Skip to main content
Book cover

Chemotherapy pp 327–361Cite as

Pyrimidine Antagonists

  • Chapter

Part of the book series: Cancer ((C,volume 5))

Abstract

In order for any pathological state to be treated successfully by chemotherapy, an exploitable biochemical difference must exist between the host and its unwelcome visitor. While this approach has been eminently successful in the case of bacterial, fungal, and, to some extent, parasitic infections, less impressive results, unfortunately, have been obtained with neoplastic disease. The reasons for this dichotomy become obvious when metabolic and structural differences between the host and the invading organisms are enumerated, differences that may be exploited with metabolic antagonists that are selectively toxic to the offending cells, but do little or no damage to the host. The rationale for this fact has been amply documented in the case of the microbial antibiotics, and has become the key to successful chemotherapy. Thus, the peptidoglycan component of the bacterial cell wall, a material completely foreign to animal cells, is impaired at specific steps in its synthesis by penicillin and bacitracin with little detriment to the host (Strominger, 1968–1969; Storm and Strominger, 1974). In a similar vein, the cell wall of fungi is damaged by the polyene antibiotics (Novak, 1971).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aull, J. L., Lyon, J. A., and Dunlap, R. B., 1974, Separation, identification and stoichiometry of the ternary complexes of thymidylate synthetase, Arch. Biochem. Biophys. 165: 805.

    Article  PubMed  CAS  Google Scholar 

  • Baguley, B. D., amd Falkenhaug, E. M., 1971, Plasma half-life of cytosine arabinoside (NSC-63878) in patients treated for acute myeloblastic leukemia, Cancer Chemother. Rep. 55: 291.

    PubMed  CAS  Google Scholar 

  • Baranski, K., Bardos, T. J., Bloch, A., and Kalman, T. I., 1969, 5-Mercaptodeoxyuridine—its enzymatic synthesis and mode of action in microbial systems, Biochem. Pharmacol. 18: 347.

    Google Scholar 

  • Bardos, T. J., Aradi, J., Ho, Y. K., and Kalman, T. I., 1975, Biochemical properties of 5-sulfur-substituted pyrimidine nucleosides and nucleotides, Ann. N. Y. Acad. Sci. 255: 522.

    Article  PubMed  CAS  Google Scholar 

  • Barner, H. D., and Cohen, S. S., 1957, The isolation and properties of amino acid requiring mutants of a thymineless bacterium, J. Bacteriol. 74: 350.

    PubMed  CAS  Google Scholar 

  • Barranco, S. C., and Novak, S. C., 1974, Survival responses of dividing and non-dividing mammalian cells after treatment with hydroxyurea arabinosyl cytosine or adriamycin, Cancer Res. 34: 1616.

    Google Scholar 

  • Barranco, S. C., Luce, J. K., Romsdahl, M. M., and Humphrey, R. M., 1973, Bleomycin as a possible synchronizing agent for human tumor cells in vivo, Cancer Res. 33: 882.

    PubMed  CAS  Google Scholar 

  • Baskin, F., Carlin, S. C., Kraus, P., Friedkin, M., and Rosenberg, R. N., 1975, Experimental chemotherapy of neuroblastoma, II. Increased thymidylate synthetase activity in a 5fluorodeoxyuridine resistant variant of mouse neuroblastoma, Mol. Pharmacol. 11:105.

    Google Scholar 

  • Bellisario, R. L., Maley, G. F., Galivan, J. H., and Maley, F., 1976, The amino acid sequence at the FdUMP binding site of thymidylate synthetase, Proc. Natl. Acad. Sci. 73: 1848.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, W., and Feeney, R. J., 1950, The isolation of a new thymine pentoside from sponges, J. Amer. Chem. Soc. 72: 2809.

    Article  CAS  Google Scholar 

  • Bertani, L. E., Häggmark, A., and Reichard, P., 1963, Enzymatic synthesis of deoxyribonucleotides, II. Formation and interconversion of deoxyuridinephosphates, J. Biol. Chem. 238: 3407.

    PubMed  CAS  Google Scholar 

  • Bhuyan, B. K., Fraser, T. J., Gray, L. G., Kuentzel, S. L., and Neil, G. L., 1973, Cell-kill kinetics of several S-phase-specific drugs, Cancer Res. 33: 888.

    PubMed  CAS  Google Scholar 

  • Bodey, G. P., Freireich, E. J., Monto, R. W., and Hewlett, J. S., 1969, Cytosine arabinoside (NSC-63878) therapy for acute leukemia in adults, Cancer Chemother. Rep. 53: 59.

    PubMed  CAS  Google Scholar 

  • Bonadonna, G., Brusamolino, E., Valagussa, P., Rossi, A., Brugantelli, L., Brambilla, C., De Lena, M., Tancini, G., Bajetta, E., Musumeci, R., and Veronesi, U., 1976, Combination chemotherapy as an adjuvant treatment in operable breast cancer, N. Engl. J. Med. 294: 405.

    Article  PubMed  CAS  Google Scholar 

  • Borsa, J., Whitmore, G. F., Valeriote, F. A., Collins, P., and Bruce, W. R., 1969, Studies on the persistance of methotrexate, cytosine arabinoside, and leukovorin in serum of mice, J. Natl. Cancer Inst. 42: 235.

    PubMed  CAS  Google Scholar 

  • Bosch, L., Habers, E., and Heidelberger, C., 1958, Studies on fluorinated pyrimidines, V. Effects on nucleic acid metabolism in vitro, Cancer Res. 18: 335.

    PubMed  CAS  Google Scholar 

  • Brenkman, W. D., Jr., Chu, M.-Y., and Fischer, G. A., 1973, Schedule dependence of the lethal effects of 6-azauridine and cytosine arabinoside in murine leukemia cells (L51784) in culture, Biochem. Biophys. Res. Commun. 52: 1368.

    Article  Google Scholar 

  • Brockman, R. W., Shaddix, S. C., Williams, M., Nelson, J. A., Rose, L. M., and Schabel, F. M., JR., 1975, The mechanism of action of 3-deazauridine in tumor cells sensitive and resistant to arabinosyl cytosine, Ann. N. Y. Acad. Sci. 225: 501.

    Article  Google Scholar 

  • Broome, J. D., 1963, Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance, J. Exp. Med. 118: 99.

    Article  CAS  Google Scholar 

  • Bruce, W. R., and Meeker, W. R., 1967, Comparison of the sensitivity of hematopoetic colony forming cells in different proliferative states to 5-fluorouracil, J. Natl. Cancer Inst. 38: 401.

    PubMed  CAS  Google Scholar 

  • Burchenal, J. H., Currie, V. E., Dowling, M. D., Fox, J. J., and Krakoff, I. H., 1975, Experimental and clinical studies on nucleoside analogs as antitumor agents, Ann. N.Y. Acad. Sci. 255: 202.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Doolittle, C. H., III, Heppner, G. H., and Mcdonald, C. J., 1975, Nucleoside analogs in the treatment of nonneoplastic diseases, Ann. N. Y. Acad. Sci. 255: 190.

    Article  PubMed  CAS  Google Scholar 

  • Camiener, G. W., and Smith, G. G., 1965, Studies on the enzymatic deamination of cytosine arabinoside. I. Enzymatic distribution and species specificity, Biochem. Pharmacol. 14:1405.

    Google Scholar 

  • Cardoso, S. S., Calabresi, P., and Handschumacher, R. E., 1961, Alterations in human pyrimidine metabolism as a result of therapy with 6-azauridine, Cancer Res. 21: 1551.

    PubMed  CAS  Google Scholar 

  • Carey, R. W., Ribas-Mundo, M., Ellison, R. R., Glidewell, O., Lee. S. T., Cuttner, J., Levy, R. N., Silver, R., Blom, J., HauranI, F., Spurr, C. L., Harley, J. B., Kyle, R., Moon, J. H., Eagan, R. T., and Holland, J. F., 1975, Comparative study of cytosine arabinoside therapy alone and combined with thioguanine, mercaptopurine, or daunorubicin in acute myelocytic leukemia, Cancer 36:1560.

    Google Scholar 

  • Cavia, E., and Webb, T. E., 1972, Modified induction of ornithine decarboxylase by factors which affect liver regeneration, Biochim. Biophys. Acta 262: 546.

    PubMed  CAS  Google Scholar 

  • Chen, M. S., Ward, D. C., and Prusoff, W. H., 1976, Specific herpes simplex virus induced incorporation of 5-iodo-5’-amino-2’,5’-dideoxyuridine into deoxyribonucleic acid, J. Biol. Chem. 251: 4833.

    PubMed  CAS  Google Scholar 

  • Cheng, Y. C., Goz, B., Neenan, J. P., Ward, D. C., and Prusoff, W. H., 1975a, Selective inhibition of herpes simplex virus by 5-amino-2’,5’-dideoxy-5-iodouridine, J. Virol. 15: 1284.

    PubMed  CAS  Google Scholar 

  • Cheng, Y.-C., Neenan, J. P., Goz, B., Ward, D. C., and Prusoff, W. H., 1975b, Synthesis and biological activity of some novel analogs of thymidine, Ann. N. Y. Acad. Sci. 255: 332.

    Google Scholar 

  • Chu, M. Y., 1971, Incorporation of arabinosyl cytosine into 27 S ribonucleic acid and cell death, Biochem. Pharmacol. 20: 2057.

    Article  PubMed  CAS  Google Scholar 

  • Chu, M. Y., and Fischer, G. A., 1962, A proposed mechanism of 1-ß-D-arabinofuranosyl-cytosine as an inhibitor of the growth of leukemic cells, Biochem. Pharmacol. 11: 423.

    Google Scholar 

  • Chu, M. Y., and Fischer, G. A., 1968, The incorporation of 3H-cytosine arabinoside and its effects on murine leukemic cells (L5178Y), Biochem. Pharmacol. 17: 753.

    Article  PubMed  CAS  Google Scholar 

  • Cihak, A., 1975, Biological effects of 5-azacytidine in eukaryotes, a review, Oncology 30:405.

    Google Scholar 

  • Cihak, A., and Vesely, J., 1969, Altered liver regeneration in partially hepatectomized rats following 5-azacytidine treatment, Collect. Czech. Chem. Commun. 34: 910.

    CAS  Google Scholar 

  • Cihak, A., and Vesely, J., 1972, Prolongation of the lag period preceding the enhancement of thymidine and thymidylate kinase activity in regenerating rat liver by 5-azacytidine, Biochem. Pharmacol. 21: 3257.

    Article  PubMed  CAS  Google Scholar 

  • Cihak, A., and Vesely, J., 1973, Enhanced uridine kinase in rat liver following 5-azacytidine administration, J. Biol Chem. 248: 1307.

    PubMed  CAS  Google Scholar 

  • Cihak, A., Vesely, J., and Sorm, F., 1967, Differences in the inhibition of hormone and substrate induction of rat liver tryptophan pyrrolase by 5-azacytidine, Collect. Czech. Chem. Commun. 32: 3427.

    CAS  Google Scholar 

  • Cihak, A., Vesel], J., Inoue, H., and Pitot, H. C., 1972, Effect of 5-azacytidine on dietary and hormone induction of serine dehydrase and tyrosine aminotransferase, Biochem. Pharmacol. 21: 2545.

    Article  PubMed  CAS  Google Scholar 

  • Cihak, A., Weiss, J. W., and Pitot, H. C., 1974, Characterization of polyribosomes and maturation of ribosomal RNA in hepatoma cells treated with 5-azacytidine, Cancer Res. 34: 3003.

    PubMed  CAS  Google Scholar 

  • Clarkson, B. D., Dowling, M. D., Gee, T. S., Cunningham, I. B., and Burchenal, J. H., 1975, Treatment of acute leukemia in adults, Cancer 36: 775.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. S., 1966, Introduction to the biochemistry of the D-arabinosyl nucleosides, in: Progress in Nucleic Acid Research and Molecular Biology ( J. N. Davidson and W. E. Cohen, eds.), pp. 1–88, Academic Press, New York.

    Google Scholar 

  • Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., and Lichtenstein, J., 1958, The mode of action of 5-fluorouracil and its derivatives, Proc. Natl. Acad. Sci. U.S.A., 44:1004.

    Google Scholar 

  • Coleman, C., Johns, D. G., and Chabner, B. A., 1975, Studies on the mechanism of resistance to cytosine arabinoside; problems in the determination of related enzyme activities in leukemic cells, Ann. N. Y. Acad. Sci. 255: 247.

    Article  PubMed  CAS  Google Scholar 

  • Crosbie, G. W., 1960, Biosynthesis of pyrimidine nucleotides, in: The Nucleic Acids, Vol. III (E. Chargaff and J. N. Davidson, eds.), pp. 323–348, Academic Press, New York.

    Google Scholar 

  • Danenberg, P. V., Langenbach, R. J., and Heidelberger, C., 1974, Structures of reversible and irreversible complexes of thymidylate synthetase and fluorinated pyrimidine nucleotides, Biochemistry 13: 927.

    Article  Google Scholar 

  • Desai, I. S., Krishnan, A., and Foley, G. E., 1974, Effects of bleomycin on cells in culture: A quantitative cytochemical study, Cancer 34: 1873.

    Article  PubMed  CAS  Google Scholar 

  • Devita, V. T., JR., Young, R. C., and Canellos, G. P., 1975, Combination vs. single agent chemotherapy: A review of the basis of drug treatment of cancer, Cancer 35: 98.

    Article  PubMed  Google Scholar 

  • Dexter, D. L., Oki, T., and Heidelberger, C., 1973, Fluorinated pyrimidines. XLII. Effect of 5trifluoromethyl-2’-deoxyuridine on transcription of vaccinia viral messenger ribonucleic acid, Mol. Pharmacol. 9: 283.

    PubMed  CAS  Google Scholar 

  • Doskoiil, J., and Sorm, F., 1970, The effects of 5-azacytidine and 5-azauridine on protein synthesis in Escherichia coli, Biochem. Biophys. Res. Commun. 38: 569.

    Article  Google Scholar 

  • Dosko IL, J., Pastes, and Sorm, F., 1967, Inhibition of protein synthesis by 5-azacytidine in E. coli, Biochim. Biophys. Acta 145: 771.

    Google Scholar 

  • Dunlap, R. B., Harding, N. G. L., and Huennekens, F. M., 1971, Thymidylate synthetase from amethopterin-resistant Lactobacillus casei, Biochemistry 10:88.

    Google Scholar 

  • Durham, J. P., and Ives, D. H., 1968, Deoxycytidine kinase I. Distribution in normal and neoplastic tissues and interrelations of deoxycytidine and 1-/3-D-arabinofuranosylcytosine phosphorylation, Mol. Pharmacol. 5: 358.

    Google Scholar 

  • Duschinsky, R., Pleven, E., and Heidelberger, C., 1975, The synthesis of 5-fluoropyrimidines, J. Amer. Chem. Soc. 79: 4559.

    Article  Google Scholar 

  • Edelstein, M., Vietti, T., and Valeriote, F., 1974, Schedule-dependent synergism for the combination of 1-p-n-arabinofuranosylcytosine and daunorubicin, Cancer Res. 34: 293.

    PubMed  CAS  Google Scholar 

  • Ellison, R. R., Holland, J. F., Weil, M., Jacquillat, C., Boiron, M., Bernard, J., Sawitsky, A., Rosner, F., Gussoff, B., Silver, R. T., Karanas, A., Cuttner, J., Spurr, C. L., Hayes, D. M., Blom, J., Leone, L. A., Haurani, F., Kyle, R., Hutchinson, J. L., Forcier, R. J., and Moon, J. H., 1968, Arabinosylcytosine: A useful agent in the treatment of acute leukemia in adults, Blood 32: 507.

    PubMed  CAS  Google Scholar 

  • Evans, J. S., Musser, E. A., Mengel, G. D., Forsblad, K. R., and Hunter, J. H., 1961, Antitumor activity of 1-ß-D-arabinofuranosyl cytosine hydrochloride (26335), Proc. Soc. Exp. Biol. Med. 106:350.

    Google Scholar 

  • Fallon, H. I., Frei, E., Block, J., and Seegmiller, J. E., 1961, The uricosuria and orotic aciduria induced by 6-azauridine, J. Clin. Invest. 49:1906.

    Google Scholar 

  • Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., Jr., and Wolff, J. A., 1948, Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin), N. Engl. J. Med. 238: 787.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. J., Falco, E. A., Wempen, I., Pomeroy, D., Dowling, M. D., and Burchenal, J. H., 1972, Oral and parenteral activity of 2,2’-anhydro-1-ß-D-arabinofuranosyl-5-fluorocytosine against both intraperitoneally and intracerebrally inoculated mouse leukemia, Cancer Res. 32: 2269.

    Google Scholar 

  • Frankfurt, O. S., 1973, Enhancement of the antitumor activity of 5-fluorouracil by drug combinations, Cancer Res. 33: 1043.

    PubMed  CAS  Google Scholar 

  • Fridland, A., Langenbach, R. J., and Heidelberger, C., 1971, Purification of thymidylate synthetase from Ehrlich ascites carcinoma cells, J. Biol Chem. 246: 7110.

    Google Scholar 

  • Friedkin, M., 1973, Thymidylate synthetase, in: Advances in Enzymology ( A. Meister, ed.), pp. 235–292, John Wiley and Sons, New York

    Google Scholar 

  • Friedkin, M., and Kornberg, A., 1957, The enzymatic conversion of deoxyuridylic acid to thymidylic acid and the participation of tetrahydrofolic acid, in: The Chemical Basis of Heredity ( W. D. McElroy and B. Glass, eds.), pp. 609–614, The Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Fujimoto, S., Akao, T., Itoh, B., Koshizuka, I., Koyanu, K., Kitsukawa, Y., Takahashi, M., Minamani, T., Jshigamt, H., Nomura, Y., and Itoh, K.,,1976, Effect of N1-(2’-tetrahydrofury1)-5fluorouracil and 5-fluorouracil on nucleic acid and protein biosynthesis in Ehrlich ascites cells, Cancer Res. 36: 33.

    Google Scholar 

  • Fujiwara, Y., and Heidelberger, C., 1970, Fluorinated pyrimidines, XXXVIII. The incorporation of 5-trifluoromethyl-2’-deoxyuridine into the deoxyribonucleic acid of vaccinia virus, Mol. Pharmacol. 6: 281.

    PubMed  CAS  Google Scholar 

  • Galivan, J., Maley, G. F., and Maley, F., 1974, Purification and properties of T2 bacteriophageinduced thymidylate synthetase, Biochemistry 13: 2282.

    Article  PubMed  CAS  Google Scholar 

  • Galivan, J. H., Maley, G. F., and Maley, F., 1976, Factors affecting substrate binding in Lactobacillus casei thymidylate synthetase as studied by equilibrium dialysis, Biochemistry 15: 356.

    Article  PubMed  CAS  Google Scholar 

  • Goz, B., and Prusoff, W. H., 1970, Pharmacology of viruses, Annu. Rev. Pharmacol. 10:143. Graham, F. L., and Whitmore, G. F., 1970, Studies in mouse L-cells on the incorporation of DNA polymerase by 1-ß-D-arabinofuranosylcytosine 5’-triphosphate, Cancer Res. 30: 2636.

    Google Scholar 

  • Gray, G. D., 1975, Ara-C and derivatives as examples of immuno-suppressive nucleoside analogs, Ann. N. Y. Acad. Sci. 225: 372.

    Article  Google Scholar 

  • Habermann, V., and Dorm, F., 1958, Mechanism of the cancerostatic action of 6-azauracil and riboside, Collect. Czech. Chem. Commun. 23: 2201.

    CAS  Google Scholar 

  • Haghbin, M., Tan, C. T. C., Clarkson, B. D., Mike, V., Burchenal, J. H., and Murphy, M. L., 1975, Treatment of acute lymphoblastic leukemia in children with “prophylactic” intrathecal methotrexate and intensive systemic chemotherapy, Cancer Res. 35: 807.

    Google Scholar 

  • Halpern, R. M., Halpern, B. C., Clark, B. R., Ashe, H., Hardy, D. N., Jenkinson, P. Y., Chou, S.-C., and Smith, R. A., 1975, New approach to antifolate treatment of certain cancers as demonstrated in tissue culture, Proc. Natl. Acad. Sci. U.S.A., 72: 4018.

    Article  PubMed  CAS  Google Scholar 

  • Handschumacher, R. E., 1958, Bacterial preparation of orotidine-5’-phosphate and uridine-5’. phosphate, Nature (London), 182:1090.

    Google Scholar 

  • Handschumacher, R. E., and Pasternak, C. A., 1958, Inhibition of orotidylic acid decarboxylase, a primary site of carcinostasis by 6-azauracil, Biochim. Biophys. Acta 30: 451.

    Article  PubMed  CAS  Google Scholar 

  • Handschumacher, R. E., and Welch, A. D., 1960, Agents which influence nucleic acid metabolism, in: The Nucleic Acids, Vol. III ( E. Chargaff and J. N. Davidson, eds.), pp. 453–526, Academic Press, New York.

    Google Scholar 

  • Handschumacher, R. E., Calabresi, P., Welch, A. D., Bono, H., Fallon, H., and Frei, E., III, 1962, Summary of current information on 6-azauridine, Cancer Chemother. Rep. 21:1.

    Google Scholar 

  • Hanka, L. J., Evans, J. S., Mason, D. J., and Dietz, A., 1966, Microbial production of 5-azacytidine I. Production and biological activity, Antimicrob. Agents Chemother. p. 619.

    Google Scholar 

  • Hanze, A. R., 1967, Nucleic acids IV. The catalytic reduction of pyrimidine nucleosides (human liver deaminase inhibitors), J. Amer. Chem. Soc. 89: 6720.

    Article  CAS  Google Scholar 

  • Heidelberger, C., 1965, Fluorinated pyrimidines in: Progress in Nucleic Acid Research, Vol. 4 (J. N. Davidson and W. E. Cohen, eds.), p. 1, Academic Press, New York.

    Google Scholar 

  • Heidelberger, C., 1970, Chemical carcinogenesis, chemotherapy: Cancer’s continuing core challenges—G. H. A. Clowes Memorial Lecture, Cancer Res. 30:1549.

    Google Scholar 

  • Heidelberger, C., 1973, Pyrimidine and pyrimidine nucleoside antimetabolites, in: Cancer Medicine (J. F. Holland and E. Frei, III, eds.), pp. 768–791, Lea and Febiger, Philadelphia.

    Google Scholar 

  • Heidelberger, C., 1975, On the molecular mechanism of antiviral activity of trifluorothymidine, Ann. N. Y. Acad. Sci. 255: 317.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger, C., Liebman, K. C., Habeas, E., and Bhargava, P. M., 1957, The comparative utilization of uracil-2-C“ by liver, intestinal, mucosa and Flexner-Jobling carcinoma in the rat, Cancer Res. 17: 399.

    PubMed  CAS  Google Scholar 

  • Heidelberger, C., Kaldon, G., Mukherjee, K. L., and Dannenberg, P. B., 1960, Studies on fluorinated pyrimidines. XI. In vitro studies on tumor resistance, Cancer Res. 20:903.

    Google Scholar 

  • Heinle, R. W., and Welch, A. D., 1948, Experiments with pteroyl glutamic acid and pteroyl glutamic acid deficiency in human leukemia, J. Clin. Invest. 27: 539.

    PubMed  CAS  Google Scholar 

  • Henderson, J. F., and Paterson, A. R. P., 1973, Nucleotide Metabolism, pp. 173–204, Academic Press, New York.

    Google Scholar 

  • Hitchings, G. H., 1973, Mechanism of action of trimethoprim-sulfa-methoxazoler—I, J. Infect. Dis. 128: 5433.

    Article  Google Scholar 

  • Ho, D. H. W., 1973, Distribution of kinase and deaminase in 141-D-arabinosylcytosine in tissues of men and mouse, Cancer Res. 33: 2816.

    PubMed  CAS  Google Scholar 

  • Ho, D. H. W., 1974, Biochemical studies of a new antitumor agent, 02,2’-cyclocytidine, Biochem. Pharmacol. 23: 1235.

    Article  PubMed  CAS  Google Scholar 

  • Ho, D. H. W., and Frei, E., III, 1972, Clinical pharmacology of 1-ß-D-arabinosylcytosine, Clin. Pharmacol. Ther. 12: 944.

    Google Scholar 

  • Horinishi, H., and Greenberg, D. M., 1972, Purification and properties of thymidylate synthetase from calf thymus, Biochim. Biophys. Acta 258: 741.

    PubMed  CAS  Google Scholar 

  • Ives, D. H., Morse, P. A., Jr., and Potter, V. R., 1963, Feedback inhibition of thymidine kinase by thymidine triphosphate, J. Biol. Chem. 238: 1467.

    PubMed  CAS  Google Scholar 

  • Jones, P. A., Benedict, W. F., Baker, M. S., Mondal, S., Rapp, U., and Heidelberger, C., 1976, Oncogenic transformation of C3H/10T 1/2 clone 8 mouse embryo cells by halogenated pyrimidine nucleosides, Cancer Res. 36: 101.

    PubMed  CAS  Google Scholar 

  • Kalman, T. I., and Bardos, T. J., 1970, Enzymatic studies relating to the mode of action of 5mercapto-2’-deoxyuridine, Mol. Pharmacol. 6: 621.

    PubMed  CAS  Google Scholar 

  • Karev, N. I., 1972, Experience with ftorafur treatment in breast cancer, Neoplasms 19: 347.

    CAS  Google Scholar 

  • Karon, M., and Shirakawa, S., 1969, The locus of action of 1-ß-D-arabinofuranosylcytosine in cell cycle, Cancer Res. 29: 687.

    PubMed  CAS  Google Scholar 

  • Karon, M., Benedict, W. F., and Rucker, N., 1972, Mechanism of 1-ß-D-arabinofuranosylcytosineinduced lethality, Cancer Res. 32: 2612.

    PubMed  CAS  Google Scholar 

  • Karon, M., Sieger, L., Leimbrock, S., Finkelstein, J. Z., Nesbit, M. E., and Swaney, J. J., 1973, 5-Azacytidine: A new agent for the treatment of acute myelogenous leukemia, Blood 42: 359.

    Google Scholar 

  • Keefer, R. C., Mcnamara, D. J., Schumm, D. E., Billmire, D. F., and Webb, T. E., 1975, Early temporal changes in the uridine kinase isoenzyme profile of the Novikoff hepatoma in response to 5-azacytidine treatment, Biochem. Pharmacol. 24: 1287.

    Article  PubMed  CAS  Google Scholar 

  • Kent, R. J., and Heidelberger, C., 1972, Fluorinated pyrimidines, XL. The reduction of 5fluorouridine 5’-diphosphate by ribonucleotide reductase, Mol. Pharmacol. 8: 465.

    PubMed  CAS  Google Scholar 

  • Kessel, D., 1968, Properties of deoxycytidine kinase partially purified from L1210 cells, J. Biol. Chem. 243: 4739.

    PubMed  CAS  Google Scholar 

  • Klenow, H., 1962, Further studies on the effect of deoxyadenosine on the accumulation of deoxyadenosine triphosphate and inhibition of deoxyribonucleic acid synthesis in Ehrlich ascites tumor cells in vitro, Biochim. Biophys. Acta 61: 885.

    PubMed  CAS  Google Scholar 

  • Kouri, R. E., Kurtz, S. A., Price, P. J., and Benedict, W. F., 1975, 1-ß-D-Arabinosylcytosine-induced malignant transformation of hamster and rat cells in culture, Cancer Res. 35: 2413.

    Google Scholar 

  • Kovacs, C. J., HopkinS, H. A., Simon, R. M., and Looney, W. B., 1975, Effects of 5-fluorouracil on the cell kinetic and growth parameters of the hepatoma 3924A, Br. J. Cancer 32: 42.

    CAS  Google Scholar 

  • Kreis, W., Gordon, C. S., De Jager, R., and Krakoff, I. H., 1975, Physiological disposition of 2,2’anhydro-1-ß-D-arabinofuranosylcytosine in humans, Cancer Res. 35: 2453.

    PubMed  CAS  Google Scholar 

  • Kutter, E., Beug, A., Sluss, R., Jensen, L., and Bradley, D., 1975, The production of undegraded cytosine-containing DNA by bacteriophage T. in the absence of dCTPase and endonucleases II and IV, and its effects on T,-directed protein synthesis, J. Mol. Biol. 99: 591.

    Article  PubMed  CAS  Google Scholar 

  • Labow, R., and Maley, F., 1967, The conversion of deoxyuridine-5’-monophosphate to deoxyuridine-5’-triphosphate in normal and regenerating rat liver, Biochem. Biophys. Res. Commun. 29: 136.

    Article  PubMed  CAS  Google Scholar 

  • Langen, P., and Bärwolff, D., 1975, On the mode of action of 5-vinyl-2’-deoxyuridine, Biochem. Pharmacol. 24: 1907.

    Article  PubMed  CAS  Google Scholar 

  • Leary, R. P., and Kisliuk, R. L., 1971, Crystalline thymidylate synthetase from dichloromethotrexate resistant Lactobacillus casei, Prep. Biochem. 1: 47.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T., Karon, M., and Momparler, R. L., 1974, Kinetic studies on phosphorylation of 5azacytidine with the purified uridine-cytidine kinase from calf thymus, Cancer Res. 34: 2482.

    PubMed  CAS  Google Scholar 

  • Levitan, I. B., and Webb, T. E., 1969, Effects of 5-azacytidine on polysomes and on the control of tyrosine transaminase activity in rat liver, Biochim. Biophys. Acta 182: 491.

    PubMed  CAS  Google Scholar 

  • Li, L. H., Olin, E. J., Buskirk, H. H., and Reineke, L. M., 1970a, Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia, Cancer Res. 30: 2760.

    PubMed  CAS  Google Scholar 

  • Li, L. H., Olin, E. J., Fraser, T. J., and Bhuyan, B. K., 19706, Phase specificity of 5-azacytidine against mammalian cells in tissue culture, Cancer Res. 30: 2770.

    Google Scholar 

  • Frank Maley Lloyd, H. H., Dalmadge, E. H., and Wilkoff, L. J., 1972, Kinetics of the reduction in viability of cultured L1210 leukemia cells exposed to 5-azacytidine (NSC-102816), Cancer Chemother. Rep. 56:585.

    Google Scholar 

  • Lorenson, M. Y., Maley G. F., and Maley, F., 1967, The purification and properties of thymidylate synthetase from chick embryo extracts, J. Biol. Chem. 242:3332.

    Google Scholar 

  • Maley, F., and Maley, G. F., 1971, Tetrahydrodeoxyuridylate: A potent inhibitor of deoxycytidylate deaminase, Arch. Biochem. Biophys. 144: 723.

    Article  PubMed  CAS  Google Scholar 

  • Maley, F., and Maley, G. F., 1972, The regulatory influence of allosteric effectors on deoxycytidylate deaminase, in: Current Topics in Cellular Regulation ( B. L. Horecker and E. R. Stadtman, eds.), pp. 178–228, Academic Press, New York.

    Google Scholar 

  • Maley, G. F., and Maley, F., 1960, Inhibition of DNA synthesis in chick embryos by deoxyadenosine, J. Biol. Chem. 235: 2964.

    PubMed  CAS  Google Scholar 

  • Mandel, H. G., 1969, The incorporation of 5-fluorouracil into RNA and its molecular consequences, Prog. Mol. Subcell. Biol. 1: 82.

    Article  CAS  Google Scholar 

  • Masker, W. E., and Hanawalt, P. C., 1974, Selective inhibition of the semiconservative mode of DNA replication by araCTP, Biochim. Biophys. Acta 340: 229.

    PubMed  CAS  Google Scholar 

  • Mathews, C. K., and Cohen, S. S., 1963, Inhibition of phage-induced thymidylate synthetase by 5-fluorodeoxyuridylate, J. Biol Chem. 238: 367.

    CAS  Google Scholar 

  • Mccredie, K. B., Bodey, G. P., Burgess, M. A., Gutterman, J. U., Rodriguez, V., Sullivan, M. P., and Freireich, E. J., 1973, Treatment of acute leukemia with 5-azacytidine, Cancer Chemother. Rep. 57: 319.

    PubMed  CAS  Google Scholar 

  • Mchenry, C. S., and Santi, D. V., 1974, A sulfhydryl group is not the covalent catalyst in the thymidylate synthetase reaction, Biochem. Biophys. Res. Commun. 57: 204.

    Article  PubMed  CAS  Google Scholar 

  • Momparler, R. L., 1972, Kinetic and template studies with 1-ß-D-arabinofuranosylcytosine 5’-triphosphate and mammalian deoxyribonucleic acid polymerase, Mol. Pharmacol. 8: 362.

    PubMed  CAS  Google Scholar 

  • Momparler, R. L., 1974, A model for the chemotherapy of acute leukemia with 1-ß-D-arabinofuranosyl cytosine, Cancer Res. 34: 1775.

    CAS  Google Scholar 

  • Momparler, R. L., and Fisher, G. A., 1968, Mammalian deoxynucleoside kinase. I. Deoxycytidine kinase: Purification, properties and kinetic studies with cytosine arabinoside, J. Biol. Chem. 243:4298.

    Google Scholar 

  • Momparler, R. L., Goodman, J., and Karon, M., 1975, In vitro biochemical and cytotoxicity studies with 1-ß-D-arabinosylcytosine and 5-aza-cytidine in combination, Cancer Res 35: 2853.

    Google Scholar 

  • Moore, E. C., and Cohen, S. S., 1967, Effect of arabinonucleotides on ribonucleotide reduction by an enzyme system from rat tumor, J. Biol. Chem. 242: 2116.

    PubMed  CAS  Google Scholar 

  • Morse, P. A., JR., and Potter, V. R., 1965, Pyrimidine metabolism in tissue culture cells derived from rat hepatomas. I. Suspension cell cultures derived from the Novikoff hepatomas, Cancer Res. 25: 499.

    PubMed  CAS  Google Scholar 

  • Mulligan, L. T., and Mellett, L. B., 1968, Comparative metabolism of cytosine arabinoside and inhibition of deamination by tetrahydrouridine, Pharmacologist 10: 167.

    Google Scholar 

  • Myers, C. E., Young, R. C., Johns, D. G., and Chabner, B. A., 1974, Assay of 5-fluorodeoxyuridine 5’-monophosphate pools following 5-fluorouracil, Cancer Res. 34: 2682.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., and Sugino, Y., 1966, Metabolism of deoxyribonudeotides. III. Purification and some properties of nucleoside diphosphokinase of calf thymus, J. Biol. Chem. 241: 4917.

    PubMed  CAS  Google Scholar 

  • Neil, G. L., and Homan, E. R., 1973, The effect of dose interval on the survival of L1210 leukemic mice treated with DNA synthesis inhibitors, Cancer Res. 33: 895.

    PubMed  CAS  Google Scholar 

  • Neil, G. L., Moxley, T. E., and Manak, R. C., 1970, Enhancement by tetrahydrouridine of 1-ß-D-arabinosylcytosine (cytarabine) oral activity in L1210 leukemic mice, Cancer Res. 30: 2166.

    PubMed  CAS  Google Scholar 

  • Nesnow, S., Miyazaki, T., Khawja, T., Meyer, R. B., Jr., and Heidelberger, C., 1973, Pyrimidine nucleosides related to 5-fluorouracil and thymine, J. Med. Chem. 16: 524.

    Article  PubMed  CAS  Google Scholar 

  • Novak, E. K., 1971, Effect of polyene antibiotics on yeasts, Szeszipar 19:4.

    Google Scholar 

  • Ockey, C. H., and Allen, T. D., 1975, Distribution of DNA or DNA synthesis in mammalian cells following inhibition with hydroxyurea and 5-fluorodeoxyuridine, Cancer Res. 93:275.

    Google Scholar 

  • Paces, V., Doskocil, J., and Sorm, F., 1968, Incorporation of 5-azacytidine into nucleic acids of E. coli, Biochim. Biophys. Acta 161:352.

    Google Scholar 

  • Pasternak, C. A., and Handschumacher, R. E., 1959, The biochemical activity of 6-azauridine: Interference with pyrimidine metabolism in transplantable mouse tumors,J. Biol. Chem.234:2992.

    Google Scholar 

  • Piskala, A., andSorm, F., 1964, Nucleic acid components and their analogues, LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine, Collect. Czech. Chem. Commun.29:2060.

    Google Scholar 

  • Pizer, L. I., and Cohen, S. S., 1960, Metabolism of pyrimidine arabinonucleosides and cyclonucleosides in Escherichia coli, J. Biot Chem. 235: 2387.

    CAS  Google Scholar 

  • Pogolotti, A. L., Ivanetlich, K. M., Sommer, H., and Santi, D. V., 1976, Thymidylate synthetase: Studies on the peptide containing covalently bound 5-fluoro-2’-deoxyuridylate and methylenetetrahydrofolate, Biochem. Biophys. Res. Commun. 70: 972.

    Article  PubMed  CAS  Google Scholar 

  • Prusoff, W. H., 1963, A review of some aspects of 5-iododeoxyuridine and azauridine, Cancer Res. 23: 1246.

    PubMed  CAS  Google Scholar 

  • Ra§Ka, K., Jr., Jurovùk, M., Sormova, Z., and Sórm, F., 1965, On the metabolism of 5-azacytidine and 5-aza-2’-deoxycytidine in mice, Collect. Czech. Chem. Commun. 30: 3006.

    Google Scholar 

  • Reichard, P., 1959a, The biosynthesis of deoxyribonucleic acid by the chick embryo II. Metabolism of 02:2’-cyclouridine, J. Biol. Chem. 234: 2719.

    PubMed  CAS  Google Scholar 

  • Reichard, P., 1959b, The enzymic synthesis of pyrimidines, Adv. Enzymol. 21: 263.

    Google Scholar 

  • Reichard, P., Sköld, O., Klein, G., Révész, L., and Magnusson, P.-H., 1962, Studies on resistance against 5-fluorouracil. I. Enzymes of the uracil pathway during development of resistance, Cancer Res. 22: 235.

    PubMed  CAS  Google Scholar 

  • Reichman, M., and Penman, S., 1973, The mechanism of inhibition of induction of protein synthesis by 5-azacytidine in HeLa cells, Biochim. Biophys. Acta 324: 282.

    PubMed  CAS  Google Scholar 

  • Reichman, M., Karlan, D., and Penman, S., 1973, Destructive processing of the 45s ribosomal precursor in the presence of 5-aza-cytidine, Biochim. Biophys. Acta 299: 173.

    PubMed  CAS  Google Scholar 

  • Reyes, P., 1969, The synthesis of 5-fluorouridine-5’-phosphate by a pyrimidine phosphoribosyl transferase of mammalian origin, I. Some properties of the enzyme from P1534J mouse leukemia cells, Biochemistry 8: 2057.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, P., and Heidelberger, C., 1965, Fluorinated pyrimidines, XXVI. Mammalian thymidylate synthetase; its mechanism of action and inhibition by fluorinated nucleotides, Mol. Pharmacol. 1: 14.

    PubMed  CAS  Google Scholar 

  • Robbins, M. J., and Currie, B. L., 1968, The synthesis of 3-deazauridine 4-hydroxy-1-(0-Dribopentofuranosyl)-2-pyridone, Chem. Commun. 2: 1547.

    Google Scholar 

  • Rossi, M., Momparler, R. L., Nucci, R., and Scarano, E., 1970, Studies on analogs of isosteric and allosteric ligands of deoxycytidylate aminohydrolase, Biochemistry 9: 2539.

    Article  PubMed  CAS  Google Scholar 

  • Rutman, R. J., Cantarow, A., and Paschkis, K. E., 1954, Studies on 2-acetylaminofluorene carcinogenesis: III. The utilization of uracil-2-C“ by preneoplastic rat liver and rat hepatoma, Cancer Res. 14: 119.

    PubMed  CAS  Google Scholar 

  • Santi, D. V., and Brewer, C. F., 1973, Model studies of thymidylate synthetase, intramolecular catalysis of 5-hydrogen exchange and 5-hydroxymethylation of 1-substituted uracils, Biochemistry 12: 2416.

    Article  PubMed  CAS  Google Scholar 

  • Santi, D. V., and Mchenry, C. S., 1972, 5-Fluoro-2’-deoxyuridylate: Covalent complex with thymidylate synthetase, Proc. Natl. Acad. Sci. U.S.A. 69: 1855.

    Google Scholar 

  • Santi, D. V., and Sakai, T. T., 1971, Thymidylate synthetase model studies of inhibition by 5trifluoromethyl-2’-deoxyuridylic acid, Biochemistry 10: 3598.

    Article  PubMed  CAS  Google Scholar 

  • Santi, D. V., Mchenry, C. S., and Sommer, H., 1974, Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate, Biochemistry 13: 471.

    Article  PubMed  CAS  Google Scholar 

  • Sartorelli, A. C., 1969. Some approaches to the therapeutic exploitation of metabolic sites of vulnerability of neoplastic cells, Cancer Res. 29: 2292.

    PubMed  CAS  Google Scholar 

  • Sartorelli, A. C., Agrawal, K. C., and Moore, E. C., 1971, Mechanism of inhibition of ribonucleoside reductase by a-N-heterocyclic aldehyde thiosemicarbazones, Biochem. Pharm. 20: 3119.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, R., and Welch, A. D., 1958, Ribosidation as a means of activating 6-azauracil as an inhibitor of cell reproduction, Science 125: 548.

    Article  Google Scholar 

  • Schrecker, A. W., and Urshel, M. J., 1968, Metabolism of 1–8-D-arabinofuranosylcytosine in leukemia L1210: Studies with intact cells, Cancer Res. 28: 793.

    CAS  Google Scholar 

  • Seifertova, M., Veself, J., and Sorm, F., 1968, Effect of 5-azacytidine on developing mouse embryo, Experientia 24: 487.

    Article  PubMed  CAS  Google Scholar 

  • Silagi, S., 1965, Metabolism of 1-ß-D-arabinofuranosyl cytosine in L-cells, Cancer Res. 25: 1446.

    PubMed  CAS  Google Scholar 

  • Silvestrini, R., Dimarco, A., and Dosdia, T., 1970, Interference of daunomycin with metabolic events of the cell cycle in synchronized cultures of rat fibroblasts, Cancer Res. 30: 966.

    PubMed  CAS  Google Scholar 

  • Simone, J. V., Aur, R. J. A., Husto, H. O., and Verzosa, M.,01975, Acute lymphocytic leukemia in children, Cancer 36: 770.

    Google Scholar 

  • Sinclair, W. K., 1967, Hydroxyurea: Effects on Chinese hamster cells grown in culture, Cancer Res. 27: 297.

    PubMed  CAS  Google Scholar 

  • Skipper, H. E., Schabel, F. M., and Wilcox, W. S., 1967, Experimental evaluation of potential anticancer agents. XXI. Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells, Cancer Chemother. Rep. 51:125.

    Google Scholar 

  • Skoda, J., 1963, Mechanism of action and application of azapyrimidines, in: Progress in Nucleic Acid Research, Vol. 2 ( J. N. Davidson and W. E. Cohen, eds.), pp. 197–219, Academic Press, New York.

    Google Scholar 

  • Smart, C. R., Townsend, L. B., Rusho, W. J., Eyre, H. J., Quagliana, J. M., Wilson, M. L., Edwards, C. B., and Manning, S. J., 1975, Phase I study of ftorafur, an analog of 5-fluorouracil, Cancer 36:103.

    Google Scholar 

  • Sommer, H., and Santi, D. V., 1974, Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2’-deoxyuridylate and methylenetetrahydrofolate, Biochem. Biophys. Res. Commun. 57: 689.

    Article  PubMed  CAS  Google Scholar 

  • Sorm, F., and Veselÿ, J., 1964, The activity of a new antimetabolite, 5-azacytidine, against lymphoid leukemia in AK mice, Neoplasma 11:123.

    Google Scholar 

  • Sorm, F., Pískala, A., Cihak, A., and Veselp, J., 1964, 5-Azacytidine, a new highly effective cancerostatic, Experientia 20:202.

    Google Scholar 

  • Steinstrom, M. L., Edelstein, M., and Grisham, J. W., 1974, Effects of ara-CTP on DNA replication and repair in isolated hepatocyte nuclei, Exp. Cell. Res. 89: 439.

    Google Scholar 

  • Stewart, C. D., and Burke, P. J., 1971, Cytidine deaminase and development of resistance to arabinosyl cytosine, Nature (London) New Biol. 233:109.

    Google Scholar 

  • Storm, D. R., and Strominger, J. L., 1974, Binding of bacitracin to cells and protoplasts of Micrococcus leisodeikticus, J. Biol. Chem. 249:1823.

    Google Scholar 

  • Strominger, J. L., 1968–1969, Penicillin sensitive enzymatic reactions in bacterial cell wall synthesis, Harvey Lect. 64:179.

    Google Scholar 

  • Sugino, Y., Teraoka, H., and Shimono, H., 1966, Metabolism of deoxyribonucleotides I. Purification and properties of deoxycytidine monophosphokinase in calf thymus, J. Biol. Chem. 241: 961.

    PubMed  CAS  Google Scholar 

  • Suhadolnik, R. J., 1970a, Spongosine and arabinosyl nucleosides, in: Nucleoside Antibiotics, pp. 123–169, Interscience, New York.

    Google Scholar 

  • Suhadolnik, R. J., 1970b, Azapyrimidine nucleosides, in: Nucleoside Antibiotics, pp. 271–297, Interscience, New York.

    Google Scholar 

  • Swierkowska, K. M., Jasiasker, J. K., and Steffen, J. A., 1973, 5-Ethyl-2’-deoxyuridine: Evidence for incorporation into DNA and evaluation of biological properties in lymphocyte cultures grown under conditions of amethopterine-imposed thymidine deficiency, Biochem. Pharmacol. 22: 85.

    Google Scholar 

  • Tattersall, M. H. N., Ganeshaguru, K., and Hoffbrand, A. V., 1974, Mechanisms of resistance to arabinosyl cytosine, Br. J. Haematol. 27: 39.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. H., Haut, W. F., and Tung, J., 1962, Effects of fluorodeoxyuridine on DNA replication, chromosome breakage and reunion, Proc. Natl.Acad. Sci. U.S.A. 48:190.

    Google Scholar 

  • Valeriote, F. A., Bruce, W. R., and Meeker, B. E., 1966, A model for the action of vinblastine in vivo, Biophys. J. 6.145.

    Google Scholar 

  • Vendetti, J. M., Baratta, M. C., Greenberg, N., Abbott, B. T., and Kline, I.,1972, Studies on the L1210 antileukemic activity of 0–2,2’-cyclocytidine, monoacetate (anhydro-ara-C; NSC-129220)comparison with cytosine arabinoside (NSC-63878) with respect to treatment schedule dependency, Cancer Chemother. Rep. 56:483.

    Google Scholar 

  • Veselç’, J., Cihak, A., and Sorm, F., 1967, Biochemical mechanisms of drug resistance IV. Development of resistance to 5-azacytidine and simultaneous depression of pyrimidine metabolism in leukemic mice, Int. J. Cancer 2: 639.

    Article  Google Scholar 

  • Vongtama, V., Douglass, H. O., Moore, R. H., Holyoke, E. D., and Webster, J. H., 1975, End results of radiation therapy, alone and combination with 5-fluorouracil in colorectal cancers, Cancer 36:2020.

    Google Scholar 

  • Walwick, E. R., Roberts, W. K., and Dekker, C. A., 1959, Cyclization during the phosphorylation of uridine and cytidine by polyphosphoric acid; a new route to 02,2’-cyclonucleosides, Proc. Chem. Soc.

    Google Scholar 

  • Wang, M. C., and Bloch, A., 1972, Studies on the mode of action of 3-diazapyrimidines-1. Metabolism of 3-deazauridine and 3-deazacytidine in microbial and tumor cells, Biochem. Pharmacol. 21: 1063.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., Queener, S. F., and Fernandus, J. A., 1970, Control of gene expression in carbohydrate metabolism and DNA metabolism, in: Advances in Enzyme Regulation, Vol. 9 ( G. Weber, ed.), pp. 63–95, Pergamon Press, New York.

    Google Scholar 

  • Weiss, J. W., and Pitot, H. C., 1975, Effects of 5-azacytidine on nucleolar RNA and the preribosomal particles in Novikoff hepatoma cells, Biochemistry 14:316.

    Google Scholar 

  • Wentworth, D. F., and Wolfenden, R., 1975, On the interaction of 3,4,5,6-tetrahydrouridine with human liver cytidine deaminase, Biochemistry 14: 5099.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, D. S., Tlsty, T. D., and Hanas, R. J., 1975, The inhibition of ribosomal RNA synthesis and maturation in Novikoff hepatoma cells by 5-fluorouridine, Cancer Res. 35: 3014.

    PubMed  CAS  Google Scholar 

  • Wilkoff, L. J., Dulmadge, E. A., and Lloyd, H., H., 1972, Kinetics of effect of 1-p-Darabinofuranosylcytosine, its 5’-palmitoyl ester, 1-ß-D-arabinofuranosyluracil, and tritiated thymidine on the viability of cultured L1210 cells, J. Natl. Cancer Inst. 48: 685.

    PubMed  CAS  Google Scholar 

  • Woods, D. D., 1940, The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide, Br. J. Exp. Pathol. 21: 74.

    CAS  Google Scholar 

  • Wu, R., and Geiduschek, E. P., 1975, The role of replication proteins in the regulation of bac-teriophage T4 transcription I. Gene 45 and hydroxymethyl-C-containing DNA, J. Mol. Biol. 96:513.

    Google Scholar 

  • Yataganas, X., Strife, A., Perez, A., and Clarkson, B. D., 1974, Microfluorometric evaluation of cell kill kinetics with 1-ß-D-arabinofuranosylcytosine, Cancer Res. 34: 2795.

    PubMed  CAS  Google Scholar 

  • Young, R. S. K., and Fischer, G. A., 1968, The action of arabinosylcytosine on synchronously growing populations of mammalian cells, Biochem. Biophys. Res. Commun. 32: 23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Maley, F. (1977). Pyrimidine Antagonists. In: Becker, F.F. (eds) Chemotherapy. Cancer, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6628-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6628-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6630-4

  • Online ISBN: 978-1-4615-6628-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics