Skip to main content

Electrophysiology of Hippocampal Neurons

  • Chapter
Cerebral Cortex

Part of the book series: Cerebral Cortex ((CECO,volume 6))

Abstract

There is perhaps more information available today regarding the properties of hippocampal pyramidal cells than of any other CNS cell type except the spinal cord motoneuron. The hippocampus, with the associated dentate granule cell region, has been studied intensively with electrophysiological techniques. The reasons for such interest and study are several, ranging from the technical accessibility of hippocampal neurons to their hypothesized role in learning and memory (see Isaacson and Pribram, 1975; Swanson et al. 1982; Seifert, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, W. C., 1982, Failure of cable theory to explain differences between medial and lateral perforant path evoked potentials, Proc. Univ. Otago Med. Sch. 60:23–24

    Google Scholar 

  • Adams, P. R., and Halliwell, J. V., 1982, A hyperpolarization-induced inward current in guinea pig hippocampal neurones, J. Physiol. (London) 324:62P–63P

    Google Scholar 

  • Aldenhoff, J. B., Gruol, D. L., and Siggins, G. R., 1982, Corticotropin releasing factor (CRF) depolarizes and excites pyramidal neurons of the hippocampal slice preparation, Soc. Neurosci. Abstr. 8:983.

    Google Scholar 

  • Alger, B. E., 1984, Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal neurons, J. Neurophysiol. 52:892–910.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1979, GABA-mediated biphasic inhibitory responses in hippocampus, Nature 281:315–317.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1980a, Epileptiform burst hyperpolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells, Science 210:1122–1124.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1980b, Spontaneous inhibitory post-synaptic potentials in hippocampus: Mechanism for tonic inhibition, Brain Res. 200:195–200.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1982a, Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro, J. Physiol. (London) 328:105–123.

    CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1982b, Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro, J. Physiol. (London) 328:125–141.

    CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1983, Ammonia does not selectively block IPSPs in rat hippocampal pyramidal cells, J. Neurophysiol. 49:1381–1391.

    PubMed  CAS  Google Scholar 

  • Alger, B. E., and Teyler, T. J., 1976, Long-term and short-term plasticity in CA1, CA3 and dentate regions of the rat hippocampal slice, Brain Res. 110:463–480.

    PubMed  CAS  Google Scholar 

  • Allen, G. I., Eccles, J., Nicoll, R. A., Oshima, T., and Rubia, F. J., 1977, The ionic mechanisms concerned in generating the i.p.s.ps of hippocampal pyramidal cells, Proc. R. Soc. London Ser. B 198:363–384.

    CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., 1976, Functional synaptic organization of inhibitory pathways in the dentate gyrus of the rabbit, Exp. Brain Res. Suppl. 1:229–234.

    Google Scholar 

  • Alvarez-Leefmans, F. J., and Gardner-Medwin, A. R., 1975, Influences of the septum on the hippocampal dentate area which are unaccompanied by field potentials, J. Physiol. (London) 24914P–16P

    Google Scholar 

  • Andersen, P., 1960, Interhippocampal impulses. II. Apical dendritic activation of CA1 neurones, Acta Physiol. Scand. 48:178–208.

    PubMed  CAS  Google Scholar 

  • Andersen, P., 1975, Organization of hippocampal neurons and their interconnections, in: The Hippocampus (R. L. Isaacson and K. H. Pribram, eds.), Plenum Press, New York, pp. 155–175

    Google Scholar 

  • Andersen, P., and Lømo, T., 1966, Mode of activation of hippocampal pyramidal cells by excitatory synapses on dendrites, Exp. Brain Res. 2:247–260.

    Google Scholar 

  • Andersen, P., and Lømo, T., 1967, Control of hippocampal output by afferent volley frequency, Prog. Brain Res. 27:400–412.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bruland, H., and Kaada, B. R., 1961a, Activation of the dentate area by septal stimulation, Acta Physiol. Scand. 51:17–28.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bruland, H., and Kaada, B. R., 1961b, Activation of the field CA1 of the hippocampus by septal stimulation, Acta Physiol. Scand. 51:29–40.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Eccles, J. C., and Løyning, Y., 1964a, Location of postsynaptic inhibitory synapses of hippocampal pyramids, J. Neurophysiol. 27:592–607.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Eccles, J. C., and Løyning, Y., 1964b, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27:608–619.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Blackstad, T. W., and Lømo, T., 1966a, Location and identification of excitatory synapses on hippocampal pyramidal cells, Exp. Brain Res. 1:236–248.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Holmqvist, B., and Voorhoeve, P. E., 1966b, Entorhinal activation of dentate granule cells, Acta Physiol. Scand. 66:448–460.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Holmqvist, B., and Voorhoeve, P. E., 1966c, Excitatory synapses on hippocampal apical dendrites activated by entorhinal stimulation, Acta Physiol. Scand. 66:461–472.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Gross, G. N., Lømo, T., and Sveen, P., 1969, Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output, in: The Interneuron (M. A. B. Brazier, ed.), University of California Press, Los Angeles, pp 415–465

    Google Scholar 

  • Andersen, P., Bliss, T. V. P., and Skrede, K. K., 1971a, Unit analysis of hippocampal population spikes, Exp. Brain Res. 13:208–221.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bliss, T. V. P., and Skrede, K. K., 1971b, Lamellar organization of hippocampal excitatory pathways, Exp.Brain Res. 13:222–238.

    Google Scholar 

  • Andersen, P., Bland, B. H., and Dudar, J. D., 1973, Organization of the hippocampal output, Exp. Brain Res. 17:152–168.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Sundberg, S. H., Sveen, O., and Wigström, H., 1977, Specific long-lasting potentiation of synaptic transmission in hippocampal slices, Nature 266:736–737.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Mosfeldt-Laursen, A., 1980a, Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid, J. Physiol. (London) 305:279–296.

    CAS  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S. H., and Sveen, O., 1980b, A comparison of distal and proximal dendritic synapses on CA1 pyramids in hippocampal slices in vitro, J. Physiol. (London) 307:273–299.

    CAS  Google Scholar 

  • Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W., and Wigström, H., 1980c, Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guineapigs, J. Physiol. (London) 302:463–482.

    CAS  Google Scholar 

  • Andrew, R. D., Taylor, C. P., Snow, R. W., and Dudek, F. E., 1982, Coupling in rat hippocampal slices: Dye transfer between CA1 pyramidal cells, Brain Res. Bull. 8:211–222.

    PubMed  CAS  Google Scholar 

  • Assaf, S. Y., Crunelli, V., and Kelly, J. S., 1981, Action of 5-hydroxytryptamine on granule cells in the rat hippocampal slice, J. Physiol. (Paris) 77:377–380.

    CAS  Google Scholar 

  • Azmitia, E. C., and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, J. Comp. Neurol. 179:641–668.

    PubMed  CAS  Google Scholar 

  • Barbaccia, M. L., Brunello, N., Chuang, D.-M., and Costa, E., 1983, Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat, J. Neurochem. 40:1671–1679.

    PubMed  CAS  Google Scholar 

  • Barbin, G., Garbarg, M., Schwartz, J.-C., and Storm-MathisenJ., 1976, Histamine synthesizing afferents to the hippocampal region, J. Neurochem. 26:259–263.

    PubMed  CAS  Google Scholar 

  • Barnes, C. A., and McNaughton, B. L., 1980, Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence, J. Physiol. (London) 309:473–485.

    CAS  Google Scholar 

  • Barnes, C. A., and McNaughton, B. L., 1983, Where is the cognitive map?, Soc. Neurosci. Abstr. 9:649.

    Google Scholar 

  • Barrett, J. N., and Crill, W. E., 1974, Specific membrane properties of cat motoneurons, J. Physiol. (London) 239:301–324.

    CAS  Google Scholar 

  • Baudry, M., and Lynch, G., 1980, Hypothesis regarding the cellular mechanisms responsible for long-term synaptic potentiation in the hippocampus, Exp. Neurol. 68:202–204.

    PubMed  CAS  Google Scholar 

  • Baxter, D., and Brown, T. H., 1983, Quantal analysis of long-term synaptic potentiation, Soc. Neurosci. Abstr. 9:103.

    Google Scholar 

  • Beaumont, K., Chilton, W. S., Yamamura, H. I., and Enna, S. J., 1978, Muscimol binding in rat brain: Association with GABA receptors, Brain Res. 148:153–162.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1981, Acetylcholine induced modulation of hippocampal pyramidal neurons, Brain Res. 211:227–234.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982a, Cholinergic excitation of mammalian hippocampal pyramidal cells, Brain Res. 249:315–331.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982b, Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells, Brain Res. 249:333–344.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982c, Cholinergic pharmacology of mammalian hippocampal pyramidal cells, Neuroscience 7:1703–1712.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982d, Dopamine modulates a Ca+ +-activated potassium conductance in mammalian hippocampal pyramidal cells, Nature 297:76–79.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982e, Dopamine action on hippocampal pyramidal cells, J. Neurosci. 2:415–423.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., Masukawa, L. M., and Prince, D. A., 1982, Electrophysiology of isolated hippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.

    PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Krnjević K., Reiffenstein, R. J., and Reinhardt, W., 1981a, Inhibitory conductance changes and action of gamma-aminobutyrate in rat hippocampus, Neuroscience 6:2445–2463.

    PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Krnjević, K., Reinhardt, W., and Ropert, N., 1981b, Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus, Neuroscience 6:2475–2484.

    PubMed  CAS  Google Scholar 

  • Bennett, J. P., Jr., and Snyder, S. H., 1976, Serotonin and lysergic acid diethylamide binding in rat brain membranes: Relationship to postsynaptic serotonin receptors, Mol. Pharmacol. 12:373–389.

    PubMed  CAS  Google Scholar 

  • Berger, T., 1983, Long term potentiation of hippocampal synaptic transmission accelerates behavioral learning, Paper presented at the First Biennial Symposium on Neural Mechanisms of Conditioning, Marine Biological Laboratory, Woods Hole, Mass

    Google Scholar 

  • Berger, T. W., Thompson, and R. F., 1978, Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus, Brain Res. 145:323–346.

    PubMed  CAS  Google Scholar 

  • Bird, S. J., and Aghajanian, G. K., 1976, The cholinergic pharmacology of hippocampal pyramidal cells: A microiontophoretic study, Neuropharmacology 151:273–282.

    Google Scholar 

  • Bischoff, S., Scatton, B., and Korf, J., 1979, Dopamine metabolism, spiperone binding and adenylate cyclase activity in the adult rat hippocampus after ingrowth of dopaminergic neurones from embryonic implants, Brain Res. 179:77–84.

    PubMed  CAS  Google Scholar 

  • Biscoe, T. J., and Straughan, D. W., 1966, Microelectrophoretic studies of neurones in the cat hippocampus, J. Physiol. (London) 183:341–359.

    CAS  Google Scholar 

  • Björklund, A., and Stenevi, U., 1979, Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system, Physiol. Rev. 59:62–100.

    PubMed  Google Scholar 

  • Blackstad, T. W., 1956, Commissural connections of the hippocampal region in the rat with special reference to their mode of termination, J Comp. Neurol. 105:417–538.

    PubMed  CAS  Google Scholar 

  • Blackstad, T. W., 1958, On the termination of some afferents to the hippocampus and fascia dentata, Acta Anat. 35:202–214.

    PubMed  CAS  Google Scholar 

  • Blackstad, T. W., Fuxe, K., and Hökfelt, T., 1967, Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig, Z. Zellforsch. 7:463–473.

    Google Scholar 

  • Bland, B. H., Kostopoulos, G. K., and Phillis J. W., 1974, Acetylcholine sensitivity of hippocampal formation neurons, Can. J. Physiol. Pharmacol. 52:966–971.

    PubMed  CAS  Google Scholar 

  • Bland, B. H., Andersen, P., and Ganes, T., 1975, Two generators of hippocampal theta activity in rabbits, Brain Res. 94:199–218.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path, J. Physiol. (London) 232:357–374.

    CAS  Google Scholar 

  • Brown, D. A., 1983, Slow cholinergic excitation—a mechanism for increasing neuronal excitability, Trends Neurosci. 6:302–307.

    Google Scholar 

  • Brown, D. A., Adams, and P. R., 1980, Muscarinic suppression of a novel voltage-sensitive K current in a vertebrate neurone, Nature 283:673–676.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Griffith, W. H., 1983a, Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig, J. Physiol. (London) 337:287–301.

    CAS  Google Scholar 

  • Brown, D. A., and Griffith, W. H., 1983b, Persistent slow inward calcium current in voltage-clamped hippocampal neurones of the guinea pig, J. Physiol. (London)337:303–320.

    CAS  Google Scholar 

  • Brown, D. A., Higgins, A. J., Marsh, S., and Smart, T. G., 1981, Actions of GABA on mammalian neurons, axons, and nerve terminals, in: Amino Acid Neurotransmitters (F. V. DeFeudis and P. Mandel, eds.), Raven Press, New York, pp. 321–326

    Google Scholar 

  • Brown, T. H., and Johnston, D., 1980, Two classes of miniature synaptic potentials in CA3 hippocampal neurons, Soc. Neurosci. Abstr. 6:10.

    Google Scholar 

  • Brown, T. H., and Johnston, D., 1983, Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons, J. Neurophysiol. 50:487–507.

    PubMed  CAS  Google Scholar 

  • Brown, T. H., Wong, R. K. S., and Prince, D. A., 1979, Spontaneous miniature synaptic potentials in hippocampal neurons, Brain Res. 177:194–199.

    PubMed  CAS  Google Scholar 

  • Brown, T. H., Fricke, R. A., and Perkel, D. H., 1981, Passive electrical constants in three classes of hippocampal neurons, J. Neurophysiol. 46:812–827.

    PubMed  CAS  Google Scholar 

  • Buzsaki, G., and Eidelberg, E., 1982, Convergence of associational and commissural pathways on CA1 pyramidal cells of the rat hippocampus, Brain Res. 237:283–295.

    PubMed  CAS  Google Scholar 

  • Carlen, P. L., Gurevich, N., and Durand, D., 1982, Ethanol in low doses augments calcium-mediated mechanisms measured intracellularly in hippocampal neurons, Science 215:306–309.

    PubMed  CAS  Google Scholar 

  • Carlen, P. L., Gurevich, N., and Pole, P., 1983, Low-dose benzodiazepine neuronal inhibition: Enhanced Ca+ +-mediated K+ conductance, Brain Res. 271:358–364.

    PubMed  CAS  Google Scholar 

  • Chang, K. J., Cooper, B. R., Hazum, and E., Cuatrecasas, P., 1979, Multiple opiate receptors: Different regional distribution in the brain and differential binding of opiates and opioid peptides, Mol. Pharmacol. 16:91–104.

    PubMed  CAS  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983a, The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro, J. Physiol. (London) 334:19–31.

    CAS  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983b, Excitatory amino acids in synaptic transmission in the Schaffer collateral—commissural pathway of the rat hippocampus, J. Physiol. (London)334:33–46.

    CAS  Google Scholar 

  • Connors, B. W., and Prince, D. A., 1982, Effects of local anesthetic QX-314 on the membrane properties of hippocampal pyramidal neurons, J. Pharmacol. Exp. Ther. 200:476–481.

    Google Scholar 

  • Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302–1320.

    PubMed  CAS  Google Scholar 

  • Conrad, L. C. A., Leonard, C. M., and Pfaff, D W., 1974, Connections of the median and dorsal raphe nuclei in the rat: An autoradiographic and degeneration study, J. Comp. Neurol. 156:179–206.

    PubMed  CAS  Google Scholar 

  • Corrigall, W. A., and Linseman, M. A., 1980, A specific effect of morphine on evoked activity in the rat hippocampal slice, Brain Res. 192:227–238.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., and Nadler, J. V., 1978, Reactive synaptogenesis in the hippocampus, in: Neuronal Plasticity (C. W. Cotman, ed.), Raven Press, New York, pp. 227–271

    Google Scholar 

  • Creager, R., Dunwiddie, T., and Lynch, G., 1980, Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus, J. Physiol. (London) 299:409–424.

    CAS  Google Scholar 

  • Crill, W. E., and Schwindt, P. C., 1983, Active currents in mammalian central neurons, Trends Neurosci. 6:236–240.

    Google Scholar 

  • Crunelli, V., Forda, S., and Kelly, J. S., 1983, Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus, J. Physiol. (London) 341:627–640.

    CAS  Google Scholar 

  • Crutcher, K. A., and Davis, J. N., 1980, Hippocampal alpha- and beta-adrenergic receptors: Comparisons of 3H-dihydroalprenolol and 3H-WB 4101 binding with noradrenergic innervation in the rat, Brain Res. 182:107–117.

    PubMed  CAS  Google Scholar 

  • Curtis, D. R., Felix, D., and McLennan, H., 1970, GABA and hippocampal inhibition, Br. J. Pharmacol. 40:881–883.

    PubMed  CAS  Google Scholar 

  • Dahl, D., Bailey, W. H., and Winson, J., 1983, Effect of norepinephrine depletion of hippocampus on neuronal transmission from perforant pathway through dentate gyrus, J. Neurophysiol. 49:123–133.

    PubMed  CAS  Google Scholar 

  • Daly, J. W., Bruns, R. F., and Snyder, S. H., 1981a, Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines, Life Sci. 28:2083–2097.

    PubMed  CAS  Google Scholar 

  • Daly, J. W., Padgett, W., Creveling, C. R., Cantacuzene, D., and Kirk, K. L., 1981b, Cyclic AMP-generating systems: Regional differences in activation by adrenergic receptors in rat brain, J. Neurosci. 1:49–59.

    PubMed  Google Scholar 

  • Deadwyler, S. A., West, M., and Lynch, G., 1979, Activity of dentate granule cells during learning: Differentiation of perforant path input, Brain Res. 169:29–43.

    PubMed  CAS  Google Scholar 

  • Dichter, M., and Spencer, W. A., 1969a, Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features, J. Neurophysiol. 32:649–662.

    PubMed  CAS  Google Scholar 

  • Dichter, M., and Spencer, W. A., 1969b, Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction, J. Neurophysiol. 32:663–687.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., 1981, Possible mechanisms of enkephalin action on hippocampal CA1 pyramidal neurons, J. Neurosci. 1:1022–1035.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., 1983, N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J. Physiol. (London) 343:385–405.

    CAS  Google Scholar 

  • Dingledine, R., and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. (London) 305:297–313.

    CAS  Google Scholar 

  • Dingledine, R., and Langmoen, I. A., 1980, Conductance changes and inhibitory actions of hippocampal recurrent IPSPs, Brain Res. 185:277–287.

    PubMed  CAS  Google Scholar 

  • Djørup, A., Jahnsen, H., and Mosfeldt-Laursen, A., 1981, The dendritic response to GABA in CA1 of the hippocampal slice, Brain Res. 219:196–201.

    PubMed  Google Scholar 

  • Dodd, J., and Kelly, J. S., 1978, In somatostatin an excitatory transmitter in the hippocampus?, Nature 273:674–675.

    PubMed  CAS  Google Scholar 

  • Dodd, J., and Kelly, J. S., 1981, The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus, Brain Res.205:337–350.

    PubMed  CAS  Google Scholar 

  • Dodd, J., Kelly, J. S., and Said, S. I., 1979, Excitation of CA1 neurones of the rat hippocampus by the octacosapeptide, vasoactive intestinal polypeptide (VIP), Br. J. Pharmacol. 66:125P–125P

    Google Scholar 

  • Dodd, J., Dingledine, R., and Kelly, J. S., 1981, The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro, Brain Res. 207:109–127.

    PubMed  CAS  Google Scholar 

  • Dolphin, A., Hamont, M., and Bockaert, J., 1979, The resolution of dopamine and beta-1 and beta-2 adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus, and cerebral cortex, Brain Res. 179:305–317.

    PubMed  CAS  Google Scholar 

  • Douglas, R. J., 1975, The development of hippocampal function: Implications for theory and for therapy, in: The Hippocampus Vol. 2 (R. L. Isaacson and K. H. Pribram, eds.), Plenum Press, New York, pp. 327–361

    Google Scholar 

  • Douglas, R. M., Goddard, and G. V., 1975, Long-term potentiation of the perforant path—granule cell synapse in the rat hippocampus, Brain Res. 86:205–215.

    PubMed  CAS  Google Scholar 

  • Dudar, J. D., 1974, In vitro excitation of hippocampal pyramidal cell dendrites by glutamic acid, Neuropharmacology 13:1083–1089.

    PubMed  CAS  Google Scholar 

  • Dudar, J. D., 1975, The effect of septal nuclei stimulation on the release of acetylcholine from the rabbit hippocampus, Brain Res. 83:123–133.

    CAS  Google Scholar 

  • Dudek, F. E., Andrew, R. D., MacVicar, B. A., Snow, R. W., and Taylor, C. P., 1983, Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. Van Gelder, eds.), Liss, New York, pp. 31–73

    Google Scholar 

  • Dunwiddie, T. V., 1980, Endogenously released adenosine regulates excitability in the in vitro hippocampus, EPilepsia 21:541–548.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., and Hoffer, B. J., 1980, Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus, Br. J. Pharmacol. 69:59–68.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T., and Lynch, G., 1978, Long-term potentiation and depression of synaptic responses in the rat hippocampus: Localization and frequency dependency, J. Physiol. (London)276:353–367.

    CAS  Google Scholar 

  • Dunwiddie, T., and Lynch, G., 1979, The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation, Brain Res. 169:103–110.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T., Madison, D., and Lynch, G., 1978, Synaptic transmission is required for long-term potentiation, Brain Res. 150:413–417.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T., Mueller, A., Palmer, M., Stewart, J., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. I. Effects on pyramidal cell activity, Brain Res. 184:311–330.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., Hoffer, B. J., and Fredholm, B. B., 1981, Alkylxanthines elevate hippocampal excitability: Evidence for a role of endogenous adenosine, Naunyn-Schmiedebergs Arch. Pharmacol. 316:326–330.

    PubMed  CAS  Google Scholar 

  • Durand, D., Carlen, P. L., Gurevich, N., Ho, A., and Kunov, H., 1983, Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining, J. Neurophysiol. 50:1080–1097.

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1955, The central action of antidromic impulses in motor nerve fibres, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 260:385–415.

    CAS  Google Scholar 

  • Eccles, J. C., 1983, Calcium in long-term potentiation as a model for memory, Neuroscience 10:1071–1081.

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., Nicoll, R. A., Oshima, T., and Rubia, F. J., 1977, The anionic permeability of the inhibitory postsynaptic membrane of hippocampal pyramidal cells, Proc. R. Soc. London Ser. B 198:315–361.

    Google Scholar 

  • Engel, J.,Jr., Kuhl, D. E., Phelps, M. E., and Crandall, P. H., 1982, Comparative localization of epileptic foci in partial epilepsy by PCT and EEG, Ann. Neurol. 12:529–537.

    PubMed  Google Scholar 

  • Enna, S. J., and Snyder, S. H., 1975, Properties of gamma-aminobutyric acid (GABA) binding in rat brain synaptic membrane fractions, Brain Res. 100:81–97.

    PubMed  CAS  Google Scholar 

  • Fagni, L., Baudry, M., and Lynch, G., 1983, Classification and properties of acidic amino acid receptors in hippocampus. I. Electrophysiological studies of an apparent desensitization and interactions with drugs which block transmission, J. Neurosci. 3:1538–1546.

    PubMed  CAS  Google Scholar 

  • Fantie, B. D., and Goddard, G. V., 1982, Septal modulation of the population spike in the fascia dentata produced by perforant path stimulation in the rat, Brain Res. 252:227–237.

    PubMed  CAS  Google Scholar 

  • Feldman, S. C., Dreyfus, C. F., and Lichtenstein, E. S., 1982, Somatostatin neurons in the rodent hippocampus: An in vitro and in vivo immunocytochemical study, Neurosci. Lett. 33:29–34.

    PubMed  CAS  Google Scholar 

  • Fifkova, E., and Van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area, J. Neurocytol. 6:211–230.

    PubMed  CAS  Google Scholar 

  • Fisher, R. S., Pedley, T. A., Moody, W. J., Jr., and Prince, D. A., 1976, The role of extracellular potassium in hippocampal epilepsy, Arch. Neurol. 33:76–83.

    PubMed  CAS  Google Scholar 

  • Fox, S. E., Ranck, and J. B., Jr., 1981, Electrophysiological characteristics of hippocampal complexspike cells and theta cells, Exp. Brain Res. 41:399–410.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B., and Hedqvist, P., 1980, Modulation of neurotransmission by purine nucleotides and nucleosides, Biochem. Pharmacol. 29:1635–1643.

    PubMed  CAS  Google Scholar 

  • Frotscher, M., and Zimmer, J., 1983, Commissural fibers terminate on non-pyramidal neurons in the guinea pig hippocampus—A combined Golgi/EM degeneration study, Brain Res. 265:289–293.

    PubMed  CAS  Google Scholar 

  • Fujita, Y., 1975, Two types of depolarizing after-potentials in hippocampal pyramidal cells of rabbits, Brain Res. 94:435–446.

    PubMed  CAS  Google Scholar 

  • Fujita, Y., 1979, Evidence for the existence of inhibitory postsynaptic potentials in dendrites and their functional significance in hippocampal pyramidal cells of adult rabbits, Brain Res. 175:59–69.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system, Acta Physiol. Scand. SuliPl. 247:37–85.

    CAS  Google Scholar 

  • Gaffan, D., 1974, Recognition impaired and association intact in the memory of monkeys after transection of the fornix, J. Comp. Physiol. Psychol. 86:1100–1109.

    PubMed  CAS  Google Scholar 

  • Gage, F. H., and Thompson, R. G., 1980, Differential distribution of norepinephrine and serotonin along the dorsal—ventral axis of the hippocampal formation, Brain Res. Bull. 5:771–773.

    PubMed  CAS  Google Scholar 

  • Gähwiler, B. H., 1980, Excitatory action of opioid peptides and opiates on cultured hippocampal pyramidal cells, Brain Res. 194:193–203.

    PubMed  Google Scholar 

  • Gähwiler, B. H., and Maurer, R., 1981, Involvement of mu-receptors in the opioid-induced generation of bursting discharges in hippocampal pyramidal cells, Regul. Peptides 2:91–96.

    Google Scholar 

  • Gall, C., Brecha, N., Karten, H. J., and Chang, K. J., 1981, Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus, J. Comp. Neurol. 198:335–350.

    PubMed  CAS  Google Scholar 

  • Gottlieb, D. I., and Cowan, W. M., 1972, On the distribution of axon terminals containing spheroidal and flattened synaptic vesicles in the hippocampus and dentate gyrus of the rat and cat, Z. Zellforsch. 129:413–429.

    PubMed  CAS  Google Scholar 

  • Green, J. D., 1964, The hippocampus, Physiol. Rev. 44:561–608.

    PubMed  CAS  Google Scholar 

  • Green, J.D., and Petsche, H., 1961, Hippocampal electrical activity. IV. Abnormal electrical activity, Electroencephalogr. Clin. Neurophysiol. 13:868–879.

    Google Scholar 

  • Green, J. D., Maxwell, D. S., Schindler, W. J., and Stumpf, C., 1960, Rabbit EEG “theta” rhythm: Its anatomical source and relation to activity in single neurons, J. Neurophysiol. 23403–420

    Google Scholar 

  • Gustafsson, B., Galvan, M., Grafe, P., and Wigstrom, H., 1982, A transient outward current in a mammalian central neurone blocked by 4-aminopyridine, Nature 299:252–254.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., 1981, Histamine hyperpolarizes hippocampal neurones in vitro, Neurosci. Lett. 22:75–78.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., 1982, Cholinergic disinhibition in hippocampal slices of the rat, Brain Res. 233:200–204.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., and Ryall, R. W., 1980, Is excitation by enkephalins of hippocampal neurones in the rat due to presynaptic facilitation or to disinhibition?, J. Physiol. (London) 308:315–330.

    CAS  Google Scholar 

  • Haas, H. L., and Wolf, P., 1977, Central actions of histamine: Microelectrophoretic studies, Brain Res. 122:269–279.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., Wolf, P., Palacios, J. M., Garbarg, M., Barbin, G., and Schwartz, J.-C., 1978, Hypersensitivity to histamine in the guinea pig brain: Microiontophoretic and biochemical studies, Brain Res. 156:275–291.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., Felix, D., Celio, M. R., and Inagami, T., 1980, Angiotensin II in the hippocampus: A histochemical and electrophysiological study, Experientia 36:1394–1395.

    PubMed  CAS  Google Scholar 

  • Hablitz, J. J., 1981, Altered burst responses in hippocampal CA3 neurons injected with EGTA, Exp. Brain Res. 42:483–485.

    PubMed  CAS  Google Scholar 

  • Hablitz, J. J., and Johnston, D., 1981, Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons, Cell. Mol. Neurobiol. 1:325–334.

    PubMed  CAS  Google Scholar 

  • Hablitz, J. J., and Langmoen, I. A., 1982, Excitation of hippocampal pyramidal cells by glutamate in the guinea pig and rat, J. Physiol. (London) 325:317–331.

    CAS  Google Scholar 

  • Halliwell, J. V., and , P. R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250:71–92.

    PubMed  CAS  Google Scholar 

  • Hamlyn, L. H., 1963, An electron microscope study of pyramidal neurons in the Ammon’s horn of the rabbit, J. Anat. 97:189–201.

    PubMed  CAS  Google Scholar 

  • Handelmann, G. E., Meyer, D. K., Beinfeld, M. C., and Oertel, W. H., 1981, CCK-containing terminals in the hippocampus and derived from intrinsic neurons: An immunohistochemical and radioimmunological study, Brain Res. 224:180–184.

    PubMed  CAS  Google Scholar 

  • Henriksen, S. J., Chouvet, G., and Bloom, F., 1983, Differential responses of hippocampal neurons to endogenous opioid peptides, and opiate alkaloids suggest multiple opiate receptorsSoc. Neurosci. Abstr. 9:1130.

    Google Scholar 

  • Herrling, P L., 1981, The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter agonists, Brain Res. 212:331–343.

    PubMed  CAS  Google Scholar 

  • Hicks, T. P., and McLennan, H., 1979, Amino acids and the synaptic pharmacology of granule cells in the dentate gyrus of the rat, Can. J. Physiol. Pharmacol. 57:973–978.

    PubMed  CAS  Google Scholar 

  • Hill, D. R., and Bowery, N. G., 1981, 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain, Nature 290:149–152.

    PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen, A., and Jeune, B., 1972, Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation, J. Comp. Neurol. 144:215–232.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  • Hoffer, B. J., Seiger, Å., Taylor, D., Olson, L., and Freedman, R., 1977, Seizures and related epileptiform activity in hippocampus transplanted to the anterior chamber of the eye, Exp. Neurol. 54:233–250.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., Ljungdahl, Á., Fuxe, K., and Johansson, O., 1974, Dopamine nerve terminals in the rat limbic cortex: Aspects of the dopamine hypothesis of schizophrenia, Science 184:177–179.

    PubMed  Google Scholar 

  • Hong, J.-S., and Schmid, R., 1981, Intrahippocampal distribution of Met5-enkephalin, Brain Res. 205:415–418.

    PubMed  CAS  Google Scholar 

  • Hong, J.-S., Yang, H. Y., Fratta, W., and Costa, E., 1977, Determination of methionine-enkephalin in discrete regions of rat brain, Brain Res. 134:383–386.

    PubMed  CAS  Google Scholar 

  • Horowitz, J. M., and Mates, J. W B., 1975, Signal dispersion within a hippocampal neural network, Comput. Biol. Med. 5:283–296.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., and Prince, D. A., 1980, A calcium activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43:409–419.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42:889–895.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., 1978, Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus, Exp. Neurol. 62:787–797.

    PubMed  CAS  Google Scholar 

  • Isaacson, R. L., and Pribram, K. H. (eds.), 1975, The Hippocampus Vols. 1 and 2, Raven Press, New York

    Google Scholar 

  • Ishikawa, K., Ott, T., and McGaugh, J. L., 1982, Evidence for dopamine as a transmitter in dorsal hippocampus, Brain Res. 232:222–226.

    PubMed  CAS  Google Scholar 

  • Jahnsen, H., 1980, The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CA1 of the hippocampus in vitro, Brain Res. 197:83–94.

    PubMed  CAS  Google Scholar 

  • Jefferys, J. G. R., and Haas, H L., 1982, Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission, Nature 300:448–450.

    PubMed  CAS  Google Scholar 

  • Johnston, D., 1981, Passive cable properties of hippocampal CA3 pyramidal neurons, Cell. Mol. Neurobiol. 1:41–55.

    PubMed  CAS  Google Scholar 

  • Johnston, D., and Brown, T. H., 1981, Giant synaptic potential hypothesis for epileptiform activity, Science 211:294–297.

    PubMed  CAS  Google Scholar 

  • Johnston, D., and Brown, T. H., 1983, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50:464–486.

    PubMed  CAS  Google Scholar 

  • Johnston, D., and Brown, T. H., 1984, Mechanisms of neuronal burst generation, in: Electrophysiology of Epilepsy (P. A. Schwartzkroin and H. V. Hweal, eds.), Academic Press, New York, pp. 277–301

    Google Scholar 

  • Johnston, D., Hablitz, J. J., and Wilson, W. A., 1980, Voltage clamp discloses slow inward current in hippocampal burst-firing neurones, Nature 286:391–393.

    PubMed  CAS  Google Scholar 

  • Jones, B. E., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study, Brain Res. 127:23–53.

    Google Scholar 

  • Kandel, E. R., and Spencer, W. A., 1961, Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing, J. Neurophysiol. 24:243–259.

    PubMed  CAS  Google Scholar 

  • Kandel, E. R., Spencer, W. A., and Brinley, F. J., Jr., 1961, Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization, J. Neurophysiol. 24:225–242.

    PubMed  CAS  Google Scholar 

  • Knowles, W. D., and Schwartzkroin, P. A., 1981, Local circuit synaptic interactions in hippocampal brain slices, J. Neurosci. 1:318–322.

    PubMed  CAS  Google Scholar 

  • Knowles, W. D., Funch, P. G., and Schwartzkroin, P. A., 1982a, Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro, Neuroscience 7:1713–1722.

    PubMed  CAS  Google Scholar 

  • Knowles, W. D., Schwartzkroin, P. A, and Schneiderman, J. H., 1982b, Three types of hyperpolarizations in hippocampal CA3 neurons, Soc. Neurosci. Abstr. 8:412.

    Google Scholar 

  • Kostopoulos, G. K., and Phillis, J. W., 1977, Purinergic depression of neurons in different areas of the rat brain, Exp. Neurol. 55:791–824.

    Google Scholar 

  • Kramis, R., Vanderwolf, C. H., and Bland, B. H., 1975, Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethylether, urethane, and pentobarbital, Exp. Neurol. 49:58–85.

    PubMed  CAS  Google Scholar 

  • Krnjevć, K., and Ropert, N., 1981, Septo-hippocampal pathway modulates hippocampal activity by a cholinergic mechanism, Can. J. Physiol. Pharmacol. 59:911–914.

    Google Scholar 

  • Krnjevć, K., and Ropert, N., 1982, Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum, Neuroscience 7:2165–2183.

    Google Scholar 

  • Krnjević, K., Morris, M. E., and Reiffenstein, R. J., 1980, Changes in extracellular Ca+ + and K+ activity accompanying hippocampal discharges, Can. J. Physiol. Pharmacol. 58:579–583.

    PubMed  Google Scholar 

  • Kromer, L. F., Björklund, A., and Stenevi, U., 1981, Regeneration of the septohippocampal pathway in adult rats is promoted by utilizing embryonic hippocampal implants as bridges, Brain Res. 210:173–200.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., and Yamamura, H. I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110:229–243.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., Taylor, N., Wamsley, J. K., Hulme, E. C., and Birdsall, N. J. M., 1981, Muscarinic cholinergic receptor localization in brain by electron microscopic autoradiography, Brain Res. 216:1–9.

    PubMed  CAS  Google Scholar 

  • Kunkel, D. D., and Schwartzkroin, P. A., 1982, Interneuron morphology in the CA1 region of rabbit hippocampus, Soc. Neurosci. Abstr. 8:216.

    Google Scholar 

  • Kunkel, D. D., Schwartzkroin, P. A., and Hendrickson, A. E., 1983, Immunocytochemistry of somatostatin in CA1 of rabbit hippocampus, Soc. Neurosci. Abstr. 9:218.

    Google Scholar 

  • Langmoen, I. A., Segal, M., and Andersen, P., 1981, Mechanisms of norepinephrine actions on hippocampal pyramidal cells in vitro, Brain Res. 208:349–362.

    PubMed  CAS  Google Scholar 

  • Lebovitz, R. M., Dichter, M., and Spencer, W. A., 1971, Recurrent excitation in the CA3 region of cat hippocampus, Int. J. Neurosci. 2:99–108.

    PubMed  CAS  Google Scholar 

  • Lee, H. K., Dunwiddie, T., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. Effects on interneuron excitability, Brain Res. 184:331–342.

    PubMed  CAS  Google Scholar 

  • Lee, K., and Schubert, P., 1982, Modulation of an inhibitory circuit by adenosine and AMP in the hippocampus, Brain Res. 246:311–314.

    PubMed  CAS  Google Scholar 

  • Lee, K., Schubert, P., Gribkoff, V., Sherman, B., and Lynch, G., 1982, A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus, J. Neurochem. 38:80–83.

    PubMed  CAS  Google Scholar 

  • Lee, K. S., Reddington, M., Schubert, P., and Kreutzberg, G., 1983a, Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of A1 receptors, Brain Res. 260:156–159.

    PubMed  CAS  Google Scholar 

  • Lee, K. S., Schubert, P., Reddington, M., and Kreutzberg, G. W., 1983b, Adenosine receptor density and the depression of evoked neuronal activity in the rat hippocampus in vitro, Neurosci. Lett. 37:81–85.

    PubMed  CAS  Google Scholar 

  • Leung, L. S., 1978, Hippocampal CA1 region—Demonstration of antidromic dendritic spike and dendritic inhibition, Brain Res. 158:219–222.

    PubMed  CAS  Google Scholar 

  • Levy, W. B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience 8:791–797.

    PubMed  CAS  Google Scholar 

  • Lewis, E. R., and Cotman, C. W., 1980, Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. I. Positional and temporal factors, Brain Res. 196:307–330.

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., Shute, C. C. D., and Silver, A., 1967, Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus, J. Physiol. (London)191:215–224.

    CAS  Google Scholar 

  • Lieb, J. P., Engel, J. E., Jr., Gevins, A., and Crandall, P. H., 1981, Surface and deep EEG correlates of surgical outcome in temporal lobe epilepsy, EPilepsia 22:515–538.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., and Björklund, A., 1974, The organization of the ascending catecholamine neuron system in the rat brain as revealed by the glyoxylic acid fluorescence method, Acta Physiol. Scand. 412:1–48.

    CAS  Google Scholar 

  • Llinás, R., and Jahnsen, H., 1982, Electrophysiology of mammalian thalamic neurones in vitro, Nature 297:406–408.

    PubMed  Google Scholar 

  • Llinás, R., and Sugimori, M., 1980a, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London)305:171–195.

    Google Scholar 

  • Llinás, R., and Sugimori, M., 1980b, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305:197–213.

    Google Scholar 

  • Llinás, R., and Yarom, Y., 1981a, Electrophysiology of mammalian inferior olivary neurones in vitro: Different types of voltage-dependent ionic conductances, J. Physiol. (London) 315:549–567.

    Google Scholar 

  • Llinś, R., and Yarom, Y., 1981b, Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro, J. Physiol. (London)315:569–584.

    Google Scholar 

  • Lømo, T., 1971a, Patterns of activation in a monosynaptic cortical pathway: The perforant path input to the dentate area of the hippocampal formation, Exp. Brain Res. 12:18–45.

    PubMed  Google Scholar 

  • Lømo, T., 1971b, Potentiation of monosynaptic EPSPs in the perforant path—dentate granule cell synapse, Exp. Brain Res. 12:46–63.

    PubMed  Google Scholar 

  • Lorente de Nó, R., 1934, Studies on the structure of the cerebral cortex II. Continuation of the study of the ammonic system, J. Psychol. Neurol. 46:113–177.

    Google Scholar 

  • Low, W. C., and BeMent, S. L., 1980, Enhancement of afferent fiber activity in hippocampal slices, Brain Res. 198:472–477.

    PubMed  CAS  Google Scholar 

  • Low, W. C., BeMent, S. L., and Whitehorn, D., 1983, Field-potential evidence for extrasynaptic alterations in the hippocampal CA1 pyramidal cell population during paired-pulse potentiation, Exp. Neurol. 80:9–22.

    PubMed  CAS  Google Scholar 

  • Lundberg, J. M., and Hökfelt, T., 1983, Coexistence of peptides and classical neurotransmitters, Trends Neurosci. 6:325–333.

    CAS  Google Scholar 

  • Lux, H. D., and Pollen, D. A., 1966, Electrical constants of neurons in the motor cortex of the cat, J. Neurophysiol. 29:207–220.

    PubMed  CAS  Google Scholar 

  • Lynch, G., and Cotman, C. W., 1975, The hippocampus as a model for studying anatomical plasticity in the adult brain, in: The Hippocampus Vol. 1 (R. L. Isaacson and K. H. Pribram, eds.), Plenum Press, New York, pp. 123–154

    Google Scholar 

  • Lynch, G. S., Dunwiddie, T., and Gribkoff, V., 1977, Heterosynaptic depression: A postsynaptic correlate of long-term potentiation, Nature 266:737–739.

    PubMed  CAS  Google Scholar 

  • Lynch, G. S., Jensen, R. A., McGaugh, J. L., Davila, K., and Oliver, M. W., 1981, Effects of enkephalin, morphine, and naloxone on the electrical activity of the in vitro hippocampal slice preparation, Exp. Neurol. 71:527–540.

    PubMed  CAS  Google Scholar 

  • McGinty, J. F., Henriksen, S. J., Goldstein, A., Terenius, L., and Bloom, F. E., 1983, Dynorphin is contained within hippocampal mossy fibers: Immunochemical alterations after kainic acid administration and colchicine-induced neurotoxicity, Proc. Natl. Acad. Sci. USA 80:589–593.

    PubMed  CAS  Google Scholar 

  • McNaughton, B. L., 1980, Evidence for two physiologically distinct perforant pathways to the fascia dentata, Brain Res. 199:1–19.

    PubMed  CAS  Google Scholar 

  • McNaughton, B. L., 1982, Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms, J. Physiol. (London)324:249–262.

    CAS  Google Scholar 

  • McNaughton, B. L., and Barnes, C. A., 1977, Physiological identification and analysis of dentate granule cell responses to stimulation of the medial and lateral perforant pathways in the rat, J. Comp. Neurol. 175:439–454.

    PubMed  CAS  Google Scholar 

  • McNaughton, B. L., Douglas, R. M., and Goddard, G. V., 1978, Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents, Brain Res. 157:277–293.

    PubMed  CAS  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., and Andersen, P., 1981, Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro, J. Neurophysiol. 46:952–966.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1980a, Local synaptic circuits in rat hippocampus: Interaction between pyramidal cells, Brain Res. 184:220–223.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1980b, Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus, Brain Res. 196:494–497.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1981, Electrotonic coupling between pyramidal cells: A direct demonstration in rat hippocampal slices, Science 213:782–785.

    PubMed  CAS  Google Scholar 

  • MacVicar, B. A., and Dudek, F. E., 1982, Electrotonic coupling between granule cells of rat dentate gyrus: Physiological and anatomical evidence, J. Neurophysiol. 47579–592

    PubMed  CAS  Google Scholar 

  • Madison, D. V., and Nicoll, R. A., 1982, Noradrenalin blocks accommodation of pyramidal cell discharge in the hippocampus, Nature 299:636–638.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., and Nicoll, R. A., 1983, Adaptation of action potential frequency in hippocampal pyramidal cells is regulated by calcium-activated potassium conductance and M-current, Soc. Neurosci. Abstr. 9:601.

    Google Scholar 

  • Marks, M. J., and Collins, A. C., 1982, Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate, Mol. Pharmacol. 22:554–564.

    PubMed  CAS  Google Scholar 

  • Masukawa, L. M., and Prince, D. A., 1982, Enkephalin inhibition of inhibitory input to CA1 and CA3 pyramidal neurons in the hippocampus, Brain Res. 249:271–280.

    PubMed  CAS  Google Scholar 

  • Matthews, W. D., McCafferty, G. P., and Setler, P. E., 1981, An electrophysiological model of GABA-mediated neurotransmission, Neuropharmacology 20:561–565.

    PubMed  CAS  Google Scholar 

  • Minkwitz, H.-G., 1976, Zur Entwicklung der Neuronenstruktur des Hippocampus wahrend der Pra- and Postnatalen Ontogenese der Albinoratte. III. Mitteilung: Morphometrische Erfassung der Ontogenetischen Veranderungen in Dendriten Struktur und Spine Besatz an Pyramiden-Neuronen (CA1) des Hippocampus, J. Hirnforsch. 17:255–275.

    PubMed  CAS  Google Scholar 

  • Misgeld, U., Sarvey, J. M., and Klee, M. R., 1979, Heterosynaptic postactivation potentiation in hippocampal CA3 neurons: Long-term changes of the postsynaptic potential, Exp. Brain Res. 37:217–229.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., 1975, Monoamine neurons innervating the hippocampal formation and septum: Organization and response to injury, in: The Hippocampus Vol. 1 (R. L. Isaacson and K. H. Pribram, eds.), Plenum Press, New York, pp. 215–237

    Google Scholar 

  • Moore, R. Y., and Halaris, A. E., 1975, Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat, J. Comp. Neurol. 164:171–184.

    PubMed  CAS  Google Scholar 

  • Mueller, A. L., and Dunwiddie, T. V., 1983, Anticonvulsant and proconvulsant actions of alpha-and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro, EPilepsia 24:57–64.

    PubMed  CAS  Google Scholar 

  • Mueller, A. L., and Schwartzkroin, P. A., 1983, Electrophysiological actions of somatostatin (SRIF) in rabbit hippocampus studied in vitro, Soc. Neurosci. Abstr. 9:219.

    Google Scholar 

  • Mueller, A. L., Hoffer, B. J., and Dunwiddie, T. V., 1981, Noradrenergic responses in rat hippocampus: Evidence for mediation by α and ß receptors in the in vitro slice, Brain Res. 214:113–126.

    PubMed  CAS  Google Scholar 

  • Mueller, A. L., Palmer, M. R., Hoffer, B. J., and Dunwiddie, T. V., 1982, Hippocampal noradrenergic responses in vivo and in vitro: Characterization of alpha and beta components, Naunyn-Schmiedebergs Arch. Pharmacol. 318:259–266.

    PubMed  CAS  Google Scholar 

  • Mueller, A. L., Chesnut, R. M., and Schwartzkroin, P. A., 1983, Actions of GABA in developing rabbit hippocampus: An in vitro study, Neurosci. Lett. 39:193–198.

    PubMed  CAS  Google Scholar 

  • Mühlethaler, M., Dreifuss, J. J., and Gähwiler, B. H., 1982, Vasopressin excites hippocampal neurones, Nature 296:749–751.

    PubMed  Google Scholar 

  • Mühlethaler, M., Sawyer, W. H., Manning, M. M., and Dreifuss, J. J., 1983, Characterization of a uterine-type oxytocin receptor in the rat hippocampus, Proc. Natl. Acad. Sci. USA 80:6713–6717.

    PubMed  Google Scholar 

  • Muller, R. U., Kubie, J. L., and Ranck, J. B., Jr., 1983, High resolution mapping of the “spatial” fields of hippocampal neurons in the freely moving rat, Soc. Neurosci. Abstr. 9:646.

    Google Scholar 

  • Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S., and Cotman, C. W., 1976, Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Nature 260:538–540.

    PubMed  CAS  Google Scholar 

  • Nadler, J. V., White, W. F., Vaca, K. W., Redburn, D. A., and Cotman, C. W., 1977, Characterization of putative amino acid transmitter release from slices of rat dentate gyrus, J. Neurochem. 29:279–290.

    PubMed  CAS  Google Scholar 

  • Nadler, J. V., White, W. F., Vaca, K. W., Perry, B. W., and Cotman, C. W., 1978, Biochemical correlates of transmission mediated by glutamate and aspartate, J. Neurochem. 31:147–155.

    PubMed  CAS  Google Scholar 

  • Newberry, N. R., and Nicoll, R. A., 1983, Direct inhibitory action of baclofen on hippocampal pyramidal cells, Soc. Neurosci. Abstr. 9:457.

    Google Scholar 

  • Nicoll, R. A., and Alger, B. E., 1981, Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cell, Science 212:957–959.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., Siggins, G. R., Ling, N., Bloom, F. E., and Guillemen, R., 1977, Neuronal actions of endorphins and enkephalins among brain regions: A comparative microiontophoretic study, Proc. Natl. Acad. Sci. USA 74:2584–2588.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., Alger, B. E., and Jahr, C. E., 1980, Enkephalin blocks inhibitory pathways in the vertebrate CNS, Nature 287:22–25.

    PubMed  CAS  Google Scholar 

  • Numann, R., Wong, R. K. S., and Clark, R., 1982, Electrophysiology of single dissociated cortical neurons, Soc. Neurosci. Abstr. 8:413.

    Google Scholar 

  • Okada, Y., and Ozawa, S., 1980, Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro, Eur. J. Pharmacol. 68:483–492.

    PubMed  CAS  Google Scholar 

  • Okada, Y., and Shimada, C., 1975, Distribution of γ-aminobutyric acid (GABA) and glutamate decarboxylase (GAD) activity in the guinea pig hippocampus—Microassay method for the determination of GAD activity, Brain Res. 98:202–206.

    PubMed  CAS  Google Scholar 

  • O’Keefe, J., and Nadel, L., 1978, The Hippocampus as a Cognitive Map, Oxford University Press, London

    Google Scholar 

  • Olds, J., 1972, Learning and the hippocampus, Rev. Can. Bio. Suppl. 31:215–238.

    Google Scholar 

  • Olds, J., Disterhoft, J. F., Segal, M., Kornblith, C. L., and Hirsh, R., 1972, Learning centers of rat brain mapped by measuring latencies of conditioned unit responses, J. Neurophysiol. 35:202–219.

    PubMed  CAS  Google Scholar 

  • Olpe, H.-R., Balcar, V. J., Bittiger, H., Rink, H., and Sieber, P., 1980, Central actions of somatostatin, Eur. J. Pharmacol. 63:127–133.

    PubMed  CAS  Google Scholar 

  • Olsen, R. W., Bergman, M O., VanNess, P. C., Lummis, S. C, Watkins, A. E., Napias, C., and Greenlee, D. V., 1981, Gamma-aminobutyric acid receptor binding in mammalian brain: Heterogeneity of binding sites, Mol. Pharmacol. 19:217–227.

    PubMed  CAS  Google Scholar 

  • Olton, D. S., Becker, J. T., and Handelmann, G. E., 1979, Hippocampus, space, and memory, Behav. Brain Sci. 2:313–365.

    Google Scholar 

  • Palacios, J. M., DeHaven, R. N., and KuharM. J., 1980, Localization of beta-adrenergic receptors in rat brain by light microscopic autoradiography, Fed. Proc. 39:593.

    Google Scholar 

  • Peroutka, S. J., and Snyder, S. H., 1981, Two distinct serotonin receptors: Regional variations in receptor binding in mammalian brain, Brain Res. 208:339–347.

    PubMed  CAS  Google Scholar 

  • Petsche, H., Stumpf, C., and Gogolak, G., 1962, The significance of the rabbit’s septum as a relay station between midbrain and hippocampus. I. The control of hippocampus arousal activity by septum cells, Electroencephalogr. Clin. Neurophysiol. 14:201–211.

    Google Scholar 

  • Pittman, Q. J., and Siggins, G. R., 1981, Somatostatin hyperpolarized hippocampal pyramidal cells in vitro, Brain Res. 221:402–408.

    PubMed  CAS  Google Scholar 

  • Prince, D. A., 1983, Ionic mechanisms in cortical and hippocampal epileptogenesis, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. VanGelder, eds.), Liss, New York, pp. 217–243

    Google Scholar 

  • Proctor, W. R., and Dunwiddie, T. V., 1983, Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro, Neurosci. Lett. 35:197–201.

    PubMed  CAS  Google Scholar 

  • Purpura, D. P., and Malliani, A., 1966, Spike generation and propagation initiated in dendrites by transhippocampal polarization, Brain Res. 1:403–406.

    PubMed  CAS  Google Scholar 

  • Purpura, D. P., Prelevic, S., and Santini, M., 1968, Hyperpolarizing increase in membrane conductance in hippocampal neurons, Brain Res. 7:310–312.

    PubMed  CAS  Google Scholar 

  • Racine, R. J., and Milgram, N. W., 1983, Short-term potentiation phenomena in the rat limbic forebrain, Brain Res. 260:201–216.

    PubMed  CAS  Google Scholar 

  • Racine, R. J., Milgram, N. W., and Hafner, S., 1983, Long-term potentiation phenomena in the rat limbic forebrain, Brain Res. 260:217–231.

    PubMed  CAS  Google Scholar 

  • Raisman, G., 1966, The connexions of the septum, Brain 89:317–348.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1969, Time constants and electrotonic length constants of membrane cylinders and neurons, Biophys. J. 9:1483–1508.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1974, Dendritic spines, synaptic potency and neuronal plasticity, in: Cellular Mechanisms Subserving Changes in Neuronal Activity (C. D. Woody, K. A. Brown, T. J. Crow, and J. D. Knispe, eds.), Brain Information Service, UCLA, Los Angeles, pp. 13–21

    Google Scholar 

  • Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, The Nervous System Section I (E. R. Kandel, ed.), Williams & Wilkins, Baltimore, pp. 39–98

    Google Scholar 

  • Rall, W., and Rinzel, J., 1973, Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model, Biophys. J. 13:648–688.

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S., 1911, Histologie du systemé nerveux de l’Homme et des Vertébrés Maloine, Paris

    Google Scholar 

  • Ranck, J. B., Jr., 1973, Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part 1. Behavioral correlates and firing repertoires, Exp. Neurol. 41:461–534.

    PubMed  Google Scholar 

  • Reddington, M., Lee, K., and Schubert, P., 1982, An A1-adenosine receptor characterized by 3H-cyclohexyladenosine binding, moderates the depression of evoked potentials in a rat hippocampal slice preparation, Neurosci. Lett. 28:275–279.

    PubMed  CAS  Google Scholar 

  • Ribak, C. E., Vaughn, J. E., and Saito, K., 1978, Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport, Brain Res. 140:315–332.

    PubMed  CAS  Google Scholar 

  • Robinson, J. H., and Deadwyler, S. A., 1981, Intracellular correlates of morphine excitation in the hippocampal slice preparation, Brain Res. 224:375–387.

    PubMed  CAS  Google Scholar 

  • Rose, A. M., Hattori, T., and Fibiger, H. C., 1976, Analysis of the septo-hippocampal pathway by light and electron microscopic autoradiography, Brain Res. 108:170–174.

    PubMed  CAS  Google Scholar 

  • Salmoiraghi, G. C., and Stefanis, C. N., 1965, Patterns of central neuron responses to suspected transmitters, Arch. Ital. Biol. 103:705–724.

    PubMed  CAS  Google Scholar 

  • Sandoval, M. E., Horch, P., and Cotman, C. W., 1978, Evaluation of glutamate as a hippocampal neurotransmitter: Glutamate uptake and release from synaptosomes, Brain Res. 142:285–299.

    PubMed  CAS  Google Scholar 

  • Sastry, B. R., 1982, Presynaptic change associated with long-term potentiation in hippocampus, Life Sci. 30:2003–2008.

    PubMed  CAS  Google Scholar 

  • Sawada, S., Takada, S., and Yamamoto, C., 1982, Excitatory actions of homocysteic acid on hippocampal neurons, Brain Res. 238:282–285.

    PubMed  CAS  Google Scholar 

  • Scatton, B., Simon, H., Le Moal, M., and Bischoff, S., 1980, Origin of dopaminergic innervation of the rat hippocampal formation, Neurosci. Lett. 18:125–131.

    PubMed  CAS  Google Scholar 

  • Schmalbruch, H., and Jahnsen, H., 1981, Gap junctions on CA3 pyramidal cells of guinea pig hippocampus shown by freeze fracture, Brain Res. 217:175–178.

    PubMed  CAS  Google Scholar 

  • Schubert, P., and Mitzdorf, U., 1979, Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices, Brain Res. 172:186–190.

    PubMed  CAS  Google Scholar 

  • Schwartz, J.-C., Barbin, G., Duchemin, A. M., Garbarg, M., Palacios, J. M., Quach, T. T., and Rose, C., 1980, Histamine receptors in brain: Characterization by binding studies and biochemical effects, in: Receptors for Neurotransmitters and Peptide Hormones (G. Pepeu, M. J. Kuhar, and S. J. Enna, eds.), Raven Press, New York, pp. 169–182

    Google Scholar 

  • Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res. 85:423–436.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., 1983a, Mechanisms of cell synchronization in epileptiform activity, Trends Neurosci. 6:157–160.

    Google Scholar 

  • Schwartzkroin, P. A., 1983b, Local circuit considerations and intrinsic neuronal properties involved in hyperexcitability and cell synchronization, in: Basic Mechanisms of Neuronal Hyperexcitability (N. VanGelder and H. H. Jasper, eds.), Liss, New York, pp. 75–108

    Google Scholar 

  • Schwartzkroin, P. A., and Andersen, P., 1975, Glutamic acid sensitivity of dendrites in hippocampal slices in vitro, in: Physiology and Pathology of Dendrites (G. Kreutzberg, ed.), Raven Press, New York, pp. 45–51

    Google Scholar 

  • Schwartzkroin, P. A., and Knowles, W. D., 1983, Local interactions in the hippocampus, Trends Neurosci. 6:88–92.

    Google Scholar 

  • Schwartzkroin, P. A., and Mathers, L. H., 1978, Physiological and morphological identification of a nonpyramidal hippocampal cell type, Brain Res. 157:1–10.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Pedley, T. A., 1979, Slow depolarizing potentials in “epileptic” neurons, Epilepsia 20:267–277.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1977, Penicillin-induced epileptiform activity in the hippocampal in vitro preparation, Ann. Neurol. 1:463–469.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1978, Cellular and field potential properties of epileptogenic hippocampal slices, Brain Res. 147:117–130.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and PrinceD. A., 1979, Recordings from presumed glial cells in the hippocampal slice, Brain Res. 161:533–538.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1980a, Effects of TEA on hippocampal neurons, Brain Res. 185:169–181.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Prince, D. A., 1980b, Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity, Brain Res. 183:61–76.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Slawsky, M., 1977, Probable calcium spike in hippocampal neurons, Brain Res. 135:157–161.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Stafstrom, C. E., 1980, Effects of EGTA on the calcium-activated after-hyperpolarization in hippocampal CA3 pyramidal cells, Science 210:1125–1126.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Wester, K., 1975, Long-term facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice, Brain Res. 89:107–119.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Wyler, A. R., 1980, Mechanisms underlying epileptiform burst discharge, Ann. Neurol. 7:95–107.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A., Kunkel, D. D., and Mathers, L. H., 1982, Development of rabbit hippocampus: Anatomy, Dev. Brain Res. 2:453–468.

    Google Scholar 

  • Scoville, W. B., and Milner, B., 1957, Loss of recent memory after bilateral hippocampal lesions, J. Neurol. Neurosurg. Psychiatry 20:11–21.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1975, Physiological and pharmacological evidence for a serotonergic projection to the hippocampus, Brain Res. 94:115–131.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1980a, The action of serotonin in the rat hippocampal slice preparation, J. Physiol. (London)303:423–439.

    CAS  Google Scholar 

  • Segal, M., 1980b, Histamine produces a Ca+2-sensitive depolarization of hippocampal pyramidal cells in vitro, Neurosci. Lett. 19:67–71.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1981a, The action of norepinephrine in the rat hippocampus: Intracellular studies in the slice preparation, Brain Res. 206:107–128.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1981b, Histamine modulates reactivity of hippocampal CA3 neurons to afferent stimulation in vitro, Brain Res. 213:443–448.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1981c, Regional differences in neuronal responses to 5-HT: Intracellular studies in hippocampal slices, J. Physiol. (Paris)77:373–375.

    CAS  Google Scholar 

  • Segal, M., 1982a, Multiple actions of acetylcholine at a muscarinic receptor studied in the rat hippocampal slice, Brain Res. 246:77–87.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1982b, Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus, Eur. J. Pharmacol. 79:193–199.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1982c, Norepinephrine modulates reactivity of hippocampal cells to chemical stimulation in vitro, Exp Neurol. 77:86–93.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Bloom, F. E., 1974a, The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies, Brain Res. 72:79–97.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Bloom, F. E., 1974b, The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway, Brain Res. 72:99–114.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Gutnick, M. J., 1980, Effects of serotonin on extracellular potassium concentration in the rat hippocampal slice, Brain Res. 195:389–401.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Landis, S., 1974, Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase, Brain Res. 78:1–15.

    PubMed  CAS  Google Scholar 

  • Segal, M, Pickel, V., and Bloom, F. E., 1973, The projections of the nucleus locus coeruleus: An autoradiographic study, Life Sci. 13:817–821.

    PubMed  CAS  Google Scholar 

  • Segal, M., Greenberger, V., and Hofstein, R., 1981, Cyclic AMP-generating systems in rat hippocampal slices, Brain Res. 213:351–364.

    PubMed  CAS  Google Scholar 

  • Seifert, W., 1983, Neurobiology of the Hippocampus, Academic Press, New York

    Google Scholar 

  • Seress, L., and Ribak, C. E., 1983, GABAergic cells in the dentate gyrus appear to be local circuit and projection neurons, Exp. Brain Res. 50:173–182.

    PubMed  CAS  Google Scholar 

  • Siggins, G .R., and Schubert, P., 1981, Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials, Neurosci. Lett. 23:55–60.

    PubMed  CAS  Google Scholar 

  • Smith, C. M., 1974, Acetylcholine release from the cholinergic septo-hippocampal pathway, Life Sci. 14:2159–2166.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., 1981, Adenosine receptors and the actions of methylxanthines, Trends Neurosci. 4:242–244.

    CAS  Google Scholar 

  • Somogyi, P., Nunzi, M. G., Gorio, A., and Smith, A. D., 1983a, A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells, Brain Res. 259:137–142.

    PubMed  CAS  Google Scholar 

  • Somogyi, P., Smith, A. D., Nunzi, M. G., Gorio, A., Takagi, H., and Wu, J. Y., 1983b, Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: Distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons, J. Neurosci. 3:1450–1468.

    PubMed  CAS  Google Scholar 

  • Spencer, W. A., and Kandel, E. R., 1961a, Electrophysiology of hippocampal neurons. III. Firing level and time constant, J. Neurophysiol. 24:260–271.

    Google Scholar 

  • Spencer, W. A., and Kandel, E. R., 1961b, Electrophysiology of hippocampal neurons. IV. Fast prepotentials, J. Neurophysiol. 24:272–285.

    Google Scholar 

  • Spencer, W. A., and Kandel, E. R., 1961c, Hippocampal neuron responses to selective activation of recurrent collaterals of hippocampofugal axons, Exp. Neurol. 4:149–161.

    Google Scholar 

  • Spencer, W. A., and Kandel, E. R., 1968, Cellular and integrative properties of the hippocampal pyramidal cell and the comparative electrophysiology of cortical neuron, Int. J. Neurol. 6:266–296.

    PubMed  CAS  Google Scholar 

  • Squire, L. R., 1982, The neuropsychology of human memory, Annu. Rev. Neurosci. 5:241–273.

    PubMed  CAS  Google Scholar 

  • Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1982, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res. 236:221–226.

    PubMed  CAS  Google Scholar 

  • Stanley, J. C., DeFrance, J. F., and Marchand, J. F., 1979, Tetanic and posttetanic potentiation in the septohippocampal pathway, Exp. Neurol. 64:445–451.

    PubMed  CAS  Google Scholar 

  • Stanton, P. K., and Sarvey, J. M., 1983, Blockade of long-term potentiation in rat hippocampal CA1 region by the protein synthesis inhibitors emetine and cycloheximide, Soc. Neurosci. Abstr. 9:678.

    Google Scholar 

  • Steinbusch, H. W. M., 1981, Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals, Neuroscience 6:557–618.

    PubMed  CAS  Google Scholar 

  • Stengaard-Pedersen, K., Fredens, K., and Larsson, L.-I., 1981, Enkephalin and zinc in the hippocampal mossy fiber system, Brain Res. 212:230–233.

    PubMed  CAS  Google Scholar 

  • Steward, O., 1976a, Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat, J. Comp. Neurol. 167:285–314.

    PubMed  CAS  Google Scholar 

  • Steward, O., 1976b, Reinnervation of dentate gyrus by homologous afferents following entorhinal cortical lesions in adult rats, Science 194:426–428.

    PubMed  CAS  Google Scholar 

  • Steward, O., and Brassel, S., 1983, Intrahippocampal injections of cycloheximide reversibly block long term potentiation, Soc. Neurosci. Abstr. 9:860.

    Google Scholar 

  • Steward, O., White, W. F., Cotman, C. W., and Lynch, G., 1976, Potentiation of excitatory synaptic transmission in the normal and in the reinnervated dentate gyrus of the rat, Exp. Brain Res. 26:423–441.

    PubMed  CAS  Google Scholar 

  • Steward, O., White, W. F., and Cotman, C. W., 1977, Potentiation of the excitatory synaptic action of commissural, associational and entorhinal afferents to dentate granule cells, Brain Res. 134:551–560.

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1972, Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems: Evidence that enzyme is localized in intrinsic neurons, Brain Res. 40:215–235.

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1977, Localization of transmitter candidates in the brain: The hippocampal formation as a model, Prog. Neurobiol. 8:119–181.

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., and Fonnum, F., 1971, Quantitative histochemistry of glutamate decarboxylase in rat hippocampal region, J. Neurochem. 18:1105–1111.

    PubMed  CAS  Google Scholar 

  • Struble, R. B., Desmond, N. L., and Levy, W. B., 1978, Anatomical evidence for interlamellar inhibition in the fascia dentata, Brain Res. 152:580–585.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Hartman, B. K., 1975, The central adrenergic system: An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker, J. Comp. Neurol. 163:467–506.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., Teyler, T. J., and Thompson, R. F. (eds.), 1982, Hippocampal long-term potentiation: Mechanisms and implications for memory, Neurosci. Res. Progr. Bull. 20

    Google Scholar 

  • Taylor, C. P., and Dudek, F. E., 1982a, A physiological test for electrotonic coupling between CA1 pyramidal cells in rat hippocampal slices, Brain Res. 235:351–357.

    PubMed  CAS  Google Scholar 

  • Taylor, C. P., and Dudek, E. E., 1982b, Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses, Science 218:810–812.

    PubMed  CAS  Google Scholar 

  • Taylor, D., Freedman, R., Seiger, Å, Olson, L., and Hoffer, B., 1980, Conditions for adrenergic hyperinnervation in hippocampus. II. Electrophysiological evidence from intraocular double grafts, Exp. Brain Res. 39:289–299.

    PubMed  CAS  Google Scholar 

  • Teyler, T. J., and Alger, B. E., 1976, Monosynaptic habituation in the vertebrate forebrain: The dentate gyrus examined in vitro, Brain Res. 115:413–425.

    PubMed  CAS  Google Scholar 

  • Thalmann, R. H., and Ayala, G. F., 1982, A late increase in potassium conductance follows synaptic stimulation of granule neurons of the dentate gyrus, Neurosci. Lett. 29:243–248.

    PubMed  CAS  Google Scholar 

  • Thalmann, R. H., Peck, E. J., and Ayala, G. F., 1981, Biphasic response of hippocampal pyramidal neurons to GABA, Neurosci. Lett. 21:319–324.

    PubMed  CAS  Google Scholar 

  • Thompson, R. F., Berger, T. W., Berry, S. D., Hoehler, F.K., Kettner, R. E., and Weisz, D. J., 1980, Hippocampal substrate of classical conditioning, Physiol. Psychol. 8:262–279.

    Google Scholar 

  • Traub, R. D., 1983, Cellular mechanisms underlying the inhibitory surround of penicillin epileptogenic foci, Brain Res. 261:277–284.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., and Llinás, R., 1979, Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42476–496

    PubMed  CAS  Google Scholar 

  • Traub, R. D., and Wong, R. K. S., 1981, Penicillin-induced epileptiform activity in the hippocampal slice: A model of synchronization of CA3 pyramidal cell bursting, Neuroscience 6:223–230.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., and Wong, R. K. S., 1983a, Synaptic mechanisms underlying interictal spike initiation in a hippocampal network, Neurology 33:257–266.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., and Wong, R. K. S., 1983b, Synchronized burst discharge in disinhibited hippocampal slice. II. Model of cellular mechanism, J. Neurophysiol. 49:459–471.

    PubMed  CAS  Google Scholar 

  • Turner, D. A., and Schwartzkroin, P. A., 1980, Steady-state electrotonic analysis of intracellularly stained hippocampal neurons, J. Neurophysiol. 44:184–199.

    PubMed  CAS  Google Scholar 

  • Turner, D. A., and Schwartzkroin, P. A., 1983, Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons, J. Neurosci. 3:2381–2394.

    PubMed  CAS  Google Scholar 

  • Turner, R. W., Baimbridge, K. G., and Miller, J. J., 1982, Calcium-induced long-term potentiation in the hippocampus, Neuroscience 7:1411–1416.

    PubMed  CAS  Google Scholar 

  • Turner, R. W., Richardson, T. L., and Miller, J. J., 1983, Role of ephaptic interactions in paired pulse and frequency potentiation of hippocampal field potentials, Soc. Neurosci. Abstr. 9:733.

    Google Scholar 

  • Turner, R. W., Richardson, T.L., and Miller J. J., 1984, Ephaptic interactions contribute to paired pulse and frequency potentiation of hippocampal field potentials, Exp. Brain Res. 59:567–570.

    Google Scholar 

  • Valentino, R. J., and Dingledine, R., 1981, Presynaptic inhibitory effect of acetylcholine in the hippocampus, J. Neurosci. 1:784–792.

    PubMed  CAS  Google Scholar 

  • Vanderwolf, C. H., Kramis, R., Gillespie, L. A., and Bland, B. H., 1975, Hippocampal slow activity and neocortical low voltage fast activity: Relations to behavior, in: The Hippocampus Vol. 2 (R. L. Isaacson and K. H. Pribram, eds.), Plenum Press, New York, pp. 101–128

    Google Scholar 

  • Vickery, B. G., Schmechel, D. E., and Haring, J. H., 1983, Study of GABAergic non-pyramidal neurons in plexiform layers and deep white matter of rat hippocampus, Soc. Neurosci. Abstr. 9:408.

    Google Scholar 

  • Voronin, L. L., 1983, Long-term potentiation in the hippocampus, Neuroscience 10:1051–1069.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Taguchi, Y., Hayashi, H., Tanaka, J., Shiosaka, S., Tohyama, M., Kubota, H., Terano, Y., and Wada, H., 1983, Evidence for the presence of a histaminergic neuron system in the rat brain: An immunohistochemical analysis, Neurosci. Lett. 39:249–254.

    PubMed  CAS  Google Scholar 

  • Watkins, J. C., and Evans, R. H., 1981, Excitatory amino acid transmitters, Annu. Rev. Pharmacol. Toxicol. 21:165–204.

    PubMed  CAS  Google Scholar 

  • Westrum, L. E., and Blackstad, T. W., 1962, An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA1) with particular emphasis on synaptology, J. Comp, Neurol. 119:281–309.

    CAS  Google Scholar 

  • White, W. F., Nadler, J. V., and Cotman, C. W., 1979, The effect of acidic amino acid antagonists on synaptic transmission in the hippocampal formation in vitro, Brain Res. 164:177–194.

    PubMed  CAS  Google Scholar 

  • Wieraszko, A., and Lynch, G., 1979, Stimulation-dependent release of possible transmitter substances from hippocampal slices studied with localized perfusion, Brain Res. 160:372–376.

    PubMed  CAS  Google Scholar 

  • Wigström, H., and Gustafsson, B., 1981, Increased excitability of hippocampal unmyelinated fibres following conditioning stimulation, Brain Res. 229:507–513.

    PubMed  Google Scholar 

  • Wigström, H., Swann, J. W., and Andersen, P., 1979, Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice, Acta Physiol. Scand. 105:126–128.

    PubMed  Google Scholar 

  • Wilson, R. C., Levy, W. B., and Steward, O., 1981, Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. II. An evaluation of mechanisms utilizing dentate gyrus dually innervated by surviving ipsilateral and sprouted crossed temporodentate inputs, J. Neurophysiol. 46:339–355.

    PubMed  CAS  Google Scholar 

  • Wimer, R. E., Norman, R., and Eleftheriou, B. E., 1973, Serotonin levels in hippocampus: Striking variations associated with mouse strain and treatment, Brain Res. 63:397–401.

    PubMed  CAS  Google Scholar 

  • Winson, J., 1974, Patterns of hippocampal theta rhythm in the freely moving rat, Electroencephalogr. Clin. Neurophysiol. 36:291–301.

    PubMed  CAS  Google Scholar 

  • Winson, J., 1980, Raphe influences on neuronal transmission from perforant pathway through dentate gyrus, J. Neurophysiol. 44:937–950.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Clark, R. B., 1983, Single K+ channel currents from hippocampal pyramidal cells of adult guinea pig, Soc. Neurosci. Abstr. 9:602.

    Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1979, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204:1228–1231.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Prince, D. A., 1981, Afterpotential generation in hippocampal pyramidal cells, J. Neurophysiol. 45:86–97.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Schwartzkroin, P. A., 1982, Pacemaker neurons in the mammalian brain: Mechanisms and function, in: Cellular Pacemakers, Mechanisms of Pacemaker Generation Vol. 1 (D. O. Carpenter, ed.), Wiley, New York, pp. 237–254

    Google Scholar 

  • Wong, R. K. S., and Traub, R. D., 1983, Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2—CA3 region, J. Neurophysiol. 49:442–458.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.

    PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Traub, R. D., and Miles, R., 1984, Epileptogenic mechanisms as revealed by studies of the hippocampal slice, in: Electrophysiology of Epilepsy (P. A. Schwartzkroin and H. V. Wheal, eds.), Academic Press, New York, pp. 253–275

    Google Scholar 

  • Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J., and Freedman, R., 1979, Modulatory actions of norepinephrine in the central nervous system, Fed. Proc. 38:2109–2116.

    PubMed  CAS  Google Scholar 

  • Yaari, Y., Konnerth, A., and Heinemann, U., 1983, Spontaneous epileptiform activity of CA1 hipocampal neurons in low extracellular calcium solutions, Exp. Brain Res. 51:153–156.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., 1972, Activation of hippocampal neurons by mossy fiber stimulation in thin brain sections in vitro, Exp. Brain Res. 14:423–435.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., and Chujo, T., 1978, Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings, Exp. Neurol. 58:242–250.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., and Kawai, N., 1967, Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro, Exp. Neurol. 19:176–187.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., Matsumoto, K., and Takagi, M., 1980, Potentiation of excitatory postsynaptic potentials during and after repetitive stimulation in thin hippocampal sections, Exp. Brain Res. 38:469–477.

    PubMed  CAS  Google Scholar 

  • Yamamoto, C., Sawada, S., and Takada, S., 1983, Suppressing action of 2-amino-4-phosphonobutyric acid on mossy fiber-induced excitation in the guinea pig hippocampus, Exp. Brain Res. 51:128–134.

    PubMed  CAS  Google Scholar 

  • Young, W. S., and Kuhar, M. J., 1980, Noradrenergic alpha-1 and alpha-2 receptors: Light microscopic autoradiographic localization, Fed. Proc. 39:593.

    Google Scholar 

  • Zieglgänsberger, W., French, E., Siggins, G., and Bloom, F., 1979, Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons, Science 205:415–417.

    PubMed  Google Scholar 

  • Zimmer, J., 1971, Ipsilateral afferents to the commissural zone of the fascia dentata demonstrated in decommissurated rats by silver impregnation, J. Comp. Neurol. 142:393–416.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Schwartzkroin, P.A., Mueller, A.L. (1987). Electrophysiology of Hippocampal Neurons. In: Jones, E.G., Peters, A. (eds) Cerebral Cortex. Cerebral Cortex, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6616-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6616-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6618-2

  • Online ISBN: 978-1-4615-6616-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics