara, K., Koster, C. H., and Kirschner, M., 1983, Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus iaevis eggs, J. Embryoi. Exp. Morphol. 77:15–37.

    CAS  Google Scholar 

  • Vincent, J-P., Oster, G. F., and Gerhart, J. C., 1986, Kinematics of gray crescent formation in Xenopus eggs: The displacement of subcortical cytoplasm relative to the egg surface, Dev. Biol. 113:484–500.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, W., 1929, Gestaltunganalyse am Amphibienkeim mit ortlicher Vitalfarbung. II. Teil. Gastrulation und Mesodermbildung bei Urodelen und Anuren, Roux Arch. 120:384–706.

    Article  Google Scholar 

  • Waddington, C. H., 1932, Experiments on the development of chick and duck embryos cultivated in vitro, Philos. Trans. Roy. Soc. Lond. Biol. 221:179–230.

    Article  Google Scholar 

  • Waddington, C. H., 1933, Induction by the endoderm in birds, Roux Arch. 128:502–521.

    Article  Google Scholar 

  • Weeks, D. L. and Melton, D. A., 1987, A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGFβ, Cell 51:861–867.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C., Cross, G. S., and Woodland, H. R., 1986, Tissue specific expression of actin genes injected into Xenopus embryos, Cell 47:589–599.

    Article  PubMed  CAS  Google Scholar 

  • Wylie, C. C., Brown, D., Godsave, S. F., Quarmby, J., and Heasman, J., 1985, The cytoskeleton of Xenopus oocytes and its role in development, J. Embryol. Exp. Morphol. 89(suppl.):l–15.

    Google Scholar 

  • Yamada, T., 1958, Embryonic induction, in: A Symposium on Chemical Basis of Development (W. McElroy and B. Glass, eds.), pp. 217–238, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Yamada, T., and Takata, K., 1961, A technique for testing macromolecular samples in solution for morphogenetic effects on the isolated ectoderm of the amphibian gastrula, Dev. Biol. 3:411–423.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Smith, J.C. (1988). Cellular Interactions in Establishment of Regional Patterns of Cell Fate during Development. In: Browder, L.W. (eds) The Molecular Biology of Cell Determination and Cell Differentiation. Developmental Biology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6817-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6817-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6819-3

  • Online ISBN: 978-1-4615-6817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics