Advertisement

Matroids: Further Theory

  • Martin Aigner
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 234)

Abstract

After our discussion of the basics of matroid theory in the previous chapter, we are now going to study in detail the most important classes of matroids: Linear matroids, binary and regular matroids, graphic and transversal matroids. The emphasis lies here on the characterization of these matroids and on applications to concrete combinatorial problems.

Keywords

Planar Graph Parallel Extension Fano Plane Coordinatization Matrix Maximal Plane Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 3.
    Rado, R.: Note on independence functions. Proc. London Math. Soc. 7, 300–320 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 5.
    See also Erdös-Turan. Tutte, W. T.:A homotopy theorem for matroids, I and II. Trans. Amer. Math. Soc. 88, 144–174 (1958).Google Scholar
  3. 6.
    See also Erdös-Turan. Tutte, W. T.:Matroids and graphs. Trans. Amer. Math. Soc. 90, 527–552 (1959).Google Scholar
  4. 10.
    See also Erdös-Turan. Tutte, W. T.:Lectures on matroids. J. Res. Nat. Bur. Stand. 69B, 1–48 (1965).Google Scholar
  5. 1.
    Ingleton, A. W.: Representation of matroids. Combinatorial Math. and its Applications (Welsh, ed.), 149–169. London, New York: Acad. Press (1971).Google Scholar
  6. 1.
    Piff, M. J.-Welsh, D. J. A.: On the vector representation of matroids. J. London Math. Soc. 2 284–288 (1970).MathSciNetGoogle Scholar
  7. 2.
    Mason, J. H.: Geometrical realization of combinatorial geometries. Proc. Amer. Math. Soc. 30 (1), 15–21 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 1.
    Davis, R. L.: The number of structures of finite relations. Proc. Amer. Math. Soc. 4, 486–495 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 1.
    Lehman, A.: A solution of the Shannon switching game. SIAM J. 12, 687–725 (1964).MathSciNetzbMATHGoogle Scholar
  10. 2.
    Minty, G. J.: On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network programming. Journ. Math. Mech. 15, 485–520 (1960).MathSciNetGoogle Scholar
  11. 10.
    See also Erdös-Turan. Tutte, W. T.:Lectures on matroids. J. Res. Nat. Bur. Stand. 69B, 1–48 (1965).Google Scholar
  12. 1.
    Bland, R. G.-Las Vergnas, M.: Orientability of matroids. J. Comb. Theory (B) 24, 94–123 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 1.
    Biggs, N.: Algebraic Graph Theory. London: Cambridge University Press (1974).zbMATHGoogle Scholar
  14. 1.
    Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34, 339–362 (1932).MathSciNetCrossRefGoogle Scholar
  15. 2.
    Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54, 150–168 (1932).MathSciNetCrossRefGoogle Scholar
  16. 6.
    Whitney, H.: Planar graphs. Fund. Math. 21, 73–84 (1933).Google Scholar
  17. 1.
    Graver, J. E.-Yackel, J.: Some graph theoretic results associated with Ramsey’s theorem. J. Comb. Theory 4, 125–175 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 1.
    Ford, L. R.-Fulkerson, D. R.: Flows in Networks. Princeton: Princeton Univ. Press (1962).Google Scholar
  19. 3.
    Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 1.
    Brualdi, R. A.: A very general theorem on systems of distinct representatives. Trans. Amer. Math. Soc. 140, 149–160 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 5.
    Brualdi, R. A.: Generalized transversal theory. Théorie des Matroides (Bruter, ed.), 5–31. Lecture Notes Math. 211, Springer-Verlag (1971).Google Scholar
  22. 6.
    Brualdi, R. A.: On families of finite independence structures. Proc. London Math. Soc. 22, 265–293 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 2.
    Ingleton, A. W.: A geometrical characterization of transversal independence structures. Bull. London Math. Soc. 3, 47–51 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 4.
    Ingleton, A. W.: Transversal matroids and related structures. Higher Combinatorics (Aigner, ed.), 117–131. Dordrecht: Reidel (1977).Google Scholar
  25. 1.
    Ingleton, A. W.-Piff, M. J.: Gammoids and transversal matroids. J. Comb. Theory 15, 51–68 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 1.
    Welsh, D. J. A.-Woodall, D. R.: Combinatorics (eds.). Combinatorics Inst. of Math. and Appl. Oxford (1972).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Martin Aigner
    • 1
  1. 1.II. Institut für MathematikFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations