Skip to main content

Membrane Transport

  • Chapter
Contemporary Nephrology
  • 79 Accesses

Abstract

To many who deal with the physiology and pathology of the kidney, the study of membrane transport mechanisms may appear to be a rather esoteric deviation from the processes of primary interest, i.e., normal or deranged control of body homeostasis. However, the kidney, and also the alimentary canal, are preeminent examples of “transport organs.” Certainly all living cells exhibit continuous fluxes of substances across their organelle and plasma membranes that maintain steady-state internal environments different from their surrounding environment. But the kidney and the alimentary canal exhibit net transepithelial transport of solutes and water. In the case of the kidney, these processes are finely regulated so that they result in a final excretion of solutes and water that balances the daily inputs from food intake and metabolism. At every level of organization of the kidney, net transport processes can be observed to underlie function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Zahid, G., Schafer, J. A., Troutman, S. L., and Andreoli, T. E., 1977, Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: Evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes, J. Membr. Biol 31:103–129.

    Article  PubMed  CAS  Google Scholar 

  • Andreoli, T. E., Hoffman, J. F., and Fanestil, D. D. (eds.), 1978a, Physiology of Membrane Disorders, Plenum Press, New York.

    Google Scholar 

  • Andreoli, T. E., Berliner, R. W., Kokko, J. P., and Marsh, D.J., 1978b, Questions and replies: Renal mechanisms for urinary concentrating and diluting processes, Am. J. Physiol 235:F1–F11.

    Google Scholar 

  • Armstrong, W. McD., and Garcia-Diaz, J. F., 1980, Ion-selective microelectrodes: theory and technique, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2851–2859.

    CAS  Google Scholar 

  • Aronson, P. S., and Sacktor, B., 1975, The Na+ gradient-dependent transport of D-glucose in renal brush border membranes, J. Biol. Chem. 250: 6032–6039.

    PubMed  CAS  Google Scholar 

  • Baker, G. F., and Widdas, W. E, 1973, The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two compartment model, J. Physiol. (London) 231:143–165.

    CAS  Google Scholar 

  • Bardin, C., and Johnstone, R. M., 1978, Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes, J. Biol. Chem. 253: 1725–1732.

    PubMed  CAS  Google Scholar 

  • Barfuss, D. W., and Schafer, J. A., 1979a, Active amino acid absorption by proximal convoluted and proximal striaght tubules, Am. J. Physiol. 236: F149–F162.

    PubMed  CAS  Google Scholar 

  • Barfuss, D. W., and Schafer, J. A., 1979b, Flow dependence of nonelectrolyte absorption in the nephron, Am. J. Physiol. 5: F163 – F174.

    Google Scholar 

  • Barfuss, D. W., and Schafer, J. A., 1980, Glucose transport in discrete segments of the proximal tubule, XXVIII Int. Congress Physiol. Sci., Budapest 15: 313.

    Google Scholar 

  • Barfuss, D. W., Mays, J. M., and Schafer, J. A., 1980, Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules, Am. J. Physiol: Renal Fluid Electrolyte Physiol. 7: F324–F333.

    Google Scholar 

  • Baruch, S. B., Gutierrez, O., King, V. F., Medow, M. S., and Steiner, M., 1977, Transport of organic acids by brush-border and basal-lateral membranes isolated from dog kidney cortex, Proc. Int. Union Physiol. Sci. 13: 56.

    Google Scholar 

  • Beck, J. C., and Sacktor, B., 1975, Energetics of the Na+-dependent transport of D-glucose in renal brush border membrane vesicles, J. Biol. Chem. 250: 8674–8680.

    PubMed  CAS  Google Scholar 

  • Beck, J. C., and Sacktor, B., 1978a, The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles, J. Biol. Chem. 253: 5531–5535.

    PubMed  CAS  Google Scholar 

  • Beck, J. C., and Sacktor, B., 1978b, Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles, J. Biol. Chem. 253: 7158–7162.

    PubMed  CAS  Google Scholar 

  • Bentzel, C. J., 1972, Proximal tubule structure—function relationships during volume expansion in Necturus, Kidney Int. 2: 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Bentzel, C. J., Anagnostopoulos, T., and Pandit, H., 1970, Necturus kidney: Its response to effects of isotonic volume expansion, Am. J. Physiol. 218: 205–213.

    CAS  Google Scholar 

  • Berner, W., and Kinne, R., 1976, Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex, Pfluegers Arch. 361: 269–277.

    Article  CAS  Google Scholar 

  • Berry, C. A., and Boulpaep, E. L., 1975, Nonelectrolyte permeability of the paracellular pathway in the Necturus proximal tubule, Am. J. Physiol. 228: 581–595.

    PubMed  CAS  Google Scholar 

  • Boulpaep, E. L., 1967, Ion permeability of the peritubular and luminal membrane of the renal tubular cell, in: Transport und Funktion Intercelluldrer Elecktrolyte ( F. Krück, ed.), pp. 98–125, Urban and Schwarzenberg, Munich.

    Google Scholar 

  • Boulpaep, E., 1971, Electrophysiological properties of the proximal tubule: Importance of cellular and intercullar transport pathways, in: Electrophysiology of Epithelial Cells ( G. Giebisch, ed.), pp. 91–115, Shattauer, Stuttgart.

    Google Scholar 

  • Boulpaep, E. L., 1972, Permeability changes of the proximal tubule of Necturus during saline loading, Am. J. Physiol. 222: 517–531.

    PubMed  CAS  Google Scholar 

  • Bourguet, J., Chevalier, J., and Hugon, J. S., 1976, Alterations in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium, Biophys. J. 16: 627–639.

    Article  PubMed  CAS  Google Scholar 

  • Burg, M. B., and Green, N., 1973, Function of the thick ascending limb of Henle’s loop, Am. J. Physiol. 224: 659–668.

    PubMed  CAS  Google Scholar 

  • Burg, M. B., Patlak, C., Green, N., and Villey, D., 1976, Organic solutes in fluid absorption by renal proximal convoluted tubules, Am. J. Physiol. 231: 627–637.

    PubMed  CAS  Google Scholar 

  • Cabantchik, Z. I., and Rothstein, A., 1974, Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation, J. Membr. Biol. 15: 207–226.

    Article  PubMed  CAS  Google Scholar 

  • Cecchini, G., Payne, G. S., and Oxender, D. L., 1977, Reconstitution of neutral amino acid transport from partially purified membrane components from Ehrlich ascites tumor cells, J. Supramol. Struct. 7: 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Cecchini, G., Payne, G. S., and Oxender, D. L., 1978, Reconstitution of neutral amino acid transport systems from Ehrlich ascites tumor cells, Membr. Biochem. 1: 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Cereijido, M., and Rotunno, C. A., 1970, Introduction to the Study of Biological Membranes, Gordon and Breach, New York, 261 pp.

    Google Scholar 

  • Chevalier, J., Bourguet, J., and Hugon, J. S., 1974, Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment, Cell Tissue Res. 152:129–140.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H. N., and Riggs, T. R., 1952, Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell, J. Biol. Chem. 194: 57–68.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., Riggs, T. R., Fischer, H., and Palatine, I. M., 1952, Amino acid concentration by a free cell neoplasm: Relations among amino acids, J. Biol. Chem. 198:1–15.

    PubMed  CAS  Google Scholar 

  • Claude, P., 1978, Morphological factors influencing transepithelial permeability: A model for the resistence of the zonula occludens, J. Membr. Biol. 39: 219–232.

    Article  PubMed  CAS  Google Scholar 

  • Claude, P., and Goodenough, D. A., 1973, Fracture faces of zonulae occludentes from “tight” and leaky“ epithelia, J. Cell Biol. 58: 390–400.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. J., and Barac-Nieto, M., 1973, Renal metabolism of substrates in relation to renal function, in: Handbook of Physiology, Section 8, Renal Physiology ( J. Orloff and R. W. Berliner, eds.), pp. 909–947, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Crane, R. K., 1965, Na+-dependent transport in the intestine and other animal tissues, Fed. Proc. Fed. Am. Soc. Exp. Biol. 24:1000–1005.

    CAS  Google Scholar 

  • Crane, R. K., Malathi, P., and Preiser, H., 1976, Reconstitution of specific Na dependent D-glucose transport in liposomes by Triton-X-100-extracted proteins from purified brush border membranes of rabbit kidney cortex, FEBS Lett. 67: 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Crane, R. K., Malathi, P., Preiser, H., and Fairclough, P., 1978, Some characteristics of kidney Na+-dependent glucose carrier reconstituted into sonicated liposomes, Am. J. Physiol. 234:E1–E5.

    PubMed  CAS  Google Scholar 

  • Danon, A., and Stoeckenius, W., 1974, Photophorylation in Halobacterium halobium, Proc. Natl. Acad. Sci. U.S.A. 71:1234–1238.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. M., 1974, Tight and leaky junctions of epithelia: A perspective on kisses in the dark, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:2220–2224.

    CAS  Google Scholar 

  • Diamond, J. M. 1977, The epithelial junction: Bridge, gate and fence (21stBowditch Lecture), Physiologist 20:10–18.

    PubMed  CAS  Google Scholar 

  • Diamond, J. M., 1978, Channels in epithelial cell membranes and junctions, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37: 2639–2644.

    CAS  Google Scholar 

  • DiBona, D. R., 1978, Direct visualization of epithelial morphology in the living amphibian urinary bladder, J. Membr. Biol. Suppl. 40: 45–70.

    Article  Google Scholar 

  • DiBona, D. R., and Mills, J. W., 1979, Distribution of Na+-pump sites in transporting epithelia, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38:134–143.

    CAS  Google Scholar 

  • Diezi, J., Michoud, P., Aceves, J., and Giebisch, G., 1973, Micropuncture study of electrolyte transport across papillary collecting duct of the rat, Am. J. Physiol. 224: 623–634.

    PubMed  CAS  Google Scholar 

  • Doucet, A., Katz, A. I., and Morel, F., 1979, Determination of Na-K-ATPase activity in single segments of the mammalian nephron, Am. J. Physiol. 237: F105 – F113.

    PubMed  CAS  Google Scholar 

  • Edwards, P. A. W., 1973, Evidence for the carrier model of transport from the inhibition by N-ethylmaleimide of choline transport across the human red cell membrane, Biochim. Biophys. Acta 311:123–140.

    Article  PubMed  CAS  Google Scholar 

  • Erlij, D., and Martinez-Palomo, A., 1978, Role of tight junctions in epithelia function, in: Membrane Transport in Biology, Vol. III, Transport across

    Google Scholar 

  • Multi-membrane Systems (G. Giebisch, ed.), pp. 27–54, Springer-Verlag, Berlin.

    Google Scholar 

  • Ernst, S. A., 1972, Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive potassium-dependent phosphatase activity in the avian salt gland, J. Histochem. Cytochem. 20:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, S. A., and Ellis, R. A., 1969, The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress, J. Cell Biol. 40: 305–321.

    Article  PubMed  CAS  Google Scholar 

  • Evan, A. P., Jr., Hay, D. A., and Dail, W. G., 1978, SEM of the proximal tubule of the adult rabbit kidney, Anat. Rec. 191: 397–414.

    Article  PubMed  Google Scholar 

  • Evers, J., Murer, H., and Kinne, R., 1976, Phenylalanine uptake in isolated renal brush border vesicles, Biochim. Biophys. Acta 426: 598–615.

    Article  PubMed  CAS  Google Scholar 

  • Fairclough, P., Malathi, P., Preiser, H., and Crane, R. K., 1979, Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule, Biochim. Biophys. Acta 553: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Fanestil, D. D., Porter, G. A., and Edelman, I. S., 1967, Aldosterone stimulation of sodium transport, Biochim. Biophys. Acta 135:74–88.

    Article  CAS  Google Scholar 

  • Farquhar, M. G., and Pallade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17: 375–396.

    Article  PubMed  CAS  Google Scholar 

  • Fass, S. J., Hammerman, M. R., and Sacktor, B., 1977, Transport of amino acids in renal brush border membrane vesicles, J. Biol. Chem. 252: 583–590.

    PubMed  CAS  Google Scholar 

  • Finkelstein, F. O., and Hayslett, J. P., 1975, Role of medullary Na-K ATPase in renal potassium adaptation, Am. J. Physiol. 229: 524–528.

    PubMed  CAS  Google Scholar 

  • Fleckenstein, A., 1948, Über den primären Energiespeicher der Muskelkontraktion, Pfluegers Archiv. Ges. Physiol. Menschen Tiere 250: 643–666.

    Article  CAS  Google Scholar 

  • Frindt, G., and Burg, M. B., 1972, Effect of vasopressin on sodium transport in renal cortical collecting tubules, Kidney Int. 1: 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Frömter, E., and Diamond, J., 1972, Route of passive ion permeation in epithelia, Nature (London) New Biol. 235:9–13.

    Article  Google Scholar 

  • Ganote, C. E., Grantham, J. J., Moses, H. L., Burg, M. B. and Orloff, J., 1968, Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit, J. Cell Biol. 36: 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Giebisch, G. (ed.), 1978, Membrane Transport in Biology, Vol. III, Transport across Multi-membrane Systems, Springer-Verlag, Berlin.

    Google Scholar 

  • Giebisch, G. (ed.), 1979, Membrane Transport in Biology, Vol. IV, Transport Organs, Springer-Verlag, Berlin.

    Google Scholar 

  • Gmaj, P., Murer, H., and Kinne, R., 1977, Ca binding and transport by brush-border and basal-lateral membrane vesicles of renal cortex, Pfluegers Arch. 368: R21.

    Google Scholar 

  • Goldin, S. M., 1977, Active transport of sodium and potassium ion-activated adenosine-triphosphatase from renal medulla. Reconstitution of the purified enzyme into a well defined in vitro transport system, J. Biol. Chem. 252:5630–5642.

    PubMed  CAS  Google Scholar 

  • Goldin, S. M., and Rhoden, V., 1978, Reconstitution and “transportation specificity fractionation” of the human erythrocyte glucose transport system: A new approach for identification and isolation of membrane transport proteins, J. Biol. Chem. 253: 2575–2583.

    PubMed  CAS  Google Scholar 

  • Good, D. W., and Wright, F. S., 1979, Luminal influences on potassium secretion: Sodium concentration and fluid flow rate, Am. J. Phyiol.: Renal Fluid Electrolyte Physiol. 5:F192–F205.

    Google Scholar 

  • Grantham, J. J., 1970, Vasopressin: Effect on deformability of urinary surface of collecting duct cells, Science 168:1093–1095.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, J. J., 1971, Mode of water transport in mammalian renal collecting tubules, Fed. Proc. Fed. Am. Soc. Exp. Biol. 30:14–21.

    CAS  Google Scholar 

  • Grantham, J. J., and Burg, M. B., 1966, Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules, Am. J. Physiol. 211: 255–259.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J., and Orloff, J., 1968, Effect of prostaglandin E, on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3’,5’-monophosphate, and theophyllin, J. Clin. Invest. 47:1154–1161.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, J. J., Ganote, C. E., Burg, M. B., and Orloff, J., 1969, Paths of transtubular water flow in isolated renal collecting tubules, J. Cell Biol. 41: 562–576.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, J. J., Burg, M. B., and Orloff, J., 1970, The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules, J. Clin. Invest. 49: 1815–1826.

    Article  PubMed  CAS  Google Scholar 

  • Gross, J. B., Imai, M., and Kokko, J. P., 1975, A functional comparison of the cortical collecting tubule and the distal convoluted tubule, J. Clin. Invest. 55:1284–1294.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, R. B., 1978, Electrically neutral ion transport in biomembranes, in: Physiology of Membrane Disorders ( T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 243–253, Plenum Press, New York.

    Chapter  Google Scholar 

  • Gunn, R. B., 1979, Transport of anions across red cell membranes in: Membrane Transport in Biology, Vol. II, Transport across Single Biological Membranes, pp. 59–80, Springer-Verlag, Berlin.

    Google Scholar 

  • Gupta, B. L., and Hall, T. A., 1979, Quantitative electron probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38:144–153.

    CAS  Google Scholar 

  • Hammerman, M. R., and Sacktor, B., 1977, Transport of amino acids in renal brush border membrane vesicles: Uptake of L-proline, J. Biol. Chem. 252: 591–595.

    PubMed  CAS  Google Scholar 

  • Hammerman, M. R., and Sacktor, B., 1978, Transport of ß-alanine in renal brush border membrane vesicles, Biochim. Biophys. Acta 509: 338–347.

    Article  PubMed  CAS  Google Scholar 

  • Harmanci, M. C., Kachadorian, W. A., Valtin, H., and DiScala, V. A., 1978, Antidiuretic hormone-induced intramembranous alterations in mammalian collecting ducts, Am. J. Physiol. 235: F440–F443.

    CAS  Google Scholar 

  • Harold, F. M., 1972, Conservation and trasnformation of energy by bacterial membranes, Bacteriol. Rev. 36:172–230.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioeng. 6: 83–149.

    CAS  Google Scholar 

  • Hass, J. A., Berndt, T. J., Youngberg, S. P., and Knox, F. G., 1979, Collecting duct sodium reabsorption in deoxycorticosterone-treated rats, J. Clin. Invest. 63: 211–214.

    Article  Google Scholar 

  • Hebert, S. C., and Andreoli, T. E., 1980, Interactions of temperature and ADH on transport processes in cortical collecting tubules, Am. J. Physiol. 7: F470–F480.

    Google Scholar 

  • Hebert, S. C., Schafer, J. A., and Andreoli, T. E., 1980, Principles of membrane transport, in: The Kidney,2nd ed. (B. M. Brenner and F. C. Rector, eds.), (in press).

    Google Scholar 

  • Heidrich, H., Kinne, R., Kinne-Saffran, E., and Hannig, K., 1972, The polarity of the proximal tubule cell in the rat kidney, J. Cell Biol. 54: 232–245.

    Article  PubMed  CAS  Google Scholar 

  • Hilden, S., and Hokin, L. E., 1975, Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias, J. Biol. Chem. 250: 6296–6303.

    PubMed  CAS  Google Scholar 

  • Hinkle, P. C., and McCarty, R. E., 1978, How cells make ATP, Sci. Am. 238:104–123.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, N., Thees, M., and Kinne, R., 1976, Phosphate transport by isolated renal brush border vesicles, Pfluegers Arch. 362:147–156.

    Article  Google Scholar 

  • Hokin, L. E., Dahl, J. L., Deupree, J. D., Dixon, J. F., Hackney, J. F., and Perdue, J. F., 1973, Studies on the characterization of the sodium—potassium transport adenosine triphosphatase, J. Biol. Chem. 248: 2593–2605.

    PubMed  CAS  Google Scholar 

  • Horster, M., and Grundlach, H., 1979, Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron, J. Mi cros c. 117: 375–379.

    CAS  Google Scholar 

  • Hoshi, T., and Sakai, F., 1967, A comparison of the electrical resistances of the surface cell membrane and cellular wall in the proximal tubule of the newt kidney, Jpn. J. Physiol. 17: 627–637.

    Article  PubMed  CAS  Google Scholar 

  • Irish, J. McC., III, and Dantzler, W H., 1975, Para-aminohippurate transport by isolated perfused frog proximal renal tubules, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 392.

    Google Scholar 

  • Jenkins, R. E., and Tanner, M. J. A., 1975, The major human erythrocyte membrane protein: Evidence for an S-shaped structure which traverses the membrane twice and contains a duplicated set of sites, Biochem. J. 147: 393–399.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., and Skou, J. C., 1971, Purification and characterization of (Na+ + K+)-ATPase. I. The influence of detergents on the activity of (Na+ + K+)-ATPase in preparations from the outer medulla of rabbit kidney, Biochim. Biophys. Acta 233: 366–380.

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Wade, J. B., and DiScala, V. A., 1975, Vasopressin-induced structural change in toad bladder luminal membrane, Science 190: 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Casey, C., and DiScala, V. A., 1978, Time course of ADHinduced intramembranous particle aggregation in toad urinary bladder, Am. J. Physiol. 234:F461–F465.

    PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Muller, J., Rudich, S. W., and DiScala, V. A., 1979a, Temperature dependence of ADH-induced water flow and intramembranous particle aggregates in toad bladder, Science 205: 910–913.

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Ellis, S. J., and Muller, J., 1979b, Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder, Am. J. Physiol. 236: F14 – F20.

    PubMed  CAS  Google Scholar 

  • Kahlenberg, A., and Zala, C. A., 1977, Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4–5) of the human erythrocyte membrane, J. Supramol. Struct. 7: 287–300.

    Article  PubMed  CAS  Google Scholar 

  • Kashgarian, M., 1980, Changes in cell membrane surfaces associated with alterations of transepithelial ion movement, in: Current Topics in Membranes and Transport, Vol. 13 ( F. Bronner and A. Kleinzeller, eds.), pp. 147–160, Academic Press, New York.

    Google Scholar 

  • Kashgarian, M., Taylor, C. R., Binder, H. J., and Hayslett, J. P., 1980, Amplification of cell membrane surface in potassium adaptation,Lab. Invest. 42: 581–588.

    CAS  Google Scholar 

  • Katz, A. I., Doucet, A., and Morel, F., 1979, Na-K-ATPase activity along the rabbit, rat and mouse nephron, Am. J. Physiol. 237: F114 – F120.

    PubMed  CAS  Google Scholar 

  • Kikuta, Y., and Hoshi, T., 1979, Role of sodium ions in p-aminohippurate transport by newt kidney, Biochim. Biophys. Acta 553: 404–416.

    Article  PubMed  CAS  Google Scholar 

  • Kinne, R., and Faust, R. G., 1977, Incorporation of D-glucose, D-alanine and phosphate transport systems from rat renal brush-border membranes into liposomes, Biochem. J. 168: 311–314.

    PubMed  CAS  Google Scholar 

  • Kinne, R., and Kinne-Saffran, E., 1969, Isolierung und enzymatische Characterisierung einer Bürstensaumfraktion der Rattenniere, Pfluegers Arch. 308: 1–15.

    Article  CAS  Google Scholar 

  • Kinne, R., and Schwartz, I. L., 1978, Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes, Kidney Int. 14:547–556.

    Article  PubMed  CAS  Google Scholar 

  • Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., and Sachs, G., 1975, Sugar transport by renal plasma membrane vesicles: Characterization of the systems in the brush-border microvillae and basolateral plasma membranes, J. Membr. Biol. 21: 375–395.

    Article  CAS  Google Scholar 

  • Knauf, P. A., and Rothstein, A., 1971, Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of human red blood cells, J. Gen. Physiol. 58:190–210.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, A. F., and Racker, E., 1975, Formation of adenosine triphosphate from P1 and adenosine diphosphate by purified Cat+-adenosine triphosphatase, J. Biol. Chem. 250: 35–38.

    Google Scholar 

  • Koefoed-Johnsen, V., and Ussing, H. H., 1953, The contributions of diffusion and flow to the passage of D20 through living membranes, Acta Physiol. Scand. 28: 60–76.

    Article  PubMed  CAS  Google Scholar 

  • Kotyk, A., and Janacek, K., 1975, Cell Membrane Transport: Principles and Techniques, Plenum Press, New York, 583 pp.

    Book  Google Scholar 

  • Kyte, J., 1976, Immunoferritin determination of the distribution of (Na+ and K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment, J. Cell Biol. 68: 304–318.

    Article  PubMed  CAS  Google Scholar 

  • Leaf, A., 1965, Transepithelial transport and its hormonal control in toad bladder, Ergeb. Physiol. 56:216–263.

    PubMed  CAS  Google Scholar 

  • Leaf, A., Anderson, J., and Page, L. B., 1958, Active sodium transport by the isolated toad bladder, J. Gen. Physiol. 41: 657–688.

    Article  PubMed  CAS  Google Scholar 

  • Lozier, R. H., and Niederberger, W., 1977, The photochemical cycle of bacteriorhodopsin, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:1805–1809.

    CAS  Google Scholar 

  • Lundberg, A., 1958, Electrophysiology of salivary glands, Physiol. Rev. 38:21–60.

    Google Scholar 

  • Machen, T. E., Erlij, D. J., and Wooding, E. B. P., 1972, Permeable junctional complexes: The movement of lanthanum across rabbit gallbladder and intestine, J. Cell Biol. 54:302–312.

    Article  Google Scholar 

  • MacLennan, D. H., and Holland, P. C., 1975, CA++ ATPase protein is 100,000 MW, Ann. Rev. Biophys. Bioeng. 4: 377.

    Google Scholar 

  • MacLennan, D. H., Yip, C. C., Iles, G. H., and Seaman, P., 1972, Proteolipid component associated with Ca++ ATPase MW 6,000–12,000, Cold Spring Harbor Symp. Quant. Biol. 37: 469.

    Article  Google Scholar 

  • Makinose, M., and Hasselbach, W., 1971, ATP synthesis by the reverse of the sarcoplasmic calcium pump, FEBS Lett. 12: 217–272.

    Article  Google Scholar 

  • Martinez-Palomo, A., and Erlij, D. J., 1975, Structure of tight junctions in epithelia with different permeability, Proc. Natl. Acad. Sci. U.S.A. 72: 4487–4491.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Palomo, A., Erlij, D. J., and Brancho, H., 1971, Localization of permeability barriers in the frog skin epithelium, J. Cell Biol. 50: 277–287.

    Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1977, Bicarbonate transport by rabbit cortical collecting tubules: Effect of acid and alkali loads in vivo on transport in vitro, J. Clin. Invest. 60: 766–768.

    Article  PubMed  CAS  Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1978a, Bicarbonate absorption by rabbit cortical collecting tubules in vitro, Am. J. Physiol. 234:F141–F145

    CAS  Google Scholar 

  • McKinney, T. D., and Burg, M. B., 1978b, Bicarbonate secretion by rabbitcortical collecting tubules in vitro, J. Clin. Invest. 61: 1421–1427.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J. W., and DiBona, D. R., 1977, On the distribution of Na+-pump sites in the frog skin, J. Cell Biol. 75: 968–976.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J. W., and DiBona, D. R., 1978, Distribution of Na+-pump sites in the frog gallbladder, Nature (London) 271:273–275.

    Google Scholar 

  • Mills, J. W., and Ernst, S. A., 1975, Localization of sodium pump sites in frog urinary bladder, Biochim. Biophys. Acta 375: 268–273.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature (London) 191: 144–148.

    Article  CAS  Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41: 445–502.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1979, Keilin’s respiratory chain concept and its chemiosmotic consequences, Science 206:1148–1159.

    Google Scholar 

  • Mitchell, P., and Moyle, J., 1968, Proton translocation coupled to ATP hydrolysis in rat liver mitochondria, Eur. J. Biochem. 4: 530–539.

    Article  PubMed  CAS  Google Scholar 

  • Murer, H., Hopfer, U., and Kinne, R., 1976, Sodium/proton antiport in brushborder-membrane vesicles isolated from rat small intestine and kidney, Biochem. J. 154: 597–604.

    PubMed  CAS  Google Scholar 

  • Myers, C. H., Bulger, R. E., Tisher, C. C., and Trump, B. E, 1966, Human renal ultrastructure. IV. Collecting duct of healthy individuals, Lab. Invest. 15: 1921–1950.

    PubMed  CAS  Google Scholar 

  • Nishino, H., Tillotson, L. G., Schiller, R. M., Inui, K. I., and Isselbacher, K. J., 1978, Sodium-stimulated active transport of aminoisobutyric acid by reconstituted vesicles from partially purified plasma membranes of mouse fibroblasts transformed by simian virus 40, Proc. Natl. Acad. Sci. U.S.A. 75: 3856–3858.

    Article  PubMed  CAS  Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., 1973, Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. U.S.A. 70: 2853–2857.

    Article  PubMed  CAS  Google Scholar 

  • O’Neil, R. G., and Heiman, S. I., 1977, Transport characteristics of renal collecting tubules: Influences of DOCA and diet, Am. J. Physiol. 233: F544 – F558.

    PubMed  Google Scholar 

  • Orloff, J., and Handler, J. S., 1961, Vasopressin-like effects of adenosine 3’,5’-phosphate (cyclic 3’,5’-AMP) and theophylline in the toad bladder, Biochem. Biophys. Res. Commun. 5: 63–66.

    Article  CAS  Google Scholar 

  • Orloff, J., and Handler, J. S., 1962, The similarity of effects of vasopressin, adenosine 3’,5’-monophosphate (cyclic AMP) and theophylline on the toad bladder, J. Clin. Invest. 41: 702–709.

    Article  PubMed  CAS  Google Scholar 

  • Oschman, J. L., 1978, Morphological correlates of transport, in: Membrane Transport in Biology, Vol. III, Transport across Multi-membrane Systems ( G. Giebish, ed.), pp. 55–93, Springer-Verlag, Berlin.

    Google Scholar 

  • Panet, R., and Selinger, Z., 1972, Synthesis of ATP coupled to Ca2+ release from sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 255: 34–42.

    Article  PubMed  CAS  Google Scholar 

  • Phutrakul, S., and Jones, M. N., 1979, The permeability of bilayer lipid membranes and the incorporation of erythrocyte membrane extracts and the identification of the monosaccharide transport proteins, Biochim. Biophys. Acta 550:180–200.

    Google Scholar 

  • Post, R. L., Kume, S., Tobin, T., Orcutt, B., and Sen, A. K., 1969, Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase, in: Membrane Proteins, New York Heart Association Symposium, pp. 306–326, Little Brown, Boston.

    Google Scholar 

  • Racker, E., 1978, Mechanisms of ion transport and ATP formation, in: Membrane Transport in Biology, Vol. I, Concepts and Models ( D. C. Tosteson, ed.), pp. 259–290, Springer-Verlag, Berlin.

    Google Scholar 

  • Racker, E., and Eytan, E., 1975, A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+ ions in a reconstituted Ca2+ ATPase pump, J. Biol. Chem. 250: 7533–7534.

    PubMed  CAS  Google Scholar 

  • Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249: 662–663.

    PubMed  CAS  Google Scholar 

  • Rastegar, A., Biemesderfer, D., Kashgarian, and Hayslett, J. P., 1980, Changes in membrane surfaces of collecting duct cells in potassium adaptation, Kidney Int. 18:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, T. R., Walker, L. M., and Christensen, H. N., 1958, Potassium migration and amino acid transport, J. Biol. Chem. 233;1479–1484.

    PubMed  CAS  Google Scholar 

  • Rocha, A. S., and Kokko, J. P., 1973, Sodium chloride and water transport in the medullary thick ascending limb of Henle: Evidence for active chloride transport, J. Clin. Invest. 52: 612–623.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, A. S., and Kokko, J. P., 1974, Permeability of medullary nephron segments to urea and water: Effect of vasopressin, Kidney Int. 6:379–387. Rosenberg, P. A., and Finkelstein, A., 1978, Water permeability of gramicidin

    Google Scholar 

  • A-treated lipid bilayer membranes, J. Gen. Physiol. 72:341–350.

    Google Scholar 

  • Ross, A. H., and McConnell, H. M., 1978, Reconstitution of the erythrocyte anion channel, J. Biol. Chem. 253: 4777–4782.

    PubMed  CAS  Google Scholar 

  • Rothstein, A., Cabantchik, Z. I., and Knauf, P., 1976, Mechanism of anion transport in red blood cells: Role of membrane proteins, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35:3–10.

    CAS  Google Scholar 

  • Sachs, G., Shoemaker, R. L., Blum, A. L., Helander, H. F., Makhlouf, G. M., and Hirschowitz, B. I., 1971, Microelectrode studies of gastric mucosa and isolated gastric cells, in: Electrophysiology of Epithelial Cells (G. Giebisch, ed.), pp. 257–268, Schattauer, Stuttgart.

    Google Scholar 

  • Schafer, J. A., 1977, Membrane transport and its application to renal physiology, in: Pathophysiology of the Kidney ( N. A. Kurtzman and M. Martinez-Maldonado, eds.), pp. 88–124, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Schafer, J. A., and Andreoli, T. E., 1972, Cellular constraints to diffusion: The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules,791 J. Clin. Invest. 51:1264–1278.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, J. A., and Barfuss, D. W., 1980a, Mechanisms of transmembrane transport in isolated cells and their experimental study, J. Pharmacol. Exp. Ther. 10:223–260.

    Article  CAS  Google Scholar 

  • Schafer, J. A., and Barfuss, D. W., 1980b, Membrane mechanisms for transepithelial amino acid absorption and secretion, Am. J. Physiol.: Renal Fluid Electrolyte Physiol. 7: F335 – F346.

    Google Scholar 

  • Schafer, J. A., Troutman, S. L., and Andreoli, T. E., 1974a, Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules, J. Gen. Physiol. 64: 582–607.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, J. A., Patlak, C. S., and Andreoli, T. E., 1974b, Osmosis in cortical collecting tubules: A theoretical and experimental analysis of the osmotic transient phenomenon, J. Gen. Physiol. 64: 201–227.

    PubMed  CAS  Google Scholar 

  • Schwartz, G. J., and Burg, M. B., 1978, Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro, Am. J. Physiol. 235: F576 – F585.

    PubMed  CAS  Google Scholar 

  • Schwartz, I. L., Shlatz, L. J., Kinne-Saffran, E., and Kinne, R., 1974, Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone, Proc. Natl. Acad. Sci. U.S.A. 71:2595–2599.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. M., and Venkatachalam, M. A., 1974, Structural differences in thin limbs of Henle: Physiological implications, Kidney Int. 6: 193–208.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. M., Karnovsky, M. J., and Venkatachalam, M. A., 1979, Regional membrane specialization in the thin limbs of Henle’s loops as seen by freeze—fracture electron microscopy, Kidney Int. 16: 577–588.

    Article  PubMed  CAS  Google Scholar 

  • Segal, S., McNamara, P. D., and Pepe, L. M., 1977, Transport interaction of cystine and dibasic amino acids in renal brush border vesicles, Science 197: 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, G. W. G., and Leaf, A., 1966, Mechanism of action of aldosterone, Physiol. Rev. 46: 593–633.

    PubMed  CAS  Google Scholar 

  • Silva, P., Hayslett, J. P., and Epstein, F. H., 1973, The role of Na,K-ATPase in potassium adaptation, J. Clin. Invest. 52: 2665–2671.

    Article  PubMed  CAS  Google Scholar 

  • Silva, P., Ross, B. D., Charney, A. N., Besarab, A., and Epstein, F. H., 1975, Potassium transport by the isolated perfused kidney, J. Clin. Ivest. 56: 862–869.

    Article  CAS  Google Scholar 

  • Simone, J. N., Welling, L. W., Welling, D. J., and Hill, J. J., 1979, Computer assisted morphometeric analysis of cell shape in renal tubules, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 901.

    Google Scholar 

  • Skou, J. C., 1960, Further investigations on a Mg++ and Na+ activated adenosine triphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane, Biochim. Biophys. Acta 42: 6–23.

    Article  CAS  Google Scholar 

  • Skou, J. C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membranes, Physiol. Rev. 45: 596–617.

    PubMed  CAS  Google Scholar 

  • Slack, E. N., Liang, C.-C. T., and Sacktor, B., 1977, Transport of L-proline and D-glucose in luminal (brush border) and contraluminal (basal-lateral) membrane vesicles from the renal cortex, Biochem. Biophys. Res. Commun. 77: 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K. R., 1979, Optical techniques for the evaluation of epithelial transport processes, Am. J. Physiol. 237: F167 – F174.

    PubMed  CAS  Google Scholar 

  • Spring, K. R., and Hope, A., 1978, Size and shape of the lateral intercellular spaces in a living epithelium, Science 200: 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K. R., and Hope, A., 1979, Dimensions of cells and lateral intercellular spaces in living Necturus gallbladder, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 128–133.

    CAS  Google Scholar 

  • Staehelin, L. A., Mukherjee, T. M., and Williams, A. W., 1969, Freeze—etch appearance of tight junctions in epithelium of small and large intestine of mice, Protoplasma 67: 165–175.

    Article  PubMed  CAS  Google Scholar 

  • Stirling, C. E., 1976, High-resolution autoradiography of 3H-ouabain binding in salt transporting epithelia, J. Micros. (Oxford) 106: 145–157.

    Article  CAS  Google Scholar 

  • Stoll, R., Kinne, R., Murer, H., Fleisch, H., and Bonjour, J.-P., 1979, Phosphate transport by rat renal brush border membrane vesicles: Influence of dietary phosphate, thyroparathyroidectomy, and 1,25-dihydroxyvitamin D3, Pfluegers Arch. 380: 47–52.

    Article  CAS  Google Scholar 

  • Tisher, C. C., and Yarger, W. E., 1973, Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat, Kidney Int. 3: 238–250.

    Article  PubMed  CAS  Google Scholar 

  • Tisher, C. C., and Yarger, W. E., 1975, Lanthanum permeability of tight junctions along the collecting duct of the rat, Kidney Int. 7:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson, D. C. (ed.), 1978, Membrane Transport in Biology, Vol. 1, Concepts and Models,Springer-Verlag, Berlin, 537 pp.

    Google Scholar 

  • Tune, B. M., and Burg, M. B., 1971, Glucose transport by proximal renal tubules, Am. J. Physiol. 221: 580–585.

    PubMed  CAS  Google Scholar 

  • Turner, R. J., and Silverman, M., 1977, Sugar uptake into brush border vesicles from normal human kidney, Proc. Natl. Acad. Sci. U.S.A. 74: 2825–2829.

    Article  PubMed  CAS  Google Scholar 

  • Turner, R. J., and Silverman, M., 1978, Sugar uptake into brush border vesicles from dog kidney. II. Kinetics, Biochim. Biophys. Acta 511: 470–486.

    Article  PubMed  CAS  Google Scholar 

  • Uhlich, E., Baldamus, C. A., and Ullrich, K. J., 1969, Einfluss von Aldosteron auf den Natrium Transport in den Sammelrohren der Säugetierniere, Pfluegers Arch. 308:111–126.

    Article  CAS  Google Scholar 

  • Ullrich, K. J., 1976, Renal tubular mechanisms of organic solute transport, Kidney Int. 9:134–148.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, K. J., 1979, Sugar, amino acid, and Na+ cotransport in the proximal tubule, Annu. Rev. Physiol. 41:181–195.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, K. J., Capasso, G., Rumrich, G., and Sato, K., 1977a, Effect of pchloromercuribenzoate (PCMB), ouabain, and 4-acetamido-4’-isothiocyanatostilbene-2,2’-disulfonic acid (SITS) on proximal tubular transport processes, Adv. Exp. Med. Biol. 84: 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, K. J., Caprasso, G., Rumrich, G., Papavassiliou, F., and Klöss, S., 1977b, Coupling between proximal tubular transport processes: Studies with ouabain, SITS and HCO3-free solutions, Pfluegers Arch. 368: 245–252.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1949, The active ion transport through the isolated frog skin in the light of tracer studies, Acta Physiol. Scand. 17:1–37.

    Article  PubMed  CAS  Google Scholar 

  • Ussing, H. H., and Windhager, E.E., 1964, Nature of shunt path and active sodium transport path through frog skin epithelium, Acta Physiol. Scand. 61: 484–504.

    PubMed  CAS  Google Scholar 

  • Ussing, H. H., and Zerahn, K., 1951, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand. 23:110–127.

    Article  PubMed  CAS  Google Scholar 

  • Wade, J. B., Kachadorian, W. A., and DiScala, V. A., 1977, Freeze—fracture electron microscopy: Relationship of membrane structural features to transport physiology, Am. J. Physiol. 232: F77 – F83.

    PubMed  CAS  Google Scholar 

  • Wade, J. B., O’Neil, R. G., Pryor, J. L., and Boulpaep, E. L., 1979, Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones, J. Cell Biol. 81: 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Wall, B. J., 1971, Local osmotic gradients in the rectal pads of an insect, Fed. Proc. Fed. Am. Soc. Exp. Biol. 30: 42–48.

    CAS  Google Scholar 

  • Warnock, D. G., Patlak, C. S., and Burg, M. B., 1978, Contribution of leaked load to solute transport by renal tubules, Am. J. Physiol. 234: F480 – F484.

    PubMed  CAS  Google Scholar 

  • Welling, D. J., and Welling, L. W., 1979, Cell shape as an indication of volume reabsorption in proximal nephron, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 121–127.

    CAS  Google Scholar 

  • Welling, D. J., Welling, L. W., and Hill, J. J., 1978, Phenomenological model relating cell shape to water reabsorption in proximal nephron, Am. J. Physiol. 234: F308 – F317.

    PubMed  CAS  Google Scholar 

  • Welling, L. W., and Grantham, J. J., 1972, Physical properties of isolated perfused renal tubules and tubular basement membranes, J. Clin. Invest. 51:1063–1075.

    Article  PubMed  CAS  Google Scholar 

  • Welling, L. W., and Welling D. J., 1975, Surface areas of brush border and lateral cell walls in the rabbit proximal nephron, Kidney Int. 8:343–348.

    Google Scholar 

  • Welling, L. W., and Welling D. J., 1976,Shape of epithelial cells and intercellular channels in the rabbit proximal nephron, Kidney Int. 9:385–394.

    Article  PubMed  CAS  Google Scholar 

  • Welling, L. W., Welling, D. J., and Hill, J. J., 1978,Shape of cells and intercellular channels in rabbit thick ascending limb of Henle, Kidney Int. 13:144–151.

    Article  PubMed  CAS  Google Scholar 

  • Wendelaar-Bonga, S. E., and Veenhuis, M., 1974,The membranes of basal labyrinth in kidney cells in anadromous teleost Gasterosteus aculeata in adaptation from sea water to fresh water, J. Cell Sci. 14:587 -609.

    Google Scholar 

  • Whittembury, G., and Rawlins, F. A., 1971,Evidence of a paracellular pathway for ion flow in the kidney of proximal tubule: Electron microscopic demonstration of lanthanum precipitate in the tight junction, Pfluegers Arch. 330:302–309.

    Article  CAS  Google Scholar 

  • Wieth, J. O., Funder, J., Gunn, R. B., and Brahm, J., 1974,Passive transport pathways for chloride and urea through red cell membrane, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 317–337,North-Holland, Amsterdam.

    Google Scholar 

  • Windhager, E., Boulpaep, E., and Giebisch, G., 1967,Electrophysiological studies on single nephrons, in: Proceedings of the 3rd International Congress on Nephrology, Washington, 1966, p. 35,S. Karger, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schafer, J.A. (1981). Membrane Transport. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6719-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6719-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6721-9

  • Online ISBN: 978-1-4615-6719-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics