Skip to main content

Correlations in Fractional Hall Effect

  • Chapter
Condensed Matter Theories
  • 66 Accesses

Abstract

Although most of the experimental facts1–4 about the fractional quantum Hall effect can be understood on the basis of Laughlin wave function5 or its generalizations6–10, there still remains questions connected with the correlations and the thermodynamic limit. Many calculations have been done for few electron systems11–13. They are all restricted to the lowest Landau level, the argument also used by Laughlin5 to set up his function. Can this restriction be relaxed? With a notable exception15 most of the calculations in the thermodynamic limit use the analogy with the classical one-component plasma5,16–18 to show e.g. that the Laughlin state lies lower in energy than the CDW (Charge-Density Wave)-states. The connection between a classical system and a physically completely different system is always interesting, but the restriction to only two particle correlations usually sets the limit to the practical usefulness of the analogy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Tsui, H.L. Störnier and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  CAS  Google Scholar 

  2. M.A. Paalanen, D.C. Tsui and A.C. Gossard, Phys. Rev. B25, 5566 (1982).

    Google Scholar 

  3. H.L. Störnier, A. Chang, D.C. Tsui, J.C.M. Hwang, A.C. Gossard and W. Wiegman, Phys. Rev. Lett. 50, 1953 (1983).

    Article  Google Scholar 

  4. E.E. Mendez, L.L. Chang, M. Heiblum, L. Esaki, M. Naughton, K. Martin and J. Brooks, Phys. Rev. B30, 7310 (1984).

    Google Scholar 

  5. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  Google Scholar 

  6. B.I. Halperin, Helv. Phys. Acta 56, 75 (1983).

    CAS  Google Scholar 

  7. F.D.M. Haidane, Phys. Rev. Lett. 51, 605 (1983).

    Article  Google Scholar 

  8. A.H. MacDonald, Phys. Rev. B30, 3550 (1984).

    Google Scholar 

  9. C. Kallin and B. Halperin, Phys. Rev. B30, 5655 (1984).

    Google Scholar 

  10. T. Chakraborty, Phys. Rev. B31, 4026 (1985).

    Google Scholar 

  11. R.B. Laughlin, Phys. Rev. B27, 3383 (1983).

    Google Scholar 

  12. S.M. Girvin and T. Jach, Phys. Rev. B28, 4506 (1983).

    Google Scholar 

  13. F.C. Zhang and T. Chakraborty, Phys. Rev. B30, 7320 (1984).

    Google Scholar 

  14. S.M. Girvin, Phys. Rev. B30, 558 (1984).

    Google Scholar 

  15. F.D.M. Haldane and E.H. Rezayi, Phys. Rev. Lett. 54, 237 (1985).

    Article  PubMed  Google Scholar 

  16. B. Jancovici, Phys. Rev. Lett. 46, 386 (1981).

    Article  Google Scholar 

  17. D. Levesque, J.J. Weis and A.H. MacDonald, Phys. Rev. B30, 1056 (1984).

    Google Scholar 

  18. J.P. Hansen and D. Levesque, J. Phys. C14, 1603 (1981).

    Google Scholar 

  19. E. Feenberg, Theory of Quantum Fluids, Academic 1969, New York.

    Google Scholar 

  20. M. Saarela, P. Pietiläinen and A. Kallio, Phys. Rev. B27, 231 (1983).

    Google Scholar 

  21. P. Pietiläinen and A. Kallio, Phys. Rev. B27, 224 (1983).

    Google Scholar 

  22. J.M. Caillol, D. Levesque, J.J. Weis and J.P. Hansen, J. Stat. Phys. 28, 325 (1981).

    Article  Google Scholar 

  23. S.M. Girvin and T. Jach, Phys. Rev. B29, 5617 (1984).

    Google Scholar 

  24. R.B. Laughlin, Phys. Rev. B23, 5632 (1981).

    Google Scholar 

  25. T. McMullen, Phys. Rev. B32, 1415 (1985).

    Google Scholar 

  26. Qian Niu, D.J. Thouless and Yong-Shi Wu, Phys Rev. B31, 3372 (1985).

    Google Scholar 

  27. A. Kallio, M. Puoskari, L. Lantto, P. Pietiläinen and V. Halonen, Proceedings of “Recent Progress in Many-Body Theories”, Altenberg, Germany 1983, Lecture Notes in Physics 198, p. 210.

    Google Scholar 

  28. A.H. MacDonald, G.C. Aers and M.W.C. Dharma-wardana, Phys. Rev. B31, 5529 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kallio, A., Pollari, P., Kinaret, J., Puoskari, M. (1986). Correlations in Fractional Hall Effect. In: Malik, F.B. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6707-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6707-3_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6709-7

  • Online ISBN: 978-1-4615-6707-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics