Skip to main content

Modeling the Viscoelastic Behavior of SBS Block Copolymer Solids

  • Chapter
Contemporary Topics in Polymer Science

Abstract

Thermodynamic models for the microphase separation of block copolymers have evolved much further in the past decade than have rheological models for interpreting mechanical property data on these materials. Early thermodynamic theories were designed as two-phase models (1–6), so that diblock AB or triblock ABA was represented as having microphases of pure A and pure B with a sharp interface between. A major advance was the recognition (7) that a third region, an interphase of intermediate composition, must contribute importantly in a system having such small phase dimensions (Fig. 1). Incorporation of this concept in thermodynamic models (7–10) has been quite successful, in terms of predicting microstructural geometries and microphase separation temperatures Ts which have been verified by experiment (e.g., 11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Meier, J. Polym. Sci. C., 26, 81 (1969).

    Google Scholar 

  2. S. Krause, J. Polym. Sci. A-2, 7, 249 (1969); Macromolecules, 3, 84 (1970).

    CAS  Google Scholar 

  3. V. Bianchi, E. Pedemonte, and A. Torturro, J. Polym. Sci., Part B, 7, 785 (1969).

    Article  CAS  Google Scholar 

  4. L. Marker, Polym. repr., Amer. Chem. Soe., Div. Polym. Chem., 10, 524 (1969).

    CAS  Google Scholar 

  5. D. G. LeGrand, ibid., 11, 434 (1970).

    Google Scholar 

  6. T. Inoue, T. Soen, T. Hashimoto, and H. Kawai, J. Polym. Sci., Part A-2, 7, 1283 (1970); Maeromoleeules, 3, 87 (1970).

    Article  Google Scholar 

  7. D. F. Leary and M. C. Williams, J. Polym. Sci., Part B, 8, 335 (1970).

    CAS  Google Scholar 

  8. D. F. Leary and M. C. Williams, J. Polym. Sci., Polym. Phys. Ed., 11, 345 (1973).

    CAS  Google Scholar 

  9. E. Helfand and Z. R. Wasserman, Polym. Eng. Sci. 17, 582 (1977).

    Article  CAS  Google Scholar 

  10. D. J. Meier, Proe. Polym. Colloq., Kyoto, Japan, Sept. 1977.

    Google Scholar 

  11. D. F. Leary and M. C. Williams, J. Polym. Sci., Phys. Ed., 12, 265 (1974).

    Article  Google Scholar 

  12. M. Shen, E. H. Cirlin, and D. H. Kaelble, in “Colloidal and Morphologieal Behavior of Bloek and Graft Copolymers”, G. E. Molau, Ed., Plenum Press, New York 1971; p. 307. Also, Polymer Letters, S, 149 (1970).

    Chapter  Google Scholar 

  13. G. Kraus and K. W. Rollmann, J. Polym. Sci., Polym. Phys. Ed., 14, 1133 (1976).

    Google Scholar 

  14. J. Diamant, Ph.D. thesis. University of California, Berkeley (1981).

    Google Scholar 

  15. A. E. Skoulios, in “Block and Graft Copolymers”, J. J. Burke and V. Weiss, Eds., Syracuse Univ. Press, Syracuse, NY, 1973.

    Google Scholar 

  16. G. E. Wardell, V. J. McBriety and D. C. Douglass, J. Appl. Phys. 45, 3441 (1974).

    Article  CAS  Google Scholar 

  17. R. A. Assink and G. L. Wilkes, Polym. Eng. Sci. 17, 606 (1977).

    Article  CAS  Google Scholar 

  18. S. Krause, Macromolecules, 11, 1288 (1978).

    Article  CAS  Google Scholar 

  19. R. Seguela and J. Prud’homme, Macromolecules, 11, 1007 (1978).

    Article  CAS  Google Scholar 

  20. N. K. Kalfoglou, J. Appl. Polym. Sci., 23, 2385 (1979).

    Article  CAS  Google Scholar 

  21. T. Hashimoto, A. Todo, H. Itoi, and H. Kawai, Macro molecules, 10, 377 (1977).

    Article  CAS  Google Scholar 

  22. C. P. Henderson and M. C. Williams, Polymer Preprints, 21 (#2), 249 (1980). Also, full manuscript in preparation.

    CAS  Google Scholar 

  23. C. P. Henderson and M. C. Williams, J. Polym. Sci. (Letters), 12, 257 (1979).

    Article  Google Scholar 

  24. E. H. Kerner, Proe. Phys. Soe. B69, 808 (1956).

    Google Scholar 

  25. J. C. Halpin, J. Compos. Mater. 3, 732 (1969).

    Google Scholar 

  26. J. E. Ashton, J. C. Halpin, and P. H. Petit, “Primer on Composite Analysis,” Chap. 5, Technomic Publishing Co., Stamford, Conn., 1969.

    Google Scholar 

  27. S. W. Tsai, “Formulas for the Elastic Properties of Fiber-Reinforced Composites,” U.S. Dept. of Commerce Report AD834851 (1968).

    Google Scholar 

  28. M. Takayanagi, Proe. 4th Internat. Congress Rheol., Part 1, Interscience, NY, 1965, p. 161.

    Google Scholar 

  29. R. A. Dickie, J. Appl. Polym. Sci. 17, 45 (1973).

    Article  CAS  Google Scholar 

  30. R. M. Christensen, J. Mech. Phys. Solids., 17, 23 (1968).

    Article  Google Scholar 

  31. L. E. Nielsen, Rheol. Acta, 13, 86 (1974).

    Article  Google Scholar 

  32. J. Diamant, D. S. Soong, and M. C. Williams, ANTEC Proceedings, Meeting of Soc. Plastics Engineers, Boston, May 1981. Manuscript to follow.

    Google Scholar 

  33. R. J. Angelo, R. M. Ikeda and M. L. Wallach, Polymer 6, 141 (1965).

    Article  CAS  Google Scholar 

  34. S. J. Stadnicki and J. K. Gillham, J. Appl. Polym. Sci. 20, 1245 (1976).

    Article  CAS  Google Scholar 

  35. S. Onogi, T. Masuda and K. Kitagawa, Macromolecules 3, 109 (1970).

    Article  CAS  Google Scholar 

  36. R. J. Morgan, L. E. Nielsen and R. Buchdahl, J. Appl. Phys. 42, 4653 (1971).

    Article  CAS  Google Scholar 

  37. G. V. Vinogradov, E. A. Dzyura, A. Y. Malkin and V. A. Grechanovskii, J. Polym. Sci. A-2, 9, 1153 (1971).

    Article  Google Scholar 

  38. T. Miyamoto, K. Kodama and K. Shibayama, J. Polym. Sci. A-2, 8, 2095 (1970).

    Article  CAS  Google Scholar 

  39. A. Beamish, R. A. Goldberg, and D. J. Hourston, Polymer, 18, 49 (1977).

    Article  CAS  Google Scholar 

  40. K. M. Hong and J. Noolandi, Macromolecules, 13, 964 (1980).

    Article  CAS  Google Scholar 

  41. C. P. Henderson and M. C. Williams, manuscript in preparation.

    Google Scholar 

  42. J. Diamant, D. S. Soong, and M. C. Williams, 90th National AIChE Meeting, Houston, TX (April, 1981). Full manuscript to follow.

    Google Scholar 

  43. R. E. Cohen and A. R. Ramos, Tech. Rep. #3, Order No. AD-A064, National Technical Information Service, Arlington, VA (1979).

    Google Scholar 

  44. J. Brandrup and E. H. Immergut, “Polymer Handbook,” 2nd ed., Wiley, New York, 1975; p. V-1.

    Google Scholar 

  45. L. Holiday and J. D. Robinson, in “Polymer Engineering Composites,” M. O. W. Richardson, ed., Applied Science Publishers, London, 1977; Chap. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Diamant, J., Soong, D.S., Williams, M.C. (1984). Modeling the Viscoelastic Behavior of SBS Block Copolymer Solids. In: Bailey, W.J., Tsuruta, T. (eds) Contemporary Topics in Polymer Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6743-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6743-1_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6745-5

  • Online ISBN: 978-1-4615-6743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics