Skip to main content

Part of the book series: Comprehensive Treatise of Electrochemistry ((CTE))

Abstract

The porous electrode problem is not new in electrochemistry. Nevertheless in the 1960s in connection with an intensive development of the fuel cell investigations, the knowledge in this field has undergone considerable transformation. Earlier, the porous electrodes were only emphasized to be systems with distributed parameters. The effective transfer coefficients were considered as constants to be determined from experiments. Three-phase systems containing both gas and liquid in a porous catalyst had not been studied yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Vielstich, Brennstoffelemente, Verlag Chemie, GmBH. Weinheim/Bergstr. (1965).

    Google Scholar 

  2. E. Justi, M. Pilkuhn, W. Scheibe, and A. Winsel, Hochbelastbare Wasserstoff-DiffusionElectroden für Betrieb bei Umgebungstemperatur und Niederdruck, Verlag der Akademie der Wissenschaften und der Literatur in Mainz, Wiesbaden (1960).

    Google Scholar 

  3. J. O’M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).

    Google Scholar 

  4. L. W. Niedrach and H. R. Alford, A new high-performance fuel cell employing conductingporous-Teflon electrodes and liquid electrolytes, J. Electrochem. Soc. 112, 117–124 (1965).

    CAS  Google Scholar 

  5. Yu. G. Chirkov, I. A. Kedrinsky, and V. L. Kornienko, In: Itogi Nauki i Tekhniki, Seriya Elektrokhimiya, Yu. M. Polukarov, Ed., Vol. 11, pp. 176–220 VINITI Publishers, Moscow (1976).

    Google Scholar 

  6. V. G. Danilov, I. A. Kedrinsky, and Yu. G. Chirkov, Carrying out of reaction products during octane oxidation on hydrophobized electrodes, Elektrokhim. 14, 492 (1978).

    CAS  Google Scholar 

  7. V. G. Danilov, I. A. Kedrinsky, and Yu. G. Chirkov, Low-temperature octane oxidation on hydrophobized electrodes, Elektrokhim. 14, 1257–1260 (1978).

    CAS  Google Scholar 

  8. V. G. Danilov, I. A. Kedrinsky, Yu. G. Chirkov, F. R. Yuppetz, and G. L. Reznikov, Low-temperature electrochemical petrol B-70 oxidation on hydrophobized electrodes, Elektrokhim. 14, 1567–1570 (1978).

    CAS  Google Scholar 

  9. V. G. Danilov, I. A. Kedrinsky, and Yu. G. Chirkov, On amount of pores filling in hydrophobized electrodes by electrolyte and liquid reagent (octane), Electrokhim. 15, 328–332 (1979).

    CAS  Google Scholar 

  10. V. G. Danilov, I. A. Kedrinsky, and Yu. G. Chirkov, An maximum origin study at I,c curves in hydrophobized electrodes with liquid reagent (octane), Electrokhim. 15, 1296–1301 (1979).

    CAS  Google Scholar 

  11. N. V. Korovin, Electrochemical Generators (In Russian), Energhiya Publishers, Moscow (1974).

    Google Scholar 

  12. A. E. Scheidegger, The Physics of Flow Through Porous Media, Macmillan, New York (1961).

    Google Scholar 

  13. R. E. Collins, Flow of Fluids Through Porous Materials, Reinhold, New York (1961).

    Google Scholar 

  14. H. L. Ritter and L. C. Drake, Pore-size distribution in porous materials, Ind. Eng. Chem. Anal. Ed. 17, 782–786 (1945).

    CAS  Google Scholar 

  15. R. Kh. Burshtein, V. A. Vakhonin, M. R. Tarasevich, E. I. Khrushcheva, Yu. A. Chizmadzhev, and Yu. G. Chirkov, Oxygen production on the silver porous electrode, Elektrokhim. 6, 939–948 (1970).

    CAS  Google Scholar 

  16. E. Y. Weisman, Structural studies of porous electrodes, J. Electrochem. Soc. 114, 658–665 (1967).

    Google Scholar 

  17. S. Brunauer, The Adsoprtion of Gases and Vapors, Vol. I, Oxford University Press, Oxford (1944).

    Google Scholar 

  18. R. Kh. Burshtein, M. R. Tarasevich, and V. S. Vilinskaya, A study of hydrogen and oxygen adsorption on dispersed palladium, Elektrokhim. 3, 349–355 (1967).

    CAS  Google Scholar 

  19. M. R. Tarasevich, A. V. Dribinsky, and R. Kh. Burshtein, A study of the liquid—gas distribution in the porous catalyst—hydrophobizer system, Elektrokhim. 7, 1144–1148 (1971).

    Google Scholar 

  20. I. G. Abidor, Ya. B. Shimshelevich, and V. S. Bagotskii, A study of the properties of hydrophobic porous bodies by the penetration technique. I. One-component porous bodies, Elektrokhim. 9, 186–189 (1973).

    CAS  Google Scholar 

  21. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity, Academic Press, London and New York (1967).

    Google Scholar 

  22. S. W. Sing Kenneth, The characterization of porous solids by gas adsorption, Ber. Bunsenges. Phys. Chem. 79 (9), 724–730 (1975).

    Google Scholar 

  23. Halâsz Istvân and Martin Kornél, Bestimmung der porenverteilung (10–4000 A) von Festkörpern mit der methode der ausschluss-chromatographie, Ber. Bunsenges. Phys. Chem. 79 (9), 731–732 (1975).

    Google Scholar 

  24. V. S. Markin, Capillary equilibrium in porous media, report. I. Statement of the problem and the derivation of equations, Izv. Akad. Nauk SSR Ser. Khim. 9, 1523–1530 (1965).

    Google Scholar 

  25. A. A. Chernenko and Yu. A. Chizmadzhev, Concerning the theory of capillary equilibrium in a porous body, Dokl. Akad. Nauk SSSR 151, 392–395 (1963).

    CAS  Google Scholar 

  26. Yu. G. Chirkov and A. A. Chernenko, Capillary equilibrium calculation in random walk model, Elecktrokhim. 13, 1850–1853 (1977).

    CAS  Google Scholar 

  27. Yu. G. Chirkov and A. A. Chernenko, Capillary equilibrium near porous substance surface, Elektrokhim. 14, 529–534 (1978).

    CAS  Google Scholar 

  28. A. A. Chernenko and Yu. G. Chirkov, On capillary equilibrium theory in porous media, Elektrokhim. 14, 1013–1018 (1978).

    CAS  Google Scholar 

  29. A. A. Chernenko and Yu. G. Chirkov, Structure of division border gas/porous media in approximate serial model with autocorrelation of pore radius, Elektrokhim. 14, 1202–1204 (1978).

    CAS  Google Scholar 

  30. W. Feller, An Introduction to Probability Theory and Its Applications, 3d ed., Vol. 1, Wiley, New York (1968).

    Google Scholar 

  31. S. R. Broadbent and J. M. Hammersley, Percolation Processes, Proc. Cambridge Phil. Soc. 53, 629–645 (1957).

    CAS  Google Scholar 

  32. V. K. S. Shant and S. Kirkpatrick, An introduction to percolation theory, Adv. Phys. 20, 325–357 (1971).

    Google Scholar 

  33. J. W. Essam, In: Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, Eds., pp. 197–270, Academic Press, London and New York (1972).

    Google Scholar 

  34. M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensins, J. Math. Phys. 5, 1117–1127 (1964).

    Google Scholar 

  35. Yu. G. Chirkov and V. S. Markin, Calculation in the percolation problem. III. The percolation probability, Elektrokhim. 12, 1019–1024 (1976).

    Google Scholar 

  36. Yu. G. Chirkov, On percolation problem. IV. Asymptotical method of estimate of percolation threshold, Elektrokhim. 13, 1026–1031 (1977).

    CAS  Google Scholar 

  37. Yu. G. Chirkov, On percolation problem. VI. A semi-infinite porous media, Elektrokhim. 13, 1304–1310 (1977)

    Google Scholar 

  38. Yu. G. Chirkov, Porous electrodes and percolation, Elektrokhim. 14, 903–906 (1978).

    CAS  Google Scholar 

  39. S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys. 45, 574–588 (1973).

    Google Scholar 

  40. O. S. Ksenzhek, E. A. Kalinovskii, and L. P. Tsyganok, Capillary Equilibrium in Porous media with intersecting pores. II. Substitution of gases for liquids in porous media, Zh. Fiz. Chim. 38, 2587–2593 (1964).

    CAS  Google Scholar 

  41. A. G. Pshenichnikov and V. N. Zhuravleva, Concerning the structure of porous gas electrodes, Elektrokhim. 6, 998–1002 (1970).

    CAS  Google Scholar 

  42. Yu. A. Chizmadzhev, V. S. Markin, M. R. Tarasevich, and Yu. G. Chirkov, Macro kinetics of Processes in Porous Media, Nauka Publishers, Moscow (1971).

    Google Scholar 

  43. S. S. Bartenev, The filtration coefficient and the pore size distriubtion within underformable porous materials. I. Methods of determining the pore size distriubtion, Zh. Fiz. Chim. 49, 1472–1475 (1975).

    CAS  Google Scholar 

  44. Yu. G. Chirkov, Capillary equilibrium in hydrophilic-hydrophobic Media. II. Filling of Homogeneous Irregular Lattices with Liquids, Elektrokhim. 7, 1212–1215 (1971).

    CAS  Google Scholar 

  45. R. P. Mayer and R. A. Stowe, Mercury porosimetry—breakthrough pressure for penetration between packed spheres, J. Colloid Sci. 20, 893–911 (1965).

    CAS  Google Scholar 

  46. R. P. Iczkowski, Breakthrough pressure for random sphere packings, Ind. Eng. Chem. Fund. 6, 263–265 (1967).

    CAS  Google Scholar 

  47. Yu. G. Chirkov and A. A. Chernenko, On interpretation of mercury poremetry data, Elektrokhim. 15, 697–700 (1979).

    CAS  Google Scholar 

  48. E. E. Petersen, Chemical Reaction Analysis, Prentice-Hall„ Englewood Cliffs, NJ (1965).

    Google Scholar 

  49. R. Aris, Introduction to the Analysis of Chemical Reactors, Englewood Cliffs, NJ (1965).

    Google Scholar 

  50. O. S. Ksenzhek, E. A. Kalinovskii, and V. P. Tysyachnyi, Diffusion and flow of gases through the nickel porous electrodes Zh. Prikladn. Khim. 37, 2619–2624 (1964).

    CAS  Google Scholar 

  51. G. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond. A 219, 186–203 (1953).

    CAS  Google Scholar 

  52. P. G. Saman, A theory of dispersion in a porous medium, J. Fluid Mech. 6, 321–349 (1959).

    Google Scholar 

  53. V. N. Nikolaevskii, A capillary model of diffusion in porous media, Izv. Akad. Nauk SSSR Mekh. Mashinostr. 4, 146–149 (1959).

    Google Scholar 

  54. V. N. Nikolaevskii, Convective diffusion in porous media, Prikl. Mat. Mekh. 23, 1042–1050 (1959).

    Google Scholar 

  55. H. Kramers and G. Alberda, Frequency response analysis of continuous flow systems, Chem. Eng. Sci. 2, 173–181 (1953).

    CAS  Google Scholar 

  56. H. A. Dean, A mathematical model for dispersion in the direction of flow in porous media, Soc. Petr. Eng. J. 3, 49–52 (1953).

    Google Scholar 

  57. V. G. Levich, V. S. Markin, and Yu. A. Chizmadzhev, On hydrodynamic mixing in a model of a porous medium with stagnant zones, Chem. Eng. Sci. 22, 1357–1367 (1967).

    CAS  Google Scholar 

  58. G. A. Turner, Dispersion in flow through pipes and paced beds, Br. Chem. Eng. 9, 376–383 (1964).

    CAS  Google Scholar 

  59. J. O. Hirschfelder, Ch. F. Curtis and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, and Chapman and Hall, London (1954).

    Google Scholar 

  60. L. D. Landau and E. M. Lifshitz, Mechanics of Continuous Media, GITTL, Moscow (1950).

    Google Scholar 

  61. V. G. Levich, Physical and Chemical Hydrodynamics, Fizmatghiz, Moscow (1959).

    Google Scholar 

  62. (a). D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Nauka Publishers, Moscow (1968).

    Google Scholar 

  63. P. Hugo, Gastransport im übergangsgebeit zwischen Khudsenbereich and laminarströmung, Ber. Bunsenges. Phys. Chem. 79 (9), 748–758 (1975).

    CAS  Google Scholar 

  64. M. Kotter, P. Lovera, and L. Riekert, Zur bestimmung effektiver diffusions-koeffizienten in porösen katalysatoren, Ber. Bunsenges. Phys. Chem. 79 (9), 807–808 (1975).

    CAS  Google Scholar 

  65. E. Schutt and K. Will, Experimentelle untersuchung der diffusion von gasen in porösen feststoffen mit unterschiedlichen porenspektren, Ber. Bunsenges. Phys. Chem. 79 (9), 763–765 (1975).

    Google Scholar 

  66. U. Wiesmsnn, Einige bemerkungen zur auswertung stationärer messunger bei der diffusion von gasen in porösen feststoffen mit unterschiedlichen porendurchmessern, Ber. Bunsenges. Phys. Chem. 79 (9), 765–767 (1975).

    Google Scholar 

  67. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, GITTL, Moscow (1959).

    Google Scholar 

  68. V. V. Skorokhod, On the electrical conductivity of dispersed mixtures of conductors with insulators, Inzh. Fiz. Zh. 2 (8), 51–58 (1959).

    Google Scholar 

  69. B. J. Last and D. J. Thouless, Percolation theory and electrical conductivity, Phys. Rev. Lett. 27, 1719–1721 (1971).

    CAS  Google Scholar 

  70. Yu. G. Chirkov, A theory of electrical conductivity of porous media. I. Limiting electrical conductivity of regular lattices partly filled with electrolyte, Elektrokhim. 7, 1512–1515 (1971).

    CAS  Google Scholar 

  71. Yu. G. Chirkov, A theory of electrical conductivity of porous media completely filled with elelctrolyte. II. The method of successive approximations, Elektrokhim. 8, 1187–1191 (1972).

    CAS  Google Scholar 

  72. Ya. B. Zel’dovich, Concerning the theory of reaction on a porous or powdery material, Zh. Fiz. Khim. 13, 163–169 (1939).

    Google Scholar 

  73. A. N. Frumkin, On the distribution of the corrosion process over the length of a tube, Zh. Fiz. Khim. 23, 1477–1482 (1949).

    CAS  Google Scholar 

  74. O. S. Ksenzhek, Diffusion conditions of operation of the porous electrodes, Zh. Fiz. Khim. 36, 243–248 (1962).

    CAS  Google Scholar 

  75. K. Micka, Zur theory der porösen electroden. I. Grundgleichungen, Coll. Czech. Chem. Commun. 29, 1998–2007 (1964).

    Google Scholar 

  76. V. S. Daniel’-Bek, Concerning the polarization of porous electrodes. I.On the distribution of current and potential inside an electrode, Zh. Fiz. Khim. 22, 697–710 (4948).

    Google Scholar 

  77. O. S. Ksenzhek, Macrokinetics of processes on porous electrodes, Electrochim. Acta 9, 629–637 (1964).

    CAS  Google Scholar 

  78. L. Austin and H. Lerner, The mode of operation of porous diffusion electrodes. I. Simple redox systems, Eleectrochem. Acta 9, 1469–1481 (1964).

    CAS  Google Scholar 

  79. I. G. Gurevich, Yu. M. Vol’fkovich, and V. S. Bagotskii, Liquid Porous Electrodes, Nauka i Tekhnika Publishers, Minsk (1974).

    Google Scholar 

  80. O. S. Ksenzhek and V. V. Stender, On the Distribution of Current in a Porous Electrode, Dokl. Akad. Nauk SSSR 107, 280–283 (1956).

    CAS  Google Scholar 

  81. J. Euler and W. Nonnenmacher, Stromverteilung in porösen elektroden, Elektrochim. Acta 2, 268–286 (1960).

    CAS  Google Scholar 

  82. J. S. Newman and C. W. Tobias, Theoretical analysis of current distribution in porous electrodes, J. Electrochem. Soc. 109, 1183–1191 (1962).

    CAS  Google Scholar 

  83. S. Srinivasan, H. D. Hurwitz, and J. O’M. Bockris, Fundamental equations of electrochemical kinetics at porous gas-diffusion electrodes, J. Chem. Phys. 46, 3108–3122 (1967).

    CAS  Google Scholar 

  84. R. de Levie, In: Advances in Electrochemistry and Electrochemical Engeineering, P. Delahay, Ed., Vol. 6, pp. 329–397, Wiley, New York and London (1967).

    Google Scholar 

  85. J. J. Coleman, Distribution of current in porous electrodes, J. Electrochem. Soc. 98, 26–30 (1951).

    CAS  Google Scholar 

  86. J. Euler, The variation of the current distribution in porous manganese dioxide electrodes during discharge, Electrochim. Acta 7, 205–223 (1962).

    CAS  Google Scholar 

  87. K. Micka, In: Fuel Cell Systems, Advances in Chemistry, Series 47, R. F. Gould, Ed., pp. 73–82, American Chemical Society, Washington, D.C. (1965).

    Google Scholar 

  88. V. S. Daniel’-Bek, Concerning the polarization of porous electrodes. III. Operation of a porous electrode in the region of low polarization, Elektrokhim. 1, 1319–1324 (1965).

    Google Scholar 

  89. A. Winsel, Current distribution in porous electrodes, Z. Electrochem. 66, 287–304 (1962).

    CAS  Google Scholar 

  90. F. A. Posey, Methods for the calculation of polarization in porous electrodes, J. Electrochem. Soc. 111, 1173–1181 (1964).

    CAS  Google Scholar 

  91. A. S. Chudinov and N. V. Korovin, Computer-aided analysis of porous electrode operation. I. A liquid porous electrode with diffusion rear-wall supply of the reactants, Elektrokhim. 3, 311–315 (1976).

    Google Scholar 

  92. I. G. Gurevich and V. S. Bagotsky, Porous electrodes with liquid reactants under steady-state operating conditions, Electrochim. Acta. 9, 1151–1176 (1964).

    Google Scholar 

  93. I. G. Gurevich and V. S. Bagotsky, Steady-state operation of a porous electrode polarized from one side with diffusion supply of liquid reactants from both sides, Electrochim. Acta 12, 593–614 (1967).

    CAS  Google Scholar 

  94. L. Austin, Tafel slopes for flooded diffusion electrodes, Trans. Faraday Soc. 60, 1319–1324 (1964).

    CAS  Google Scholar 

  95. I. A. Zaidenman and R. M. Perskaya, On the liqiud diffusion electrodes (original slope of polarization curves), Zh. Fiz. Khim. 33, 50–57 (1959).

    CAS  Google Scholar 

  96. A. Borucka and J. N. Agar, An electrical analogue for meniscus gas electrodes, Electrochim. Acta 11, 603–621 (1966).

    CAS  Google Scholar 

  97. R. Iczkovsky, Polarization characteristics of the hydrogen gas diffusion electrodes, J. Electrochem. Soc. 111, 605–609 (1964).

    Google Scholar 

  98. S. Srinivasan and H. D. Hurwitz, Theory of a thin-film model of porous gas diffusion electrodes, Electrochim. Acta 12, 495–512 (1967).

    CAS  Google Scholar 

  99. (a). J. O’M. Bockris and E. D. Cahan, Effect of a finite-contact-angle meniscus on kinetics in porous electrode systems, J. Chem. Phys. 50, 1307–1324 (1969).

    Google Scholar 

  100. A. Winsel, Transportvorgänge in porösen elektroden, Ber. Bunsenges. Phys. Chem. 79 (9), 827–836 (1975).

    CAS  Google Scholar 

  101. R. Kh. Burshtein, A. G. Pshenichnikov, and N. A. Shumilova, Concerning the mechanism of operation of the diffusion electrodes, Dokl. Akad. Nauk SSSR 143, 1409–1412 (1962).

    CAS  Google Scholar 

  102. O. S. Ksenzhek, In: Fuel Cells, Some Problems of Their Theory, pp. 5–17, Nauka, Moscow (1964).

    Google Scholar 

  103. Yu. G. Chirkov and Yu. A. Chizmadzhev, On the mechanism of current generation in a porous gas electrode, a report. I. Diffusion in the o-phase, Izv. Akad. Nauk SSSR Ser. Khim, pp. 225–234 (1964).

    Google Scholar 

  104. Yu. A. Chizmadzhev, Some problems of the theory of porous gas electrodes, Elektrokhim. 2, 3–43 (1966).

    Google Scholar 

  105. F. G. Will, Electrochemical oxidation of hydrogen on partially immersed platinum electrodes. II. Theoretical treatment, J. Electrochem. Soc. 110, 152–160 (1963).

    CAS  Google Scholar 

  106. M. B. Knaster and M. I. Temkin, Rate of hydrogen ionization on active electrodes, Dokl. Akad. Nauk SSSR 152, 658–661 (1963).

    CAS  Google Scholar 

  107. R. de Levie, On porous electrodes in electrolyte solutions, Electrochim. Acta 8, 751–780 (1963).

    Google Scholar 

  108. E. Justi and H. Kleinschmager, Geometrically arranged gas diffusion electrodes, Z. Naturforsch. A 20, 1725–1727 (1965).

    Google Scholar 

  109. (a). H. Thiele and A. Wiechen, Elektroden mit isoporen für brennstoffzellen, Z. Naturforsch. A 22, 1571–1574 (1967).

    Google Scholar 

  110. H. Grüne, Modellbetrachtungen zum gas—electrolyt—haushalt von gestützten gasdiffusionselektroden für brennstoffzellen, SiemensForschr. Entwickl.-Ber. 6 (6), 364–370 (1977).

    Google Scholar 

  111. R. Kh. Burshtein, V. S. Markin, A. G. Pshenichnikov, Yu. A. Chizmadzhev, and Yu. G. Chirkov, The relationship between structure and electrochemical properties of porous gas electrodes, Electrochim. Acta 9, 733–787 (1964).

    Google Scholar 

  112. A. G. Pshenichnikov, Some problems of the theory of porous electrodes, Dokl. Akad. Nauk 148, 1121–1124 (1963).

    CAS  Google Scholar 

  113. N. S. Lidorenko and V. A. Onishchuk, Concerning the effect of mass transfer in the gaseous phase upon the operation of a fuel cell, Dokl. Akad. Nauk SSSR 201, 1389–1392 (1971).

    CAS  Google Scholar 

  114. L. M. Pis’men and S. I. Kuchanov, The effect of large-scale transport processes on the steady-state conditions of operation of the gas-liquid cells, Dokl. Akad. Nauk SSSR 203, 163–166 (1972).

    Google Scholar 

  115. E. A. Grens, R. M. Turner, and T. Katan, A model for analysis of porous gas electrodes, Adv. Energy Conversion 4, 109–119 (1964).

    CAS  Google Scholar 

  116. E. Grens, Analysis, of operation of porous gas electrodes with two superimposed scales of pore structure, Indust. Eng. Chem. Fund. 5, 542–547 (1966).

    CAS  Google Scholar 

  117. R. Brown and J. Rockett, Theory of the performance of porous fuel cell electrodes, J. Electrochem. Soc. 113, 207–213 (1966).

    Google Scholar 

  118. A. P. Baranov, G. V. Shteinberg, and V. S. Bagotskii, A study of the hydrophobized active layer of the gas-diffusion electrode, Elektrokhim. 7, 387–390 (1971).

    CAS  Google Scholar 

  119. L. G. Austin and S. Almaula, An experimental study of the mode of operation of porous gas-diffusion electrodes with hydrogen fuel, J. Electrochem. Soc. 114, 927–933 (1967).

    CAS  Google Scholar 

  120. R. G. Halderman, W. P. Coleman, S. H. Langer, and W. A. Barber, Adv. Chem. Ser. 47, 106 (1965).

    Google Scholar 

  121. G. V. Elmore and H. A. Tanner, Intermediate temperature fuel cells, J. Electrochem. Soc. 108, 669–671 (1961).

    CAS  Google Scholar 

  122. W. T. Grubb and C. J. Michalske, A simple gas structure for the evaluation of catalysts (electrocatalysts) in working fuel cells, J. Electrochem. Soc. 111, 477–478 (1964).

    CAS  Google Scholar 

  123. C. Bianchi, Improved porous electrode for studying electrocatalytic actions of gases and vapors, J. Electrochem. Soc. 112, 233–235 (1965).

    CAS  Google Scholar 

  124. V. S. Bagotskii, G. V. Shteinberg, N. A. Urisson, L. N. Mokrousov, I. I. Astakhov, Z. I. Kudryavtseva, and A. P. Baranov, Concerning the structure of the hydrophobized layer of a catalyst, Elektrokhim. 6, 1045–1048 (1970).

    CAS  Google Scholar 

  125. R. Kh. Burshtein, A. V. Dribinskii, Yu. I. Kryukov, A. G. Pshenichnikov, and M. R. Tarasevich, A study of the structure of a fluoroplastic-catalyst porous system, Elektrokhim. 6, 1356–1359 (1970).

    CAS  Google Scholar 

  126. G. V. Shteinberg, Yu. G. Chirkov, A. P. Baranov, and V. S. Bagotskii, A model of the hydrophobized electrode structure, Elektrokhim. 8, 1044–1047 (1972).

    CAS  Google Scholar 

  127. Yu. G. Chirkov, Capillary equilibrium in hydrophobized electrode. I. A model of packed spheres of constant radius, Elektrokhim. 7, 1341–1345 (1971).

    CAS  Google Scholar 

  128. Yu. G. Chirkov, On the mechanism of filling the hydrophobized electrodes with gas, Elektrokhim. 8, 1661–1665 (1975).

    Google Scholar 

  129. I. G. Abidor, V. S. Bagotskii, and Yu. M. Vol’fkovich, The effect of the structure of the hydrophobized electrode on its electrochemical characteristics, Elektrokhim. 10, 1628–1634 (1974).

    CAS  Google Scholar 

  130. H. J. Zeliger, Fuel cell performance as a function of catalyst surface area, J. Electrochem. Soc. 114, 144–145 (1967).

    CAS  Google Scholar 

  131. F. G. Will and D. J. Ben Daniel, Significance of electrolyte films for performance porous hydrogen elecctrodes. I. Film model, J. Electrochem. Soc. 116, 933–937 (1969).

    CAS  Google Scholar 

  132. J. Giner and C. Hunter, The mechanism of operation of the Teflon-bonded gas diffusion electrode: A mathematical model, J. Electrochem. Soc. 116, 1124–1130 (1969).

    CAS  Google Scholar 

  133. P. Ruetschi and J. B. Ockerman, Polarization of partly wetted porous electrodes, J. Electrochem. Soc. 116, 1222–1227 (1969).

    Google Scholar 

  134. Yu. G. Chirkov and Yu. A. Chizmadzhev, In: Itogi Nauki i Tekhniki, Seriya Elektrokhimiya, Yu. M. Polukarov, Ed., Vol. 9, pp. 5–45, VINITI Publishers, Moscow (1974).

    Google Scholar 

  135. Yu. G. Chirkov, Distinction between the hydrophobized and hydrophilic electrodes. V. The role of the electrode structure, Elektrokhim. 11, 544–551 (1975).

    CAS  Google Scholar 

  136. Yu. G. Chirkov, The relationship between the activity of the hydrophobized electrode and its structure. II. Multicomponent systems, Elektrokhim. 11, 403–409 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chizmadzhev, Y.A., Chirkov, Y.G. (1983). Porous Electrodes. In: Yeager, E., Bockris, J.O., Conway, B.E., Sarangapani, S. (eds) Comprehensive Treatise of Electrochemistry. Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6690-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6690-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6692-2

  • Online ISBN: 978-1-4615-6690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics