Skip to main content

Signal-to-Noise Ratios in Mass Spectroscopic Ion-Current-Measurement Systems

  • Chapter
Contemporary Topics in Analytical and Clinical Chemistry

Abstract

When an analytical result is based upon a mass spectroscopic measurement, the uncertainty which must be assigned to the result is directly related to the standard deviation of the ion-current measurement. For such an electrical measurement, the standard deviation characterizing the scatter in the observations is correctly termed the noise, while the ion-current level is the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. B. Wilson, Jr., An Introduction to Scientific Research, pp. 191–195, McGraw-Hill, New York (1952).

    Google Scholar 

  2. C. Brunnée, Concerning ion reflection and secondary electron emission due to the impact of alkali ions on pure Mo surfaces, Z. Phys., 147, 161–183 (1957).

    Article  Google Scholar 

  3. E. R. Cawthron, D. L. Cotterell, and M. Oliphant, The interaction of atomic particles with solid surfaces at intermediate energies. II Scattering processes, Proc. R. Soc. London Ser. A. 314, 53–72 (1968).

    Google Scholar 

  4. J. S. Allen, Detection of single positive ions, electrons and photons by a secondary electron multiplier, Phys. Rev., 55, 966–971 (1939).

    Article  CAS  Google Scholar 

  5. J. S. Allen, An improved electron multiplier particle counter, Rev. Sci. Instrum., 18, 739–749 (1947).

    Article  CAS  Google Scholar 

  6. J. S. Allen, Preliminary Report No. 10, Nuclear Science Series, National Research Council (1950).

    Google Scholar 

  7. G. W. Goodrich and W. C. Wiley, Resistance strip magnetic electron multiplier, Rev. Sci. Instrum., 32, 846–849 (1951).

    Article  Google Scholar 

  8. G. W. Goodrich and W. C. Wiley, Continuous channel electron multiplier, Rev. Sci. Instrum., 33, 761–762 (1962).

    Article  Google Scholar 

  9. H. Becker, E. Dietz, and U. Gerhardt, Preparation and characteristics of a channel electron multiplier, Rev. Sci. Instrum., 43, 1587–1589 (1972).

    Article  CAS  Google Scholar 

  10. Specification, ITT Type F4074, Electro-Optical Produces Division, ITT, Fort Wayne, Indiana.

    Google Scholar 

  11. C. La Lau, Mass discrimination caused by electron multiplier detector, in: Topics in Organic Mass Spectrometry ( A. L. Burlingame, ed.), pp. 93–121, Wiley-Interscience, New York, (1970).

    Google Scholar 

  12. M. Van Gorkom and R. E. Glick, Electron multiplier response under positive ion impact, I. Secondary electron emission coefficients, Int. f. Mass Spectrom. Ion Phys., 4, 203–218 (1970).

    Article  Google Scholar 

  13. M. Van Gorkom, D. P. Beggs, and R. E. Glick, Electron multiplier response under positive ion impact, II. Secondary pulse height distributions, Int. J. Mass Spectrom. Ion Phys., 4, 441–450 (1970).

    Article  Google Scholar 

  14. R. C. Lao, R. Sander, and R. F. Pottie, Discrimination in electron multipliers for atomic ions, I. Multiplier yields for 24 mass-analyzed ions, Int. J. Mass Spectrom. Ion Phys., 10, 309–313 (1972).

    Article  CAS  Google Scholar 

  15. R. F. Pottie, D. L. Cocke, and K. A. Gingerich, Discrimination in electron multipliers for atomic ions. II. Comparison of yields for 61 atoms, Int. J. Mass Spectrom. Ion Phys., 11, 41–48 (1973).

    Article  CAS  Google Scholar 

  16. R. W. Engstrom and E. Fischer, Effects of voltage divider characteristics on multiplier phototube response, Rev. Sci. Instrum., 28, 525–527 (1957).

    Article  Google Scholar 

  17. L. A. Deitz, Basic properties of electron multiplier ion detection and pulse counting methods in mass spectrometry, Rev. Sci. Instrum., 36, 1763–1770 (1965).

    Article  Google Scholar 

  18. L. A. Dietz, L. R. Hanrahan, and A. B. Hance, Single electron response of a porous KCL transmission dynode and application of Polya statistics to particle counting in an electron multiplier, Rev. Sci. Instrum., 38, 176–183 (1967).

    Article  CAS  Google Scholar 

  19. L. A. Dietz, General method for computing the statistics of charge amplification in particle and photon detectors used for pulse counting, Int.). Mass Spectrom. Ion Phys., 5, 11–19 (1970).

    Article  CAS  Google Scholar 

  20. L. A. Dietz and J. C. Sheffield, Secondary electron emission induced by 5–30-KeV monatomic ions striking thin oxide films, J. App. Phys., 46, 4361–4370 (1975).

    Article  CAS  Google Scholar 

  21. D. A. Schoeller, PhD thesis, A Computer Controlled Ion Counting Isotope Ratio Mass Spectrometer, Department of Chemistry, Indiana University (1974).

    Google Scholar 

  22. J. R. Prescott, A statistical model for photomultiplier single-electron statistics, Nucl. Instrum. Methods, 39, 173–179 (1966).

    Article  Google Scholar 

  23. D. M. Hunten, Introduction to Electronics, Holt, Rinehart, and Winston, New York (1964).

    Google Scholar 

  24. J. D. Ingle, Jr., and S. R. Crouch, Critical comparison of photon counting and direct current measurement techniques for quantitative spectrometric methods, Anal. Chem., 44, 785–794 (1972).

    Article  CAS  Google Scholar 

  25. L. F. Herzog and T. J. Eskew, Voltage coefficients of high value resistors, Proc. 23rd Ann. Conf. on Mass Spectrometry and Allied Topics, pp. 262–265, American Society for Mass Spectroscopy, (1975).

    Google Scholar 

  26. a) Specifications, Type RX-1 Hi-Meg Resistors Victoreen Instrument Division, Cleveland, Ohio. (b) Specification, Type M51, Dale Electronics, Inc., Columbus, Nebraska.

    Google Scholar 

  27. M. C. Jackson and W. A. P. Young, A capacitive integration system for the precise measurement of isotopic ratios in a mass spectrometer, Rev. Sci. Instrum., 44, 32–34 (1972).

    Article  Google Scholar 

  28. A. J. Diefenderfer, Principles of Electronic Instrumentation, W. B. Saunders, Philadelphia (1972).

    Google Scholar 

  29. P. C. Kelly and G. Horlick, Practical considerations for digitizing analog signals, Anal. Chem., 45, 518–526 (1973).

    Article  CAS  Google Scholar 

  30. N. R. Daly, Scintillation type mass spectrometer ion detector, Rev. Sci. Instrum., 31, 264–267 (1960).

    Article  CAS  Google Scholar 

  31. D. A. Schoeller and J. M. Hayes, Computer controlled ion counting isotope ratio mass spectrometer, Anal. Chem., 47, 408–414 (1975).

    Article  CAS  Google Scholar 

  32. J. M. Hayes, D. E. Matthews, and D. A. Schoeller, Effective deadtime of pulse counting detector systems, Anal. Chem., 50, 25–32 (1978).

    Article  CAS  Google Scholar 

  33. J. M. Hayes and D. A. Schoeller, High precision pulse counting: Limitations and optimal conditions, Anal. Chem., 49, 306–311 (1977).

    Article  CAS  Google Scholar 

  34. S. D. Conte and C. de Boer, Elementary Numerical Analysis, p. 33, 2nd ed., McGraw-Hill, New York, (1972).

    Google Scholar 

  35. Specifications, Analog Devices Type 310 Varactor Bridge Electrometer, Analog Devices, Norwood, Massachusetts.

    Google Scholar 

  36. H. Craig, The geochemistry of the stable carbon isotopes, Geochim. Cosmochim. Acta, 3, 53–91 (1953).

    Article  CAS  Google Scholar 

  37. C. R. McKinney, J. M. McCrea, S. Epstein, H. A. Allen, and H. C. Urey, Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios, Rev. Sci. Instrum., 21, 724–730 (1950).

    Article  CAS  Google Scholar 

  38. R. D. Beckinsale, N. J. Freeman, M. C. Jackson, R. E. Powell, and W. A. P. Young, A 30 cm radius double collecting mass spectrometer with a capacitor integrating detector for high precision isotopic analysis of carbon dioxide, Int. J. Mass Spectrom. Ion Phys., 12, 299–308 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peterson, D.W., Hayes, J.M. (1978). Signal-to-Noise Ratios in Mass Spectroscopic Ion-Current-Measurement Systems. In: Hercules, D.M., Hieftje, G.M., Snyder, L.R., Evenson, M.A. (eds) Contemporary Topics in Analytical and Clinical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6734-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6734-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6736-3

  • Online ISBN: 978-1-4615-6734-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics