Skip to main content

Gas-Evolving Electrodes

  • Chapter

Part of the book series: Comprehensive Treatise of Electrochemistry ((CTE))

Abstract

In a large number of relevant industrial processes, gases are generated by electrochemical reactions. Processes linked to the evolution of gas exhibit some characteristics which are not typical of electrode processes in general. Gas bubbles develop at bubble nuclei, grow in size, finally break off, and rise in the liquid, thus providing a locally nonsteady-state condition. A detailed knowledge of the events at gas-evolving electrodes is necessary for a quantitative treatment of mass transfer and, closely connected with it, of heat transfer. On the other hand, charge transport within bubble-filled electrolytes is of considerable practical interest. These three aspects form the main subject matter of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Coehn, Eine Wirkung der elektrostatischen Ladung elektrolytisch entwickelter Gasblasen, Z. Elektrochem. 29, 306–308 (1923).

    CAS  Google Scholar 

  2. M. C. Witherspoon, R. C. Johnston, and F. A. Lewis, The steady-state hydrogen content of catalytically active noble metal cathodes during hydrogen bubble evolution at high current densities, Electrochim. Acta 20, 519–521 (1975).

    Google Scholar 

  3. N. Ibl and D. Landolt, Zur Kinetik der Chlorat-Bildung bei der NaCI-Elekrolyse, Chem. Ing. Tech. 39, 706–712 (1967).

    CAS  Google Scholar 

  4. D. Landolt and N. Ibl, On the mechanism of anodic chlorate formation in concentrated NaC1 solutions, Electrochim. Acta 15, 1165–1183 (1970).

    CAS  Google Scholar 

  5. A. I. Beljajew, M. B. Rapoport, and L. A. Firsanowa, Metallurgie des Aluminiums, Vol. I, pp. 121–131, VEB Verlag Technik, Berlin (1956).

    Google Scholar 

  6. L. Ferrand, Histoire de la Science et des Techniques de l’Aluminium et ses Développements Industriels, Vol. I, pp. 398–413, Humbert, Largentière (1960).

    Google Scholar 

  7. K. Grjotheim, C. Krohn, M. Malinovskÿ, K. Matiasovskÿ, and J. Tlyonstad, Aluminium Electrolysis, pp. 227–241, Aluminium-Verlag, Düsseldorf (1977).

    Google Scholar 

  8. N. Ibl, Probleme des konvektiven Stofftransports bei der Elektrolyse, Chem. Ing. Tech. 33, 69–74 (1961).

    CAS  Google Scholar 

  9. F. D. Moore and R. B. Mesler, The measurement of rapid surface temperature fluctuations during nucleate boiling of water, AIChEJ. 7, 620-624 (1961).

    Google Scholar 

  10. W. M. Rohsenow, Developments in Heat Transfer, p. 214, M.I.T. Press, Cambridge, MA (1964).

    Google Scholar 

  11. S. S. Kutateladze, Fundamentals of Heat Transfer, Edward Arnold Ltd., London (1963) p. 385.

    Google Scholar 

  12. K. Stephan, Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden, Abh. Dt. Kältetechn. Ver. Nr. 18, C. F. Müller, Karlsruhe (1964).

    Google Scholar 

  13. M. Volmer, Kinetik der Phasenbildung, Steinkopff, Dresden (1939) and Edward Brothers, Ann Arbor, MI (1945).

    Google Scholar 

  14. C. A. Ward and A. S. Tucker, Thermodynamic theory of diffusion-controlled bubble growth or dissolution and experimental examination of the predictions, J. Appl. Phys. 46, 233–238 (1975).

    CAS  Google Scholar 

  15. H. Vogt, Ein Beitrag zum Stoffübergang an gasentwickelnden Elektroden, Diss. University of Stuttgart (1977).

    Google Scholar 

  16. S. G. Bankoff, Entrapment of gas in the spreading of a liquid over a rough surface, AIChEJ. 4, 24–26 (1958).

    CAS  Google Scholar 

  17. R. Cole, Boiling nucleation, Adv. Heat Transfer 10, 85–166 (1974).

    CAS  Google Scholar 

  18. R. Piontelli, B. Mazza, P. Pedeferri, and R. Tognoni, Ricerche sullo sviluppo elettrodico di gas e sugli effetti anomali the lo accompagnano. I. Sviluppo da soluzione acquose, Electrochim. Met. 2, 257–287 (1967).

    CAS  Google Scholar 

  19. S. van Stralen and R. Cole, Boiling Phenomena, Vol. 1, Chapter 13, Hemisphere Publishing, Washington (1980).

    Google Scholar 

  20. H. Y. Cheh, On the mechanism of electrolytic gas evolution. Diss. University of California, Berkeley (1967).

    Google Scholar 

  21. S. Shibata, Supersaturation of oxygen in acidic solution in the vicinity of an oxygen-evolving platinum anode, Electrochim. Acta 23, 619–623 (1978).

    CAS  Google Scholar 

  22. S. Shibata, The concentration of molecular hydrogen on the platinum cathode, Bull. Chem. Soc. Jap. 36, 53–57 (1963).

    CAS  Google Scholar 

  23. S. Shibata, Supersolubility of hydrogen in acidic solution in the vicinity of hydrogen-evolving platinum cathodes in different surface states, Denki Kagaku 44, 709–712 (1976).

    CAS  Google Scholar 

  24. C. K. Bon and C. W. Tobias, Supersaturation at gas-evolving electrodes, J. Electrochem. Soc. 115, 91C (1968).

    Google Scholar 

  25. H. Vogt, Physikalische Vorgänge an gasentwickelnden Elektroden, Chem. Ing. Tech. 52, 418–423 (1980).

    CAS  Google Scholar 

  26. H. Vogt, On the supersaturation of gas in the concentration boundary layer of gas evolving electrodes, Electrochim. Acta 25, 527–531 (1980).

    CAS  Google Scholar 

  27. K. Stephan, Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung. Chem. Ing. Tech. 35, 775–784 (1963).

    CAS  Google Scholar 

  28. V. I. Kozitskii, Heat transfer coefficients during the boiling of n -butane on surfaces of various roughnesses. Int. Chem. Eng. 12, 685–686 (1972); Khim. Neft. Mash. 1, 11–12 (1972).

    Google Scholar 

  29. G. H. Nix, R. I. Vachon, and D. M. Hall, A scanning and transmission electron microscopy study of pool boiling surfaces. In: Heat Transfer, U. Grigull and E. Hahne, Eds., Vol. 5, B1. 6, Elsevier, Amsterdam (1970).

    Google Scholar 

  30. R. Kind, Untersuchung des Stofftransports and der Rührwirkung bei gasentwickelnden Elektroden, Diss. ETH Zürich (1975).

    Google Scholar 

  31. N. Ibl, R. Kind, and E. Adam, Mass transfer at electrodes with gas stirring, An. R. Soc. Esp. Fis. Quim. 71, 1008–1016 (1975).

    CAS  Google Scholar 

  32. A. C. C. Tseung and P. R. Vassie, A study of gas evolution in Teflon bonded porous electrodes, Electrochim. Acta 21, 315–318 (1976).

    CAS  Google Scholar 

  33. Y. Heled and A. Orell, Characteristics of active nucleation sites in pool boiling, Int. J. Heat Mass Transfer 10, 553–554 (1967).

    CAS  Google Scholar 

  34. Lord Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag. 34, 94–98 (1917).

    Google Scholar 

  35. J. P. Glas and J. W. Westwater, Measurements of the growth of electrolytic bubbles, Int. J. Heat Mass Transfer 7, 1427–1443 (1964).

    Google Scholar 

  36. P. S. Epstein and M. S. Plesset, On the stability of gas bubbles in liquid-gas solutions, J. Chem. Phys. 18, 1505–1509 (1950).

    CAS  Google Scholar 

  37. I. Langmuir, The evaporation of small spheres, Phys. Rev. 12, 368–370 (1918).

    CAS  Google Scholar 

  38. G. Birkhoff, R. S. Margulies, and W. A. Horning, Spherical bubble growth, Phys. Fluids 1, 201–204 (1958).

    Google Scholar 

  39. L. E. Scriven, On the dynamics of phase growth. Chem. Eng. Sci. 10, 1–13 (1959).

    CAS  Google Scholar 

  40. W. M. Buehl and J. W. Westwater, Bubble growth by dissolution: Influence of contact angle, AIChEJ. 12, 571–576 (1966).

    CAS  Google Scholar 

  41. J. E. Burman and G. J. Jameson, Diffusional mass transfer to a growing bubble, Chem. Eng. Sci. 31, 401–403 (1976).

    CAS  Google Scholar 

  42. H. K. Forster and N. Zuber, Growth of a vapour bubble in superheated liquid, J. Appl. Phys. 25, 474–478 (1954).

    CAS  Google Scholar 

  43. M. S. Plesset and S. A. Zwick, The growth of vapour bubbles in superheated liquids, J. Appl. Phys. 25, 493–500 (1954).

    CAS  Google Scholar 

  44. S. J. D. van Stralen, The growth rate of vapour bubbles in superheated pure liquids and binary mixtures, Int. J. Heat Mass Transfer 11, 1467–1488 (1968).

    Google Scholar 

  45. N. H. Afgan, Boiling liquid superheat, Adv. Heat Transfer 11, 1–49 (1975).

    Google Scholar 

  46. D. E. Westerheide and J. W. Westwater, Isothermal growth of hydrogen bubbles during electrolysis, AIChEJ. 7, 357–362 (1961).

    CAS  Google Scholar 

  47. H. Y. Cheh and C. W. Tobias, On the dynamics of hemispherical phase growth in nonuniform concentration fields, Int. J. Heat Mass Transfer 11, 709–719 (1968).

    Google Scholar 

  48. J. P. Glas, Microscopic study of electrolytic bubbles, Diss. University of Illinois (1965).

    Google Scholar 

  49. R. Darby and M. S. Hague, The dynamics of electrolytic hydrogen bubble evolution, Chem. Eng. Sci. 28, 1129–1138 (1973).

    CAS  Google Scholar 

  50. H. Vogt, Mass transfer at gas-evolving electrodes with superposition of hydrodynamic flow, Electrochim. Acta 23, 203–205 (1978).

    CAS  Google Scholar 

  51. R. A. Putt and C. W. Tobias, A photographic study of incipient gas evolution, Electrochemical Society Meeting, 1976, Abstr. 253.

    Google Scholar 

  52. G. J. Houston, The anodic evolution and dissolution-of chlorine in melts containing aluminium chloride, Thesis, University of New South Wales (1977).

    Google Scholar 

  53. L. J. J. Janssen and J. G. Hoogland, The effect of electrolytically evolved gas bubbles on the thickness of the diffusion layer. II, Electrochim. Acta 18, 543–550 (1973).

    CAS  Google Scholar 

  54. I. W. Wark, The physical chemistry of flotation. I. The significance of contact angle in flotation, J. Phys. Chem. 38, 623–644 (1933).

    Google Scholar 

  55. B. Mazza, P. Pedeferri, R. Piontelli, and A. Tognoni, Ricerche sullo sviluppo elettrodico di gas e sugli effetti anomali the lo accompagnano. III. Teoria e discussione, Electrochim. Metal. 2, 385–436 (1967).

    CAS  Google Scholar 

  56. N. Ibl, E. Adam, J. Venczel, and E. Schalch, Stofftransport bei der Elektrolyse mit Gasrührung, Chem. Ing. Tech. 43, 202–215 (1971).

    CAS  Google Scholar 

  57. N. Ibl and J. Venczel, Die elektrolytische Gasentwicklung, Oberfläche-Surface 13, 1–8 (1972).

    CAS  Google Scholar 

  58. U. Magrini, Tentativo di correlazione delle varibili nella trasmissione del calore in fluidi bifasi con aeriforme di origine elettrolitica, Calore 37, 125–134 (1966).

    CAS  Google Scholar 

  59. W. Fritz, Berechnung des Maximalvolumens von Dampfblasen, Phys. Z. 36, 379–384 (1935).

    Google Scholar 

  60. W. Fritz and W. D. Ende, Über den Verdampfungsvorgang nach kinematographischen aufnahmen von dampfblasen, Phys. Z. 37, 391–401 (1936).

    CAS  Google Scholar 

  61. F. Bashford and J. C. Adams, An Attempt to Test the Theories of Capillary Action, University Press, Cambridge (1883).

    Google Scholar 

  62. B. Kabanow and A. Frumkin, Über die Grösse elektrolytisch entwickelter Gasblasen, Z. Phys. Chem. 165, 433–452 (1933); 166, 316–317 (1933).

    Google Scholar 

  63. A. M. Arthur, The solubility of aluminum in cryolite-alumina metals and the mechanism of metal loss, Met. Trans. 5, 1225–1230 (1974).

    CAS  Google Scholar 

  64. R. C. Dorward, Reaction between aluminum and graphite in the presence of cryolite, Met. Trans. 4, 386–388 (1973).

    CAS  Google Scholar 

  65. G. Lippmann, Beziehungen zwischen den capillaren und elektrischen Erscheinungen, Ann. Phys. Chem. 149, 547 (1873).

    Google Scholar 

  66. H. G. Möller, Zur Theorie der Überspannung bei elektrolytischer Gasabscheidung, Ann. Phys. 25, 725–744 (1908).

    Google Scholar 

  67. H. G. Möller, Elektrolytische Vorgänge an der Elektrodenoberfläche. Überspannung und Elektrokapillarität, Z. Phys. Chem. 65, 226–254 (1909).

    Google Scholar 

  68. P. Drossbach and P. Krahl, Zur Kenntnis des Anodeneffekts. II, Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 62, 178–180 (1958).

    CAS  Google Scholar 

  69. R. Kind, Untersuchung des Stofftransports und der Rührwirkung bei gasentwickelnden elektroden, Diss. ETH Zürich (1975).

    Google Scholar 

  70. J. Venczel, Über den Stofftransport an gasentwickelnden Elektroden, Diss. ETH Zürich (1961).

    Google Scholar 

  71. N. IbI and J. Venczel, Stofftransport an gasentwickelnden Elektroden, Metalloberfläche 24, 365–374 (1970).

    Google Scholar 

  72. J. Venczel, Über Gasblasen bei elektrochemischen Prozessen, Elektrochim. Acta 15, 19091920 (1970).

    Google Scholar 

  73. A. Coehn and H. Neumann, Elektrostatische Erscheinungen an elektrolytisch entwickelten Gasblasen. I, Z. Phys. 20, 54–68 (1923).

    CAS  Google Scholar 

  74. L. J. J. Janssen and J. G. Hoogland, The effect of electrolytically evolved gas bubbles on the thickness of the diffusion layer, Electrochim. Acta 15, 1013–1023 (1970).

    CAS  Google Scholar 

  75. D. Landolt, R. Acosta, R. H. Muller, and C. W. Tobias, An optical study of cathodic hydrogen evolution in high-rate electrolysis, J. Electrochem. Soc. 117, 839–845 (1970).

    Google Scholar 

  76. I. Rousar, J. Kacfn, E. Lippert, F. Smirous, and V. Cezner, Transport of mass or heat to an electrode in the region of hydrogen evolution. II, Electrochim. Acta 20, 295–299 (1975).

    CAS  Google Scholar 

  77. L. J. J. Janssen, Mass transfer at gas evolving electrodes, Electrochim. Acta 23, 81–86 (1978).

    CAS  Google Scholar 

  78. M. J. Blandamer, F. Franks, K. H. Haywood, and A. C. Tory, Effect of added solutes on the size of hydrogen bubbles liberated from a cathodic wire in aqueous solutions, Nature (London) 216, 783–784 (1967).

    CAS  Google Scholar 

  79. J. F. Thorpe, J. E. Funk, and T. Y. Bong, Void fraction and pressure drop in a water electrolysis cell, J. Basic Eng. 92, 173–182 (1970).

    CAS  Google Scholar 

  80. A. Coehn, Wovon hängt das Haften und die Grösse elektrolytisch entwickelter Gasblasen ab? Z. Elektrochem. 29, 1–5, 88 (1923).

    Google Scholar 

  81. A. Coehn and H. Mozer, Über die Berührungselektrizität von Gasen gegen leitende und nichtleitende Flüssigkeiten, Ann. Phys. 43, 1048–1078 (1914).

    CAS  Google Scholar 

  82. I. V. Kadija, B. Z. Nikolié, and A. R. Despie, Mass transfer during gas evolution on the rotating double-ring electrode, J. Electroanal. Chem. Interfacial Electrochem. 57, 35–52 (1974).

    CAS  Google Scholar 

  83. E. A. Ukshe, G. V. Polyakova, and G. A. Medvetskaya, Dynamics of chlorine and magnesium in electrolysis of fused chlorides, J. Appl. Chem. USSR 33,2246–2251 (1960) [Zh. Prikl. Khim. 33 2279–2284 (1960).]

    Google Scholar 

  84. R. C. Hannah and B. J. Welch, The behaviour of chlorine bubbles in aluminium chloride reduction cells. 107th AIME Meeting Denver, 1978, Light Metals, Vol. 1, pp. 165–174.

    Google Scholar 

  85. A. V. Lookichev and W. W. Smeltzer, The development of a grooved periodic morphology on nickel-aluminum alloys electropolished under gaseous discharge, J. Electrochem. Soc. 126, 574–579 (1979).

    Google Scholar 

  86. M. G. Fouad and G. H. Sedahmed, Mass trasnfer at horizontal gas-evolving electrodes, Electrochim. Acta 18, 55–58 (1973).

    CAS  Google Scholar 

  87. M. G. Fouad, G. H. Sedahmed, and H. A. El-Abd, The combined effect of gas evolution and surface roughness on the rate of mass transfer, Electrochim. Acta 18, 279–281 (1973).

    CAS  Google Scholar 

  88. T. R. Beck, A contribution to the theory of electrolytic chlorate formation, J. Electrochem. Soc. 116, 1038–1041 (1969).

    CAS  Google Scholar 

  89. M. Green and P. H. Robinson, Kinetics of the cathodic reduction of anions, J. Electrochem. Soc. 106, 253–260 (1959).

    CAS  Google Scholar 

  90. J. Vondrâk and J. Balej, Influence of mercury on hydrogen overvoltage on solid metal electrodes. I., Electrochim. Acta 15, 1653–1665 (1970).

    Google Scholar 

  91. B. Roald and W. Beck, The dissolution of magnesium in hydrochloric acid, J. Electrochem. Soc. 98, 277–290 (1951).

    CAS  Google Scholar 

  92. N. Ibl, Probleme des Stofftransports in der angewandten Elektrochemie, Chem. Ing. Tech. 35, 353–361 (1963).

    CAS  Google Scholar 

  93. N. Ibl and G. Trümpler, Über zwei Elektrolyseprobleme mit linearer Diffusion bei Abwesenheit von Konvektion, Heiv. Chim. Acta 34, 1217–1223 (1951).

    CAS  Google Scholar 

  94. F. G. Cottrell, Der Reststrom bei galvanischer Polarisation, betrachtet als ein Diffusion-problem, Z. Phys. Chem. 42, 385 (1903).

    Google Scholar 

  95. I. Rousar and V. Cezner, Transfer of mass or heat to an electrode in the region of hydrogen evolution. I., Electrochim. Acta 20, 289–293 (1975).

    CAS  Google Scholar 

  96. L. J. J. Janssen and S. J. D. van Stralen, Bubble behaviour on and mass transfer to an oxygen-evolving transparent nickel electrode in alkaline solution, Electrochim. Acta 26, 1011–1022 (1981).

    CAS  Google Scholar 

  97. K. Stephan and H. Vogt, A model for correlating mass transfer data at gas-evolving electrodes, Electrochim. Acta 24, 11–18 (1979).

    CAS  Google Scholar 

  98. H. Schlichting, Grenzschichttheorie, 5th ed., Braun, Karlsruhe (1965). Boundary-Layer theory, 4th ed., McGraw-Hill, London (1960).

    Google Scholar 

  99. E. Polhausen, Der wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung, Z. Angew. Math. Mech. 1, 115–121 (1921).

    Google Scholar 

  100. V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

  101. L. J. J. Janssen and E. Barendrecht, The effect of electrolytic gas evolution on mass transfer at electrodes, Electrochim. Acta 24, 693–699 (1979).

    CAS  Google Scholar 

  102. N. Zuber, Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, Int. J. Heat Mass Transfer 6, 53–78 (1963).

    CAS  Google Scholar 

  103. L. Sigrist, Verfahrenstechnische Aspekte von Elektrolysezellen mit stark gasenden Elektroden, Diss. ETH Zürich (1978).

    Google Scholar 

  104. L. Sigrist, O. Dossenbach, and N. Ibl, Mass transport in electrolytic cells with gas sparging, Int. J. Heat Mass Transfer 22, 1393–1399 (1979).

    CAS  Google Scholar 

  105. N. Ibl, Notes on mass transfer at gas sparged electrodes, Electrochim. Acta 24, 1105–1108 (1979).

    CAS  Google Scholar 

  106. M. G. Fouad and G. H. Sedahmed, Effect of gas evolution on the rate of mass transfer at vertical electrodes, Electrochim. Acta 17, 665–672 (1972).

    CAS  Google Scholar 

  107. M. D. Birkett and A. Kuhn, Combined effects in mass transfer to a planar electrode, Electrochim. Acta 22, 1427–1429 (1977).

    CAS  Google Scholar 

  108. S. S. Kutateladze, Boiling Heat Transfer, Int. J. Heat Mass Transfer 4, 31–45 (1961).

    CAS  Google Scholar 

  109. W. G. Clark and J. A. McGeough, Temperature distribution along the gap in electrochemical machining, J. Appl. Electrochem. 7, 277–286 (1977).

    CAS  Google Scholar 

  110. H. Vogt, Heat transfer at gas-evolving electrodes, Electrochim. Acta 23, 1019–1022 (1978).

    CAS  Google Scholar 

  111. J. Thonstad, F. Nordmo, and K. Vee, On the anode effect in cryolite-alumina melts. I. Electrochim. Acta 18, 27–32 (1973).

    CAS  Google Scholar 

  112. A. Kerouanton, C. Gabrielli, M. Keddam, and V. Plichon, Etude de l’effet d’anode dans le cryolithe fondue à l’aide d’une régulation à impédance interne négative, Electroanal. Chem. Interf. Electrochem. 57, 273–277 (1974).

    CAS  Google Scholar 

  113. R. Tunold and T. Berge, The anode effect in a silver chloride/sodium chloride melt, Electrochim. Acta 19, 849–854 (1974).

    CAS  Google Scholar 

  114. J. W. Westwater and J. G. Santangelo, Photographic study of boiling, Ind. Eng. Chem. 47, 1605–1610 (1955).

    CAS  Google Scholar 

  115. A. Vajna de Pava, Ripresa cinematografica di alcuni fenomeni anodici nella elettrolisi ignea dell’allumina, Electrochim. Metal. 3, 376–378 (1968).

    Google Scholar 

  116. N. Zuber, On the stability of boiling heat transfer, J. Heat Transfer-Trans. ASME 80, 711–714, 718–720 (1958).

    Google Scholar 

  117. L. S. Tong, Boiling Heat Transfer and Two-Phase Flow, Wiley, New York (1965).

    Google Scholar 

  118. L. M. Milne-Thomson, Theoretical Hydrodynamics, p. 410, MacMillan, London (1960).

    Google Scholar 

  119. R. Lamb, Hydrodynamics,University Press, Cambridge (1932). a) p. 457, b) p. 462.

    Google Scholar 

  120. G. I. Taylor and D. J. Lewis, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Lond. A 201 192–196 (1950) (Taylor). Proc. R. Soc. Lond. A 202 81–96 (1950) (Lewis).

    Google Scholar 

  121. N. Zuber, Comment on: P. J. Berenson, Film boiling heat transfer from a horizontal surface, J. Heat Transfer-Trans. ASME 83, 357–358 (1961).

    Google Scholar 

  122. H. von Helmholtz, Über atmosphaerische Bewegungen. Zur Theorie von Wind und Wellen, Sitzungsber. Kgl. Preuss. Akad. Wiss. Berlin 761–780 (1889).

    Google Scholar 

  123. H. von Helmholtz, Die Energie der Wogen und des Windes, Sitzingsber. Kgl. Preuss. Akad. Wiss. Berlin 853–872 (1890).

    Google Scholar 

  124. S. S. Kutateladze, A hydrodynamic theory of changes in the boiling process under free convection conditions, Isv. Akad. Nauk. USSR Otd. Tekh. Nauk. No. 4, 529 (1951).

    Google Scholar 

  125. B. Mazza, P. Pedeferri, and A. Tognoni, Ricerche sull’ effetto anodico nelle celle per alluminio, Chimica Ind. 53, 123–132 (1971).

    CAS  Google Scholar 

  126. D. L. Katz, Comment on: N. Zuber, On the stability of boiling heat transfer, J. Heat Transfer-Trans. ASME 80, 716 (1958).

    Google Scholar 

  127. B. Mazza, P. Pedeferri, and G. Re, Hydrodynamic instabilities in electrolytic gas evolution, Electrochim. Acta 23, 87–93 (1978).

    CAS  Google Scholar 

  128. O. de Nora, Anwendung maßbeständiger aktivierter Titan-Anoden bei der Chloralkali-Elektrolyse. Chem. Ing. Tech. 42, 222–226 (1970).

    Google Scholar 

  129. J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, 3rd ed., p. 440, Clarendon Press, Oxford (1892).

    Google Scholar 

  130. Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 33, 3125–3131 (1962).

    CAS  Google Scholar 

  131. Lord Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium, Phil. Mag. 34, 481–502 (1892).

    Google Scholar 

  132. I. Runge, Zur elektrischen Leitfähigkeit metallischer Aggregate, Z. tech. Phys. 6, 61–68 (1925).

    Google Scholar 

  133. R. E. Meredith and C. W. Tobias, Reistance to potential flow through a cubical array of spheres, J. Appl. Phys. 31, 1270–1273 (1960).

    Google Scholar 

  134. D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I., Ann. Phys. 24, 659 (1935).

    Google Scholar 

  135. R. E. Meredith and C. W. Tobias, Conduction in heterogeneous systems, Adv. Electrochem. Electrochem. Eng. 2, 15–47 (1962).

    CAS  Google Scholar 

  136. K. W. Wagner, Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen, Arch. Elektrotechnik 2, 371–387 (1914).

    Google Scholar 

  137. R. E. de la Rue and C. W. Tobias, On the conductivity of dispersions, J. Electrochem. Soc. 106, 827–833 (1959).

    Google Scholar 

  138. J. C. R. Turner, Two-phase conductivity. The electrical conductance of liquid-fluidized bed of spheres, Chem. Eng. Sci. 31, 487–492 (1976).

    CAS  Google Scholar 

  139. D. J. Jeffrey, Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A 335, 355–376 (1973).

    Google Scholar 

  140. F. N. Peebles and H. J. Garber, Studies on the motion of gas bubbles in liquids, Chem. Eng. Prog. 49 (2), 88–97 (1953).

    CAS  Google Scholar 

  141. U. Haas, H. Schmidt-Traub, and H. Brauer, Umströmung kugelförmiger Blasen mit inderer Zirkulation, Chem. Ing. Tech. 44, 1060–1068 (1972).

    Google Scholar 

  142. J. Hadamard, Mouvement permanent lent d’une sphère liquide et visqueuse dans une liquide visqueuse. C.R. Acad. Sci. Paris 152, 1735–1817 (1911).

    Google Scholar 

  143. W. Rybczynsky, O ruchu postepowym kuli cieklej w osrodku lepkim.—Uber die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. Natur., Ser. A, 1911 Nr. 1A, 40–46.

    Google Scholar 

  144. A. A. Kaskas, Diss. Techn. University of Berlin (1971).

    Google Scholar 

  145. H. Brauer and H. Thiele, Bewegung von Partikelschwärmen, Chem. Ing. Techn. 45, 909–912 (1973).

    Google Scholar 

  146. J. F. Richardson and W. N. Zaki, Sedimentation and fluidization, Trans. Inst. Chem. Eng. 32, 35–53 (1954).

    CAS  Google Scholar 

  147. V. A. Kryukovskii, P. V. Polyakov, G. V. Forsblom, A. M. Tsyplakov, and V. V. Burnakin, The effect of anode current density on the gas content of aluminum electrolytic cells, Soy. J. Non-Ferrous Met. 13(12),50–52 (1972). [Tsvetn. Met. 45(12), 62–64 (1972)].

    Google Scholar 

  148. A. V. Nikitin, V. A. Kryukovskii, and N. S. Mikhalitsin, Gas impregnation and speed of anode gas flow in high-powered aluminum reduction cells, Soy. J. Non-Ferrous Met. 16(8) 37–40 (1975). [Tsvetn. Met. 48(8) 31–35 (1975).].

    Google Scholar 

  149. F. Hine, M. Yasuda, R. Nakamura, and T. Noda, Hydrodynamic studies of bubble effects on the IR-drops in a vertical rectangular cell, J. Electrochem. Soc. 122, 1185–1190 (1975).

    CAS  Google Scholar 

  150. F. Hine and K. Murakami, Bubble effects on the solution IR-drop in a vertical electrolyzer under free and forced convection, J. Electrochem. Soc. 127, 292 (1980).

    CAS  Google Scholar 

  151. C. W. Tobias, Effect of gas evolution on current distribution and ohmic resistance in electrolyzers, J. Electrochem. Soc. 106, 833–838 (1959).

    CAS  Google Scholar 

  152. J. E. Funk and J. F. Thorpe, Void fraction and current density distributions in a water electrolysis cell, J. Electrochem. Soc. 116, 48–54 (1969).

    CAS  Google Scholar 

  153. I. Rous“ar, Calculation of current density distribution and terminal voltage for bipolar electrolyzers. Application to chlorate cells, J. Electrochem. Soc. 116, 676–683 (1969).

    Google Scholar 

  154. I. Rousar, A. Regner, and V. Cezner, Calculation of the current density distribution and of the terminal voltage for flow electrolyzers, Coll. Czech. Chem. Comm. 31, 4193–4208 (1966).

    CAS  Google Scholar 

  155. I. Rouäar and V. Cezner, Calculation of the current density distribution and of the terminal voltage for flow electrolyzers with the use of criterion relations, Coll. Czech. Chem. Comm. 32, 1137–1151 (1967).

    Google Scholar 

  156. I. Rouäar, V. Cezner, and J. Hostomskÿ, Calculation of current density distribution and of terminal voltage for nonisothermal flow electrolyzerss, Coll. Czech. Chem. Comm. 33, 808–828 (1968).

    Google Scholar 

  157. I. Rouäar, V. Cezner, J. Nejepsovâ, M. M. Jakäic, M. Spasojevic, and B. Z. Nikolic, Calculation of local current densities and terminal voltage for a monopolar sandwich electrolyzer: Application to chlorate cells, J. Appl. Electrochem. 7, 427–435 (1977).

    Google Scholar 

  158. F. Beck, Kolbesynthese von Sebacinsäureestern in der Kapillarspaltzelle, Electrochim. Acta 18, 359–368 (1973).

    CAS  Google Scholar 

  159. Z. Nagy, Calculations on the effect of gas evolution on the current—overpotential relation and current distribution in electrolytic cells, J. Appl. Electrochem. 6, 171–181 (1976).

    CAS  Google Scholar 

  160. B. M. Kurgan and M. Ya. Fioshin, A method of determining the optimum spacing between electrodes by calculation of the gas-filling, Soy. Chem. Ind.,No. 11, 90 (1969). [Kltim. Prom. 45 870 (1969).]

    Google Scholar 

  161. H. Vogt, A hydrodynamic model for the ohmic interelectrode resistance of cells with vertical gas evolving electrodes, Electrochim. Acta 26, 1311–1317 (1981).

    CAS  Google Scholar 

  162. V. Schischkin and I. Dubkof, Über die theoretische Begründung der experimentellen Abhängigkeit der Badspannung vom Druck bei der Wasserelektrolyse, Z. Elektrochemie 40, 724–728 (1934).

    Google Scholar 

  163. J. Fleck, Chlorat-Elektrolyse, Chem. Ing. Tech. 43, 173–177 (1971).

    CAS  Google Scholar 

  164. J. R. Hodges, U.S. Pat. 4 075 077 (Pennwalt Corp.) (1978).

    Google Scholar 

  165. R. B. MacMullin, In: Chlorine. Its Manufacture, Properties and Uses, J. S. Sconce, Ed., p. 157, Reinhold, New York (1962).

    Google Scholar 

  166. K. Hass, New developments in the chlorine—alkali electrolysis process, Electrochem. Tech. 5, 247 (1967).

    Google Scholar 

  167. P. A. Danna, The effect of brine level on the voltage of mercury-type chlor-alkali cells, J. Electrochem. Soc. 121, 1286–1289 (1974).

    CAS  Google Scholar 

  168. A. T. Kuhn, Ed., Industrial Electrochemical Processes, p. 553, Elsevier, Amsterdam (1971).

    Google Scholar 

  169. K. Hass and P. Schmittinger, Developments in the electrolysis of alkali chloride solutions since 1970, Electrochim. Acta 21, 1115–1126 (1976).

    CAS  Google Scholar 

  170. J. Müller, Elektrodenformen gaserzeugender Elektrolysen und daraus resultierende Strömungs-und Spannungsverhältnisse, Chem. Ing. Tech. 49, 326–327 (1977).

    Google Scholar 

  171. S. S. Kutateladze and V. M. Borishanskii, A Concise Encyclopedia of Heat Transfer, p. 168, Pergamon Press, Oxford (1966).

    Google Scholar 

  172. H. Brauer and D. Mewes, Strömungswiderstand sowie stationärer Stoff-und Wärmeübergang an Blasen und Tropfen, Chem. Ing. Tech. 44, 953–956 (1972).

    Google Scholar 

  173. A. S. Tucker and C. A. Ward, Critical state of bubbles in liquid-gas solutions, J. Appl. Phys. 46, 4801 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vogt, H. (1983). Gas-Evolving Electrodes. In: Yeager, E., Bockris, J.O., Conway, B.E., Sarangapani, S. (eds) Comprehensive Treatise of Electrochemistry. Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6690-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6690-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6692-2

  • Online ISBN: 978-1-4615-6690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics