Skip to main content

Acid—Base Physiology and Pathophysiology

  • Chapter
Contemporary Nephrology

Abstract

The regulation of acid—base homeostasis by the kidney is not only one of its most important functions but also one of its most intensively studied functions. Despite, or perhaps because of, this intense effort, there are still many questions relating to the renal regulation of acidification that are either controversial or incompletely elucidated. This chapter is concerned with an examination of some of the more important issues relating to the acidification of the urine under conditions of both health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Awqati, Q., 1977, Effect of aldosterone on the coupling between H+ transport and glucose oxidation, J. Clin. Invest. 60.: 1240.

    PubMed  CAS  Google Scholar 

  • Al-Awqati, Q., Norby, L. H., Mueller, A., and Steinmetz, P. R., 1976, Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder, J. Clin. Invest. 58.: 351.

    PubMed  CAS  Google Scholar 

  • Al-Awqati, Q., Mueller, A., and Steinmetz, P. R., 1977, Transport of H+ against electrochemical gradients in turtle urinary bladder, Am. J. Physiol. 233. (6): F502.

    PubMed  CAS  Google Scholar 

  • Albright, F., and Reifenstein, E. C., Jr., 1948, Parathyroid Glands and Metabolic Bone Disease., Williams zhaohuan Wilkins, Baltimore.

    Google Scholar 

  • Arruda, J. A. L., 1979, Calcium inhibits urinary acidification: Effect of the ionophore A23187 on the turtle bladder, Pfluegers Arch.. 381.: 107.

    CAS  Google Scholar 

  • Arruda, J. A. L., Carrasquillo, T., Cubria, A., Rademacher, D., and Kurtzman, N. A., 1976, Bicarbonate reabsorption and chronic renal failure, Kidney Int.. 9.: 481.

    CAS  Google Scholar 

  • Arruda, J. A. L., Nascimento, L., Kumar, S. K., and Kurtzman, N. A., 1977a, Factors influencing the formation of urinary carbon dioxide tension, Kidney Int.. 11.: 307.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., Nascimento, L., Mehta, P. K., Rademacher, D. R., Sehy, J. T., Westenfelder, C., and Kurtzman, N. A., 1977b, The critical importance of urinary concentrating ability in the generation of urinary carbon dioxide tension, J. Clin. Invest. 60.: 922.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., Nascimento, L., Westenfelder, C., and Kurtzman, N. A., 1977c, Effect of parathyroid hormone on urinary acidification, Am. J. Physiol. 232. (5): F429.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., Nascimento, L., Arevalo, G., Baranowski, R. L., Cubria, A., Carrasquillo, T., Westenfelder, C., and Kurtzman, N. A., 1978, Bicarbonate reabsorption in chronic renal failure studies in man and the rat, Pfluegers Arch.. 376.: 193.

    CAS  Google Scholar 

  • Arruda, J. A. L., Dytko, G., and Mola, R., 1979, Effect of calcium and magnesium on transport processes by turtle bladder, Arch. Int. Pharmacodyn. Ther. 240.: 27.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., Dytko, G., Mola, R., and Kurtzman, N. A., 1980a, On the mechanism of lithium-induced renal tubular acidosis: Studies in the turtle bladder, Kidney Int.. 17.: 196.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., Kumar, S. K., Wilson, A., Sehy, J. T., Roseman, M., Nascimento, L., and Kurtzman, N. A., 1980b, Distal acidification defect caused by pharmacological doses of insulin, J. Lab. Clin.. Med. 95.: 440.

    CAS  Google Scholar 

  • Arruda, J. A. L., Subbarayudu, K., Dytko, G., Mola, R., and Kurtzman, N. A., 1980c, Voltage-dependent distal acidification defect induced by amiloride, J. Lab. Clin. Med. 95.: 407.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., Roseman, M., Sehy, J. T., Mehta, P. K., and Kurtzman, N. A., 1980d, Assessment of distal urinary acidification with tris (hydroxymethyl)amino methane, Miner. Electrolyte Metab.. 4.: 18.

    CAS  Google Scholar 

  • Bank, N., and Aynedjian, S., 1976, A micropuncture study of the effect of parathyroid hormone on renal bicarbonate reabsorption, J. Clin. Invest. 58.: 336.

    PubMed  CAS  Google Scholar 

  • Baille, D., Roseman, M., Sehy, J. T., Mozes, M. F., Arruda, J. A. L., and Kurtzman, N. A., 1978, Pathophysiologic and clinical spectrum of distal renal tubular acidosis, Clin. Res. 26.: 725.

    Google Scholar 

  • Beauwens, R., and Al-Awqati, Q., 1976, Active H+ transport in the turtle urinary bladder, J. Gen. Physiol. 68.: 421.

    PubMed  CAS  Google Scholar 

  • Brenes, L. G., Brenes, J. N., and Hernandez, M. M., 1977, Familial proximal renal tubular acidosis, Am. J. Med. 63.: 244.

    PubMed  CAS  Google Scholar 

  • Brewer, E. D., Tsai, H. C., Szeto, K. S., and Morris, R. C., Jr., 1977, Maleic acid-induced impaired conversion of 25(OH)D3 to 1,25(OH)2D3: Implications for Fanconi’s syndrome, Kidney Int.. 12.: 244.

    PubMed  CAS  Google Scholar 

  • Burg, M., and Green, N., 1977, Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules, Am. J. Physiol. 233. (4): F307.

    PubMed  CAS  Google Scholar 

  • Burnell, J. M., Teubner, E. J., and Simpson, D. P., 1974, Metabolic acidosis accompanying potassium deprivation, Am. J. Physiol. 227.: 329.

    PubMed  CAS  Google Scholar 

  • Butler, A. M., Wilson, J. L., and Farber, S., 1936, Dehydration and acidosis with calcification of renal tubules, J. Pediatr. 8.: 489.

    Google Scholar 

  • Coe, F. L., 1974, Magnitude of metabolic acidosis in primary hyperparathyroidism, Arch. Intern. Med. 134.: 262.

    PubMed  CAS  Google Scholar 

  • Cogan, M. G., Maddox, D. A., Lucci, M. S., and Rector, F. C., Jr., 1979a, Control of proximal bicarbonate reabsorption in normal and acidotic rats, J. Clin. Invest. 64.: 1168.

    PubMed  CAS  Google Scholar 

  • Cogan, M. G., Maddox, D. A., Warnock, D. G., Lin, E. T., and Rector, F. C., Jr., 1979b, Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat, Am. J. Physiol. 237. (6): F447.

    PubMed  CAS  Google Scholar 

  • Cohen, J. J., 1970, Selective Cl retention in repair of metabolic alkalosis without increasing filtered load, Am. J. Physiol. 218.: 165.

    PubMed  CAS  Google Scholar 

  • Cohen, L., 1980, HCO3-Cl exchange transport in the adaptive response to alkalosis by turtle bladder, Am. J. Physiol. 239.: F167.

    PubMed  CAS  Google Scholar 

  • Cohen, L. H., Mueller, A., and Steinmetz, P. R., 1978, Inhibition of the bicarbonate exit step in urinary acidification by a disulfonic stilbene, J. Clin. Invest. 61.: 981.

    PubMed  CAS  Google Scholar 

  • Crumb, C. K., Martinez-Maldonado, M., Eknoyan, G., and Suki, W., 1974, Effects of volume expansion, purified parathyroid extract and calcium on renal bicarbonate absorption in the dog, J. Clin. Invest. 54.: 1287.

    PubMed  CAS  Google Scholar 

  • DeMello Aires, M., and Malnic, G., 1979, Sodium in renal tubular acidification kinetics, Am. J. Physiol. 236. (5): F434.

    Google Scholar 

  • DiTella, P. J., Sodhi, B., McCreary, J., Arruda, J. A. L., and Kurtzman, N. A., 1978, Mechanism of the metabolic acidosis of selective mineralocorticoid deficiency, Kidney Int.. 14.: 466.

    PubMed  CAS  Google Scholar 

  • Dixon, T. E., and Al-Awqati, Q., 1979, Urinary acidification in turtle bladder is due to a reversible proton-translocating ATPase, Proc. Natl. Acad. Sci. U.S.A. 76.: 3135.

    PubMed  CAS  Google Scholar 

  • DuBose, T. D., Jr., Pucacco, L. R., Seldin, D. W., Carter, N. W., and Kokko, J. P., 1978, Direct determination of pCO2 in the rat renal cortex, J. Clin. Invest. 25.: 338.

    Google Scholar 

  • DuBose, T. D., Jr., Pucacco, L. R., Lucci, M. S., and Carter, N. W., 1979a, Micropuncture determination of pH, pCO2, and total CO2 concentration in accessible structures of the rat renal cortex, J. Clin. Invest. 64.: 476.

    PubMed  Google Scholar 

  • DuBose, T. D., Jr., Pucacco, L. R., Seldin, D. W., Carter, N. W., and Kokko, J. P., 1979b, Microelectrode determination of pH and pCO2 in rat proximal tubule after benzolamide: Evidence for hydrogen ion secretion, Kidney Int.. 15.: 624.

    PubMed  CAS  Google Scholar 

  • Emmett, M., Goldfarb, S., Agus, Z. S., and Narins, R. G., 1977, The pathophysiology of acid-base changes in chronically phosphate-depleted rats, Kidney Int.. 59.: 291.

    CAS  Google Scholar 

  • Fitzgerral, W. W., and Vanatta, J. C., 1975, Excretion of HCO3 by the urinary bladder of Bufo marinus in metabolic alkalosis, Tex. Rep. Biol. Med. 33.: 269.

    Google Scholar 

  • Fraley, D. S., and Adler, S., 1979, An extrarenal role for parathyroid hormone in the disposal of acute acid loads in rats and dogs, J. Clin. Invest. 63.: 985.

    PubMed  CAS  Google Scholar 

  • Frazier, L. W., 1974, Interrelationship of H+ excretion and Na+ H reabsorption in the toad urinary bladder, J. Membr. Biol. 19.: 267.

    PubMed  CAS  Google Scholar 

  • Frazier, L. W., and Vanatta, J. C., 1973, Characteristics of H+ and NH4+ excretion by the urinary bladder of the toad, Biochim. Biophys. Acta. 311.: 98.

    CAS  Google Scholar 

  • Gold, L. W., Massry, S. G., Arieff, A. I., and Coburn, J. W., 1973, Renal bicarbonate wasting during phosphate depletion: A possible cause of altered acid—base homeostasis in hyperparathyroidism, J. Clin. Invest. 52.: 2556.

    PubMed  CAS  Google Scholar 

  • Gougoux, A., Lemieux, G., and Lavoie, N., 1976, Maleate-induced bicarbonaturia in the dog: A carbonic anhydrase-independent effect, Am. J. Physiol. 231. (4): 1010.

    PubMed  CAS  Google Scholar 

  • Gougoux, A., Lemieux, G., and Vinay, P., 1978, Bicarbonaturic effect of lysine in the dog, Kidney Int.. 14.: 215.

    PubMed  CAS  Google Scholar 

  • Goulding, A., and Broom, M. F., 1979, Effects of diphosphonate and colchicine administration upon acid—base changes induced in rats by bilateral nephrectomy, Clin. Sci. 57.: 19.

    PubMed  CAS  Google Scholar 

  • Halperin, M. L., Goldstein, M. B., Haig, A., Johnson, M. D., and Stinebaugh, B. J., 1974, Studies on the pathogenesis of type I (distal) renal tubular acidosis as revealed by the urinary Pco: tensions, J. Clin. Invest. 53.: 669.

    PubMed  CAS  Google Scholar 

  • Hoppe, A., Gmaj, P., Metier, M., and Angielski, S., 1976, Additive inhibition of renal bicarbonate reabsorption by maleate plus acetazolamide, Am. J. Physiol.. 231.: 1258.

    PubMed  CAS  Google Scholar 

  • Hulter, H. N., 1979, Renal metabolic alkalosis induced by chronic administration of 1–25-dihydroxy vitamin D3 zhaohuan I-25-(OH)2D3 (abstract), Proc. Am. Soc. Nephrol. 12.: 84.

    Google Scholar 

  • Huller, H. N., Ilnicki, L. P., Harbottle, J. A., and Sebastian, A., 1977, Impaired renal H+ secretion and NH3 production in mineralocorticoid-deficient glucocorticoid-replete dogs, Am. J. Physiol. 232. (2): 136.

    Google Scholar 

  • Hulter, H. N., Sigala, J. F., and Sebastian, A., 1978, K+ deprivation potentiates the renal alkalosis-producing effect of mineralocorticoid, Am. J. Physiol. 235. (4): 298.

    Google Scholar 

  • Huller, H. N., Licht, J. H., Glynn, R. D., and Sebastian, A., 1979, Renal acidosis in mineralocorticoid deficiency is not dependent on NaCl depletion or hyperkalemia, Am. J. Physiol. 236. (3): 283.

    Google Scholar 

  • Hulter, H. N., Sebastian, A., Sigala, J. F., Licht, J. H., Glynn, R. D., Schambelan, M., and Biglieri, E. G., 1980, Pathogenesis of renal hyperchloremic acidosis resulting from dietary potassium restriction in the dog: Role of aldosterone, Am. J. Physiol. 238.: F79.

    PubMed  CAS  Google Scholar 

  • Husted, R. F., and Steinmetz, P. R., 1979, The effects of amiloride and ouabain on urinary acidification by turtle bladder, J. Pharmacol. Exp. Ther. 210.: 264.

    PubMed  CAS  Google Scholar 

  • Husted, R. F., Cohen, L. H., and Steinmetz, P. R., 1978, Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: Studies with a disulfonic stilbene, J. Membr. Biol. 47.: 27.

    Google Scholar 

  • Ilno, Y., and Burg, M. B., 1979, Effect of parathyroid hormone on bicarbonate absorption by proximal tubules in vitro, Am. J. Physiol. 236. (4): 387.

    Google Scholar 

  • Julka, N. K., Sabatini, S., Arruda, J. A. L., and Kurtzman, N. A., 1978, Distal acidification defect (AD) induced by phosphate depletion, Clin. Res. 26.: 691A.

    Google Scholar 

  • Julka, N. K., Arruda, J. A. L., and Kurtzman, N. A., 1979, The mechanism of amphotericin-induced distal acidification defect in rats, Clin. Sci. 56.: 555.

    PubMed  CAS  Google Scholar 

  • Karlinsky, M., Sager, D. S., Kurtzman, N. A., and Pillay, V. K. G., 1974, Effect of parathormone and cyclic adenosine monophosphate on renal bicarbonate reabsorption, Am. J. Physiol. 227.: 1226.

    PubMed  CAS  Google Scholar 

  • Kassirer, J. P., Berkman, P. M., Lawrenz, D. R., and Schwartz, W. B., 1965, The critical role of chloride in the correction of hypokalemic alkalosis in man, Am. J. Med. 38.: 172.

    PubMed  CAS  Google Scholar 

  • Klahr, S., and Schoolwerth, A. C., 1977, Production and excretion of renal ammonia in health and disease, in: Pathophysiology of the Kidney. ( N. A. Kurtzman and M. Martinez-Maldonado, eds.), pp. 296–334, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Kohaut, E. C., Klish, W. J., Beachler, C. W., and Hill, L. L., 1977, Reduced renal acid excretion in malnutrition: A result of phosphate depletion, Am. J. Clin. Nutr. 30.: 861.

    PubMed  CAS  Google Scholar 

  • Kurtz, T. W., and Hsu, C. H., 1978, Impaired distal nephron acidification in chronically phosphate depleted rats, Pfluegers Arch.. 377.: 229.

    CAS  Google Scholar 

  • Kurtzman, N. A., 1970, Regulation of renal bicarbonate reabsorption by extracellular volume, J. Clin. Invest. 49.: 580.

    Google Scholar 

  • Kurtzman, N. A., and Arruda, J. A. L., 1978, Physiologic significance of urinary carbon dioxide tension, Miner. Electrolyte Metab.. 1.: 241.

    Google Scholar 

  • Kurtzman, N., White, M. G., and Rogers, P. W., 1973, Pathophysiology of metabolic alkalosis, Arch. Intern. Med. 131.: 702.

    Google Scholar 

  • Levine, D. Z., Byers, M. K., McLeod, R. A., and Luisello, J. A., 1979, Loop of Henle bicarbonate accumulation in vivo in the rat, J. Clin. Invest. 63.: 59.

    PubMed  CAS  Google Scholar 

  • Lief, P. D., Mutz, B. F., and Bank, N., 1979, Effect of cyclic AMP on hydrogen ion secretion by turtle urinary bladder, Kidney Int.. 16.: 103.

    PubMed  CAS  Google Scholar 

  • Lightwood, R., 1935, Communication to British Pediatric Association, Arch. Dis. Child. 10.: 205.

    Google Scholar 

  • Lucci, M. S., and Warnock, D. G., 1979, Effects of anion-transport inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule, J. Clin. Invest. 64.: 570.

    PubMed  CAS  Google Scholar 

  • Lucci, M. S., Warnock, D. G., and Rector, F. C., Jr., 1979, Carbonic anhydrasedependent bicarbonate reabsorption in the rat proximal tubule, Am. J. Physiol. 236. (1): 58.

    Google Scholar 

  • Maren, T. H., 1978, Carbon dioxide equilibria in the kidney: The problems of elevated carbon dioxide tension, delayed dehydration, and disequilibrium pH, Kidney Int.. 14.: 405.

    Google Scholar 

  • McConnell, J. B., Murison, J., and Stewart, W. K., 1979, The role of the colon in the pathogenesis of hyperchloraemic acidosis in ureterosigmoid anastomosis, Clin. Sci. 57.: 305.

    PubMed  CAS  Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1976, Bicarbonate and fluid absorption by renal proximal straight tubules, Kidney Int.. 12.: 1.

    Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1977, Bicarbonate transport by rabbit cortical collecting tubules, J. Clin. Invest. 60.: 766.

    PubMed  CAS  Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1978a, Bicarbonate absorption by rabbit cortical collecting tubules in vitro, Am. J. Physiol. 234. (2): 141.

    Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1978b, Bicarbonate secretion by rabbit cortical collecting tubules in vitro, J. Clin. Invest. 61.: 1421.

    PubMed  CAS  Google Scholar 

  • McSherry, E., and Morris, R. C., Jr., 1978, Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis, J. Clin. Invest. 61.: 509.

    PubMed  CAS  Google Scholar 

  • Michael, U. F., Kelley, J., and Vaamonde, C. A., 1979, Impaired renal bicarbonate reabsorption in the hypothyroid rat, Am. J. Physiol. 236. (6): 536.

    Google Scholar 

  • Morris, R. C., Jr., Nigon, K., and Reed, E. B., 1978, Evidence that the severity of depletion of inorganic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of the fructose-loaded rat, J. Clin. Invest. 61.: 209.

    PubMed  CAS  Google Scholar 

  • Muldowney, F. P., Carroll, D. V., Donohoe, J. F., and Freaney, R. F., 1971, Correction of renal bicarbonate wastage by parathyroidectomy, Q. J. Med. 40.: 487.

    PubMed  CAS  Google Scholar 

  • Nascimento, L., Rademacher, D. R., Hamburger, R., Arruda, J. A. L., and Kurtzman, N. A., 1977, On the mechanism of lithium-induced renal tubular acidosis, J. Lab. Clin. Med. 89.: 455.

    PubMed  CAS  Google Scholar 

  • Norby, L. H., and Schwartz, J. H., 1978, Relationship between the rate of H+ transport and pathways of glucose metabolism by turtle urinary bladder, J. Clin. Invest. 62.: 532.

    PubMed  CAS  Google Scholar 

  • Peraino, R., Ghaffary, E., Rouse, D., Stinebaugh, B. J., and Suki, W. N., 1978, Effects of 25-hydroxy-vitamin D3 on renal handling of sodium, calcium and phosphate during bicarbonate infusion, Miner. Electrolyte Metab. 1.: 295.

    Google Scholar 

  • Pitts, R. F., and Lotspeich, W. D., 1946, Bicarbonate and the renal regulation of acid-base balance, Am. J. Physiol. 147.: 138.

    PubMed  CAS  Google Scholar 

  • Puschett, J. B., and Zurbach, P., 1976, Acute effects of parathyroid hormone on proximal bicarbonate transport in the dog, Kidney Int.. 9.: 501.

    PubMed  CAS  Google Scholar 

  • Rector, F. C., Jr., 1973, Acidification of the urine, in: Handbook of Physiology. ( J. Orloff and R. Berliner, eds.), p. 431, Williams zhaohuan Wilkins, Baltimore.

    Google Scholar 

  • Rector, F. C., Jr., Carter, N., and Seldin, D. W., 1965, The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney, J. Clin. Invest. 44.: 278.

    PubMed  CAS  Google Scholar 

  • Richardson, R. M. A., Goldstein, M. B., Stinebaugh, B. J., and Halperin, M. L., 1979, Influence of diet and metabolism on urinary acid excretion in the rat and the rabbit, J. Lab. Clin. Med. 94.: 510.

    PubMed  CAS  Google Scholar 

  • Schambelan, M., Sebastian, A., and Rector, F. C., Jr., 1978, Mineralocorticoid resistant renal potassium secretory defect: Proposed distal tubule chloride shunt, Clin. Res. 26.: 545A.

    Google Scholar 

  • Schmidt, R. W., 1978, Effect of phosphate depletion on acid base status in dogs, Metabolism. 27.: 943.

    PubMed  CAS  Google Scholar 

  • Schmidt, R. W., and Gavellas, G., 1977, Bicarbonate reabsorption in dogs with experimental renal disease: Effects of proportional reduction of sodium or phosphate intake, Kidney Int.. 12.: 393.

    PubMed  CAS  Google Scholar 

  • Sebastian, A., McSherry, E., and Morris, R. C., Jr., 1974, On the mechanism of inappropriately low urinary carbon dioxide tension (U-B pCO2) in classic (type 1) renal tubular acidosis (RTA), Clin. Res. 22.: 544A.

    Google Scholar 

  • Sehy, J. T., Roseman, M. K., Arruda, J. A. L., and Kurtzman, N. A., 1978, Characterization of distal hydrogen ion secretion in acute respiratory alkalosis, Am. J. Physiol. 235. (3): 203.

    Google Scholar 

  • Seldin, D. W., and Wilson, J. D., 1972, Renal tubular acidosis, in: The Metabolic Basis of Inherited Disease, 3rd ed.. ( J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), p. 1548, McGraw-Hill, New York.

    Google Scholar 

  • Siegfried, D., Kumar, R., Arruda, J. A. L., and Kurtzman, N. A., 1976, Influence of vitamin D on bicarbonate reabsorption, Adv. Exp. Med. Biol. 81.: 395.

    Google Scholar 

  • Sohtell, M., 1979, pCO2 of the proximal tubular fluid and the different arteriolar blood in the rat kidney, Acta Physiol. Scand. 105.: 137.

    Google Scholar 

  • Steinmetz, P. R., 1974, Cellular mechanisms of urinary acidification, Physiol. Rev. 54.: 890.

    PubMed  CAS  Google Scholar 

  • Stinebaugh, B. J., Esquenazi, R., Schloeder, F. X., Suki, W. N., Goldstein, M. B., and Halperin, M. L., 1979, Control of the urine-blood pCO2 gradient in alkaline urine, Kidney Int.. 17.: 31.

    Google Scholar 

  • Sutton, R. A., Wong, N. L., and Dirks, J. H., 1979, Effect of metabolic acidosis on sodium and calcium transport in the dog kidney, Kidney Int.. 15.: 520.

    PubMed  CAS  Google Scholar 

  • Thirakomen, K., Kozlov, N., Arruda, J. A. L., and Kurtzman, N. A., 1976, Renal hydrogen ion secretion following release of unilateral ureteral obstruction, Am. J. Physiol. 231.: 1233.

    PubMed  CAS  Google Scholar 

  • Ullrich, K. J., Capasso, G., Rumrich, G., Papavassiliou, F., and Kloss, S., 1977, Coupling between proximal tubular transport processes, Pfluegers Arch.. 368.: 245.

    CAS  Google Scholar 

  • Vieira, F. L., and Malnic, G., 1968, Hydrogen secretion by rat renal cortical tubules as studied by an antimony microelectrode, Am. J. Physiol. 214.: 710.

    PubMed  CAS  Google Scholar 

  • Wallin, J. D., Barratt, L. J., Rector, F. C., Jr., and Seldin, D. W., 1973, The influence of flow rate and chloride delivery on TcH2O formation in the rat, Kidney Int.. 3.: 282.

    PubMed  CAS  Google Scholar 

  • Warnock, D., and Burg, M., 1977, Urinary acidification: CO2 transport by the rabbit proximal straight tubule, Am. J. Physiol. 232.: F20.

    PubMed  CAS  Google Scholar 

  • Westenfelder, C., Birch, F., Baranowski, R. L., Arevalo, G., Wheeler, C., Earnest, W., and Kurtzman, N. A., 1980, Effect of Na-K-ATPase inhibition on hydrogen ion and potassium secretion, Pfluegers Arch.. 386.: 161.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arruda, J.A.L., Kurtzman, N.A. (1981). Acid—Base Physiology and Pathophysiology. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6719-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6719-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6721-9

  • Online ISBN: 978-1-4615-6719-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics