Skip to main content

Monoamine Innervation of Cerebral Cortex and a Theory of the Role of Monoamines in Cerebral Cortex and Basal Ganglia

  • Chapter

Part of the book series: Cerebral Cortex ((CECO,volume 6))

Abstract

The historical development of interest in the monoamine innervation of cerebral cortex is highlighted by several key discoveries that have changed our perspectives on cortical function specifically, and brain function in general. The dogma until the early 1960s was that the cortex receives input directly from the thalamus but not from the brain stem. Thus, ascending sensory and nonspecific “activating” neural activity generated in the brain stem was thought to have an obligatory synaptic relay in the thalamus before being sent on to cerebral cortex (Moruzzi and Magoun, 1949; Lorente de Nó, 1949, Scheibel and Scheibel, 1958; Nauta and Kuypers, 1958). In the early 1960s the fluorescence technique for the visualization of monoamines (Falck et al. 1962) led to the discovery that monoamine cell bodies are present in the brain-stem reticular formation and monoamine fibers are present in cerebral cortex (Dahlstrom and Fuxe, 1964; Fuxe, 1965). Anden et al. (1965), therefore, postulated that these brain-stem norepinephrine-and serotonin-containing neurons in the reticular formation give rise to a direct innervation of cerebral cortex. Moore and Heller (1967) were later able to show biochemically that lesions of the medial forebrain bundle, which contains the ascending monoamine fibers, led to a decrease of serotonin and norepinephrine in cortex. However, because such lesions failed to produce visibly degenerating axons in cortex with silver degeneration methods, it was not clear if the decrease of cortical monoamines was merely a result of a transsynaptic effect induced by the lesions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader, J.-P., Room, P., Postema, F.,Korf, J., 1980, Bilaterally diverging axon collaterals and contralateral projections from rat locus coeruleus neurons, demonstrated by fluorescent retrograde double labeling and norepinephrine metabolismJ. Neural Transm. 49:207–218

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G. K., Bloom, and F. E., 1966, Electron-microscopic autoradiography of rat hypothalamus after intraventricular H3-norepinephrine, Science 153:308–310.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G. K., and Bloom, F. E., 1967, The formation of synaptic junctions in developing brain: A quantitative electron microscopic study, Brain Res. 6:716–727.

    Article  PubMed  CAS  Google Scholar 

  • Agmo, A., Avila, and N. D., 1985, Interactions between enkephalin and dopamine in the control of locomotor activity in the rat: A new hypothesis, Pharmacol. Biochem. Behav. 22:599–603.

    Article  PubMed  CAS  Google Scholar 

  • Agnati, L. F., Fuxe, K., Benfenati, F., Cortelli, P., and D’Alessandro, R., 1980, The mesolimbic dopamine system: Evidence for a high amine turnover and for a heterogeneity of the dopamine neuron population, Neurosci. Lett. 18:45–51

    Article  PubMed  CAS  Google Scholar 

  • Albanese, A., and Bentivoglio, M., 1982, The organization of dopaminergic and nondopaminergic mesencephalo-cortical neurons in the ratBrain Res. 238:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Alkon, K. D., 1984, Calcium-mediated reduction of ionic currents: A biophysical memory traceScience 226:1037–1045.

    Article  PubMed  CAS  Google Scholar 

  • Altar, C. A., O’Neil, S., Water, R. J., and Marshall, J. F., 1985, Widespread distribution of brain dopamine receptors evidenced with 125I iodosulpride, a highly selective ligand, Science 228:597–600

    Article  PubMed  CAS  Google Scholar 

  • Amin, A. H., Crawford, T. B., and Gaddum, J. N., 1954, The distribution of substance P-and 5-hydroxytryptamine in the central nervous system of the dogJ. Physiol. (London) 126:596–618.

    CAS  Google Scholar 

  • Anden, N. E., Dahlstrom, A., Fuxe, K., and Larsson, K., 1965, Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon, Life Sci. 4:1275–1279.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67:313–326.

    Article  CAS  Google Scholar 

  • Araki, M., McGeer, P. L., and McGeer, E. G., 1985, Striatonigral and pallidonigral pathways studied by a combination of retrograde horseradish peroxidase tracing and a pharmacohistochemical method for gamma-amino butyric acid transaminaseBrain Res. 331:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., 1983, Effects of iontophoresed noradrenaline on the spontaneous activity of neurons in rat primary somatosensory cortexJ. Physiol. (London) 355:427–447.

    Google Scholar 

  • Arnsten, A., and Goldman-Rakic, P., 1985, Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged non-human primatesScience 230:1273–1277.

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones, and G., Bloom, F., 1981a, Activity of norepinephrine-containing locus coeruleus rats anticipates fluctuations in the sleep walking cycle, J. Neurosci. 1:876–886.

    PubMed  CAS  Google Scholar 

  • Aston-Jones, G., and Bloom, F., 1981b, Norepinephrine containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuliJ. Neurosci. 1:887–900.

    PubMed  CAS  Google Scholar 

  • Azmitia, E. C., 1978, The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei, in:Handbook of Psychopharmacology (L. L.Ivesen, S. D.Iversen, and S. H.Snyder, eds.), Plenum Press, New York, pp. 232–314

    Google Scholar 

  • Azmitia, E. C., 1981, Bilateral serotonergic projections to the dorsal hippocampus of the rat; simultaneous localization of retrogradely transported 3H-5HT and HRP, J. Comp. Neurol. 203:737–750.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E. C., 1982, Recent advances in serotonin methods, J. Histochem. Cytochem. 30:739–743.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E. C., and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, J. Comp. Neurol. 179:641–668.

    Article  PubMed  CAS  Google Scholar 

  • Bannon, M. J., Michaud, R. L., and Roth, R. H., 1981, Mesocortical dopamine neurons:Lack of autoreceptors modulating dopamine synthesis, Mol. Pharmacol. 1981(2):270–275.

    Google Scholar 

  • Bannon, M. J., Reinhard, J. F., Bunney, B., and Roth, R. H., 1982, Unique response to antipsychotic drugs is due to absence of terminal autoreceptors in mesocortical dopamine neurons, Nature 296:444–445.

    Article  PubMed  CAS  Google Scholar 

  • Bannon, M. J., Wolf, M. E., Roth, and R. H., 1983, Pharmacology of dopamine neurons innervating the prefrontal cingulate and piriform cortices, Eur. J. Pharmacol. 92:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A., and Descarries, L., 1978, The monoamine innervation of rat cerebral cortex: Synaptic and nonsynaptic axon terminals, Neuroscience 3:851–860.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A., and Descarries, L., 1984, Fine structure of monoamine axon terminals in cerebral cortex, in:Monoamine Innervation of Cerebral Cortex (L.Descarries, T.Reader, and H.Jasper, eds.), Liss, New York, pp. 77–93

    Google Scholar 

  • Beckstead, R. M., 1976, Convergent thalamic and mesencephalic projections to the anterior medial cortex in the rat, J. Comp. Neurol. 166:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead, R. M., 1978, Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidaseBrain Res. 152:249–264.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead, R. M., Domesick, V. B., and Nauta, W. J. H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the ratBrain Res. 175:191–217.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., and Krnjević, K., Reiffenstein, R. J., and Reinhardt, W., 1981, Inhibitory conductance changes and action of gamma-amino-butyrate in rat hippocampus, Neuroscience 6:2442–2463

    Google Scholar 

  • Berger, B., and Verney, C., 1984, Development of the catecholamine innervation in rat neocortex: Morphological features, in:Monoamine Innervation of Cerebral Cortex(L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 95–121

    Google Scholar 

  • Berger, B., Tassin, J. P., Blanc, G., Moyne, M. A., and Thierry, A. M., 1974, Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathwaysBrain Res. 81:332–337.

    Article  PubMed  CAS  Google Scholar 

  • Berger, B., Thierry, A. M., Tassin, J. P., and Moyne, M. A., 1976, Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical studyBrain Res. 106:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Berger, B., Verney, C., Alvarez, C., Veginy, A., and Helle, K. B., 1985, New dopaminergic terminal fields in the motor, visual (area 18b) and retrospenial cortex in the young and adult rat: Immunocytochemical and catecholamine histochemical analyses, Neuroscience 15:983–998.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G., Cherubini, E., Marciani, M. G., Mercuri, N., and Stanzione, P., 1982, Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamineBrain Res. 245:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, P., Bradshaw, C. M., and Szabadi, E., 1975, Proceedings: Comparison of the effects of DOPA and noradrenaline on single cortical neurones, Br. J. Pharmacol. 55:301P–302P

    Google Scholar 

  • Björklund, A., Nobin, A., and Stenevi, U., 1973, The use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indolamine neurons, Z. Zellforsch. 145:479–501

    Article  PubMed  Google Scholar 

  • Björklund, A., Baumgarten, H. G., Lachenmayer, L., and Rosengren, E., 1975, Recovery of brain noradrenaline after 5,7-dihydroxytryptamine-induced axonal lesions in the rat, Cell Tissue Res. 161:145–155

    Article  PubMed  Google Scholar 

  • Björklund, A., Divac, I., and Lindvall, O., 1978, Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex, Neurosci. Lett. 7:115–119

    Article  PubMed  Google Scholar 

  • Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M., and Jouvet, M., 1976, The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiographyBrain Res. 113:449–486.

    Article  PubMed  CAS  Google Scholar 

  • Bobillier, P., Seguin, S., DeGueurce, A., Lewis, B. D., and Pujol, J. F., 1979, The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautographyBrain Res. 166:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanski, D. F., Weissbach, H., and Underfriend, S., 1957, The distribution of serotonin, 5-hydroxytryptophan decarboxylase and monoamine oxidase in brain, J. Neurochem. 1:272–278.

    Article  PubMed  CAS  Google Scholar 

  • Boyajian, C., Loughlin, S., and Leslie, F., 1985, Differential binding properties of two alpha-2 adrenoceptor agonists in rat brain, Soc. Neurosci. Abstr. 11:104–104

    Google Scholar 

  • Bradshaw, C. M., Sheridan, R. D., and Szabadi, E., 1985, Excitatory neuronal responses to dopamine in the cerebral cortex: Involvement of D2 but not D1 dopamine receptors, Br. J. Pharmacol. 86:483–490.

    PubMed  CAS  Google Scholar 

  • Brodal, D., Taber, E., and Walberg, F., 1960, The raphe nuclei of the brainstem in the cat. II. Efferent connections, J. Comp. Neurol. 114:239–260.

    Article  Google Scholar 

  • Brown, R., and Goldman, P. S., 1977, Catecholamines in neocortex of rhesus monkeys:Regional distribution and ontogenetic developmentBrain Res. 124:576–580.

    Article  CAS  Google Scholar 

  • Brown, R. M., Crane, A. M., and Goldman, P. S., 1979, Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: Concentrations and in vivo synthesis ratesBrain Res. 168:133–150.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M., Saavedra, J. M., and Palkovits, M., 1974, Norepinephrine and dopamine in the limbic system of the rat, Brain Res. 79:431–436

    Article  PubMed  CAS  Google Scholar 

  • Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S., 1979, Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeyScience 205:929–932.

    Article  PubMed  CAS  Google Scholar 

  • Bunney, B. S., and Aghajanian, G. K., 1976, Dopamine and norepinephrine innervated cells in rat prefrontal cortex:Pharmacological differentiation using microiontophoretic techniquesLife Sci. 19:1783–1792.

    Article  PubMed  CAS  Google Scholar 

  • Bunney, B. S., and Chiodo, L. A., 1984, Mesocortical dopamine systems:Further electrophysiological and pharmacological characteristics, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 263–277

    Google Scholar 

  • Butcher, L. L. (ed.), 1978, Cholinergic Monoaminergic Interactions in the BrainAcademic Press, New York

    Google Scholar 

  • Caffee, A. R., and van Leeuwen, F. W., 1983, Vasopressin-immunoreactive cells in dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat, Cell Tissue Res. 233:23–33.

    Article  Google Scholar 

  • Caron, M., Leeb-Lundberg, L., Strader, C., Dickinson, K., Pickel, V., Joh, T., and Lefkowitz, R., 1984, Biochemical characterization of adrenergic receptors:Photo affinity labelling and immunocytochemical localization in brain, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 135–151

    Google Scholar 

  • Carpenter, M. B., 1976, Anatomical organization of the corpus striatum and related nuclei, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 55:1–35.

    PubMed  CAS  Google Scholar 

  • Carter, C. J., and Pycock, C. J., 1978, Lesions of the frontal cortex of the rat: Changes in neurotransmitter systems in subcortical regions, Br. J. Pharmacol. 64:430–430

    Google Scholar 

  • Carter, D. A., and Fibiger, H. C., 1977, Ascending projections of presumed dopamine-containing neurons in the ventral tegmentum of the rat as demonstrated by horseradish peroxidase, Neuroscience 2:569–576.

    Article  PubMed  CAS  Google Scholar 

  • Caviness, V., and Korde, M., 1981, Monoaminergic afferents to the neocortex: A developmental histofluorescence study in normal and reeler mouse embryosBrain Res. 209:1–9.

    Article  PubMed  Google Scholar 

  • Charney, Y., Leger, L., Berod, A., Jouvet, M., Pujol, J., and Dubois, P., 1982, Evidence for the presence of enkephalin in catecholaminergic neurons of cat locus coeruleus, Neurosci. Lett. 30:147–151.

    Article  Google Scholar 

  • Chesselet, M.-F., and Graybiel, A. M., 1987, Striatal neurons expressing somatostatin-like immunoreactivity: Evidence for a peptidergic interneuronal system in the cat, Neuroscience in press.

    Google Scholar 

  • Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., and Bunney, B. S., 1984, Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors and subpopulations of mesocortical dopamine neurons, Neuroscience 12:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Christie, M, J., Bridge, S., James, L. B., and Beart, P. M., 1985, Excitation lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area, Brain Res. 333:169–172

    Article  PubMed  CAS  Google Scholar 

  • Collier, T. J., and Routtenberg, A., 1977, Entorhinal cortex: Catecholamine fluorescence and Nissl staining of identical Vibratome sectionsBrain Res. 128:354–360.

    Article  PubMed  CAS  Google Scholar 

  • Collinge, J., Pycock, C. J., and Taberna, P. V., 1983, Studies on the interaction between cerebral 5-hydroxytryptamine and gamma-aminobutyric acid in the mode of actions of diazepam in the rat, Br. J. Pharmacol. 79:637–643.

    PubMed  CAS  Google Scholar 

  • Conrad, L. C., Leonard, C. M., and Pfaff, D. W., 1974, Connections of the median and dorsal raphe nuclei in the rat: An autoradiographic and degeneration study, J. Comp. Neurol. 156:179–206.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. R., Bloom, F. E., and Roth, R. H. (eds.), 1982, The Biochemical Basis of NeuropharmacologyOxford University Press, London, pp. 223–248

    Google Scholar 

  • Corbett, D., and Wise, R. A., 1980, Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping studyBrain Res. 185:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T., and Molliver, M. E., 1977, Major innervation of newborn rat cortex by monoaminergic neuronsScience 196:444–447.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, B. G., 1961, Olfactory and other afferent connections of the hippocampus in the rabbit, rat, and catExp. Neurol. 3:588–600.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., and Snyder, S. H., 1978, 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus, Eur. J. Pharmacol. 49:201–202.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A. J., and Deakin, J. F., 1985, Cortical serotonin receptor subtypes after lesion of ascending cholinergic neurones in rat, Neurosci. Lett. 60:261–265.

    Article  PubMed  CAS  Google Scholar 

  • Cuello, A. C., and Iverson, L. L., 1978, Interactions of dopamine with other neurotransmitters in the rat substantia nigra: A possible functional role of dendritic dopamine, in:Interactions between Putative Neurotransmitters in the Brain (S. Garattini, ed.), Raven Press, New York, pp. 127–149

    Google Scholar 

  • Dahlstrom A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurones, Acta Physiol. Scand. Suppl. 232:1–55

    Google Scholar 

  • DeLong, M. R., Georgopoulos, A. P., and Crutcher, M. D., 1983, Cortical-basal ganglia loops and coding of motor performance, Exp. Brain Res. Suppl. 7:30–40.

    Article  Google Scholar 

  • Deniau, J. M., Thierry, A. M., and Feger, J., 1980, Electrophysiological identification of mesencephalic ventromedial tegmental (VMT) neurons projecting to the frontal cortex, septum, and nucleus accumbensBrain Res. 189:315–326.

    Article  PubMed  CAS  Google Scholar 

  • Denny-Brown, D., and Yanagisawa, N., 1976, The role of the basal ganglia in the initiation of movement, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 55:115–148.

    PubMed  CAS  Google Scholar 

  • Descarries, L., and Droz, B., 1968, Incorporation de noradrenaline-3H (NA-3H) dans le systeme nerveux central du rat adulte: Etude radioautographique en microscopie electronique, C.R. Acad. Sci. 266:2480–2482.

    CAS  Google Scholar 

  • Descarries, L., and Lapierre, Y., 1973, Noradrenergic axon terminals in the cerebral cortex of the rat. I. Radioautographic visualization after topical application of DI-3H norepinephrineBrain Res. 51:141–160.

    Article  PubMed  CAS  Google Scholar 

  • Descarries, L., Beaudet, A., and De Champlain, J., 1975, Selective deafferentation of rat neocortex by destruction of catecholamine neurons with intraventricular 6-hydroxydopamine, in:Chemical Tools in Catecholamine Research I (G.Jonsson, ed.), North-Holland, Amsterdam, pp. 101–106

    Google Scholar 

  • Descarries, L., Beaudet, A., Watkins, K. C., and Garcia, S., 1979, The serotonin neurons in nucleus raphe dorsalis of adult rat, Anat. Rec. 193:520.

    Google Scholar 

  • Deutch, A. Y., Maggio, J. E., Bannon, M. J., Kalivas, P. W., Tam, S.-Y., Goldstein, M., and Roth, R. H., 1985a, Substance K and substance P differentially modulate mesolimbic and mesocortical systems, Peptides 6:113–122

    Article  PubMed  CAS  Google Scholar 

  • Deutch, A. Y., Tam, S.-Y., and Roth, R. H., 1985b, Footshock and conditioned stress increase 3,4-dihydroxyphenyl acetic acid (DOPAC) in the ventral tegmental area but not substantia nigra, Brain Res. 333:143–146.

    Article  PubMed  CAS  Google Scholar 

  • Deutch, A. Y., Goldstein, M., and Roth, R. H., 1986, Activation of the locus coeruleus induced by secretive stimulation of ventral tegmental areaBrain Res. 363:307–314.

    Article  PubMed  CAS  Google Scholar 

  • DiChiara, G., and Gessa, G. L. (eds.), 1981, GABA and the Basal Ganglia, Adv. Biochem. Psychopharmacol.30–30

    Google Scholar 

  • DiFiglia, M., Pasik, P., and Pasik, T., 1976, A Golgi study of neuronal types in the neostriatum of monkeysBrain Res. 114:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Divac, I., 1979, Patterns of subcortical-cortical projections as revealed by somatopetal HRP tracings, Neuroscience 4:455–461.

    Article  PubMed  CAS  Google Scholar 

  • Divac, I., and Diemer, N. H., 1980, Prefrontal systems in the rat visualized by means of labeled deoxyglucose:Further evidence for functional heterogeneity of the neostriatum, J. Comp. Neurol. 190:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Divac, I., and Oberg, R. G. E., 1979, Current concepts of neostriatal functions, in:The Neostriatum (I. Divac and R. G. E. Oberg, eds.), Pergamon Press, Elmsford, N.Y., pp. 215–230

    Google Scholar 

  • Divac, I., Lindvall, O., Björklund, A., and Passingham, R. E., 1975, Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species, Exp.Brain Res. 23:58–58 (abstr.)

    Google Scholar 

  • Divac, I., Björklund, A., Lindvall, O., and Passingham, R. E., 1978, Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species, J. Comp. Neurol. 180:59–71

    Article  PubMed  CAS  Google Scholar 

  • Domesick, V. B., 1981, The anatomical basis for feedback and feedforward in the striatonigral system, in:Apomorphine and other Diaminomimetics, Basic Pharmacology (G. L. Class and G. U. Corsini, eds.), Raven Press, New York, pp. 302–322

    Google Scholar 

  • Donoghue, J. P., and Herkenham, M., 1983, Multiple patterns of corticostriatal projections and their relationship to opiate receptor patches in rats, Neurosci. Abstr. 9:15.

    Google Scholar 

  • Donoghue, J. P., and Herkenham, M., 1986, Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the ratBrain Res. 365:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Dray, A., 1980, The physiology and pharmacology of the mammalian basal ganglia, Prog. Neurobiol. 14:221–335.

    Article  PubMed  CAS  Google Scholar 

  • Dumbrille-Ross, A., and Tang, S. W., 1983, Manipulations of synaptic serotonin: Discrepancy of effects on serotonin S1 and S2 sitesLife Sci. 32:2677–2684.

    Article  PubMed  CAS  Google Scholar 

  • Elliot, P. J., Alpert, J. E., Bannon, M. J., and Iversen, S. D., 1986, Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental areaBrain Res. 363:145–147.

    Article  Google Scholar 

  • Emson, P. C., and Koob, G. F., 1978, The origin and distribution of dopamine-containing afferents to the rat frontal cortexBrain Res. 142:249–267.

    Article  PubMed  CAS  Google Scholar 

  • Evarts, E. V., and Wise, S. P., 1984, Basal ganglia outputs and motor control, Ciba Found. Symp. 107:83–96.

    PubMed  CAS  Google Scholar 

  • Evarts, E. V., Kimura, M., Wurtz, R. H., and Hikosaka, O., 1984, Behavioral correlates of activity in basal ganglia neurons, Trends Neurosci. 447:453.

    Google Scholar 

  • Falck, B., Hillarp, N. A., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.

    Article  CAS  Google Scholar 

  • Fallon, J. H., 1981a, Collateralization of monoamine neurons: Mesotelencephalic dopamine projections to caudate, septum and frontal cortexJ. Neurosci. 4:1361–1368.

    Google Scholar 

  • Fallon, J. H., 1981b, Comment on Chairman’s Report, in:The Amygdala Revisited.Plenum Press, New York, pp. 11–12

    Google Scholar 

  • Fallon, J. H., 1983, The islands of Calleja complex or rat basal forebrain. II. Connection of medium and large cellsBrain Res. Bull. 10:775–793.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., and Leslie, F. M., 1986, Distribution of dynorphin and enkephalin peptides in the rat brain, J. Comp. Neurol. 249:293–336.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., and Loughlin, S. E., 1982, Monoamine innervation of the forebrain: CollateralizationBrain Res. Bull. 9:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., and Loughlin, S. E., 1985, The substantia nigra, in:The Rat Central Nervous System: A Handbook for Neuroscientists (G. Paxinos and J. Watson, eds.), Academic Press, New York, pp. 353–374

    Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1976, Topography of dopamine cell projection to the telencephalon, Anat. Rec. 185:485.

    Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1978a, Catecholamine innervation of the basal forebrain. IV. Topography of dopamine cell projections to the basal forebrain and neostriatum, J. Comp. Neurol. 180:545–580.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1978b, Catecholamine innervation of the basal ganglia. III. Olfactory bulb, olfactory tubercle and piriform cortex, J. Comp. Neurol. 180:495–508.

    Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1979a, Superior colliculus efferents to the hypothalamus, Neurosci. Lett. 14:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1979b, Raphe nuclei in the rat: Efferent projections to forebrain studied using the HRP-retrograde transport method, Soc. Neurosci. Abstr. 4:272.

    Google Scholar 

  • Fallon, J. H., Koziell, D. A., and Moore, R. Y., 1978a, Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex, J. Comp. Neurol. 180:509–532.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., Riley, J., and Moore, R. Y., 1978b, Substantia nigra dopamine neurons: Separate populations project to neostriatum and allocrotex, Neurosci. Lett. 7:157–162.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H., Loughlin, S. E., and Ribak, C. E., 1983, The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striato-pallidal system, J. Comp. Neurol. 16:91–120.

    Article  Google Scholar 

  • Fallon, J. H., Schmued, L., Wang, C., Miller, R., and Banales, G., 1984, Neurons in the ventral tegmentum have separate populations projecting to telencephalon and inferior olive, are histochemically different and may receive direct visual inputBrain Res. 321:332–336.

    Article  PubMed  CAS  Google Scholar 

  • Farnebo, L. O., and Hamberger, B., 1971, Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slicesActa Physiol. Scand. Suppl. 371:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Ferron, A., Descarries, L., and Reader, T. A., 1982, Altered neuronal responsiveness to biogenic amines in rat cerebral cortex after serotonin denervation or depletionBrain Res. 231:93–108.

    Article  PubMed  CAS  Google Scholar 

  • Fink, J. S., and Smith, G. P., 1980, Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats, Neurosci. Lett. 17:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., 1985, Anatomy and physiology of brain monoamine systems, Psychiatry 3:1–14.

    Google Scholar 

  • Foote, S., and Morrison, J., 1985, Postnatal development of laminar innervation patterns by monoaminergic fibers in monkey primary visual cortex, J. Neurosci. 4:2667–2680.

    Google Scholar 

  • Foote, S., Freedman, R., and Oliver, R., 1975, Effects of putative neurotransmitters on neuronal activity in monkey auditory cortexBrain Res. 86:229–242.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S., Aston-Jones, G., and Bloom, F., 1980, Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal, Proc. Natl. Acad. Sci. USA 77:3033–3037.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S., Bloom, F., and AstonJones, G., 1983, Nucleus locus coeruleus: New evidence of anatomical and physiological specificity, Physiol. Rev. 63:844–914.

    PubMed  CAS  Google Scholar 

  • Freedman, R., Foote, S. L., and Bloom, F. E., 1975, Histochemical characterization of a neocortical projection of the nucleus locus coeruleus in the squirrel monkey, J. Comp. Neurol. 164:209–231.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J. M., 1980, The Prefrontal CortexRaven Press, New York

    Google Scholar 

  • Fuster, J. M., 1984, Behavioral electrophysiology of the prefrontal cortex, Trends Neurosci. 7:408–414.

    Article  Google Scholar 

  • Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous systemActa Physiol. Scand. Suppl. 247:39–85.

    Google Scholar 

  • Fuxe, K., Hamberger, B., and Hökfelt, T., 1968, Distribution of noradrenaline nerve terminals in cortical areas of the rat, Brain Res. 8:125–131

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K., Hökfelt, T., JohanssonO., Jonsson, G., Lidbrink, P., and Ljungdahl, A., 1974, The origin of the dopamine nerve terminals in limbic and frontal cortex: Evidence for mesocortico dopamine neurons, Brain Res. 82:349–355

    Article  CAS  Google Scholar 

  • Gage, F. W., and Thompson, R. G., 1980, Differential distribution of norepinephrine and serotonin along the dorsal-ventral areas of the hippocampal formationBrain Res. Bull. 5:771–773.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F., Börklund, A., and Stenevi, U., 1983, Local regulation of compensatory noradrenergic hyperactivity in the partially denervated hippocampus, Nature 303:819–821

    Article  PubMed  CAS  Google Scholar 

  • Galloway, M. P., Wolf, M. E., and Roth, R. H., 1986, Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: Studies in vivo, J. Pharmacol. Exp. Ther. 236:689–698

    PubMed  CAS  Google Scholar 

  • Garattini, S., Pujal, J. F., and Samanin, R. (eds.), 1978, Interaction between Putative Neurotransmitters in the BrainRaven Press, New York

    Google Scholar 

  • Gatter, K., and Powell, T., 1977, The projection of the locus coeruleus upon the neocortex in the macaque monkey, Neuroscience 2:441–445.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C. R., 1984, The neostriatal mosaic: Compartmentalization of corticostriatal input and striatonigral output systems, Nature 311:461–464.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C. R., 1985, The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol. 236:454–476.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C. R., 1987, The neostriatal mosaic: The reiterated processing unit, in:Neurotransmitter Interactions in the Basal Ganglia (C.Feurstein, B.Scatton, and M.Sandler, eds.), Raven Press, New York, in press

    Google Scholar 

  • Gerfen, C. R., and Clavier, R. M., 1979, Neural inputs to the prefrontal agranular insular cortex in the rat:Horseradish peroxidase studyBrain Res. Bull. 4:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C. R., Baimbridge, K. G., and Miller, J. J., 1985, The neostriatal mosaic: Compartmental distribution of calcium binding protein and paralbumin in the basal ganglia of the rat and monkey, Proc. Natl. Acad. Sci. USA 82:8780–8784.

    Article  PubMed  CAS  Google Scholar 

  • German, D., and Bowden, D. M., 1974, Catecholamine systems as the neural substrate for intracranial self stimulation: A hypothesisBrain Res. 73:381–419.

    Article  PubMed  CAS  Google Scholar 

  • Gessa, G. L., Biggio, G., Vergiu, L., Napoleone, F., and Tagliamonte, A., 1974, Norepinephrine and dopamine concentrations in the cerebral cortex of man, monkeys and other mammals, Experientia 30:1295–1296.

    Article  PubMed  CAS  Google Scholar 

  • Geyer, M. A., Puerto, A., Dawsey, W. J., Knapp, S., Bullard, W. P., and Mandell, A. J., 1976, Histological and enzymatic studies of the mesolimbic and mesostriatal serotonergic pathwaysBrain Res. 106:241–256.

    Article  PubMed  CAS  Google Scholar 

  • Giolli, R. A., Blanks, R. H. I., and Torigoe, Y., 1984, Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal trading methods, J. Comp. Neurol. 227:228–251.

    Article  PubMed  CAS  Google Scholar 

  • Giolli, R. A., Schmued, L. C., and Fallon, J. H., 1985, A retino-mesotelencephalic pathway in the albino rat, Neurosci. Lett. 53:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Glimcher, P., Margalin, D., and Haebel, D. G., 1982, Rewarding effects of neurotensin in the brain, Proc. N.Y. Acad. Sci. 77:422–424.

    Article  Google Scholar 

  • Glowinski, J., Tassin, J. P., and Thierry, A. M., 1984, The mesocortico-prefrontal dopaminergic neurons, Trends Neurosci. 7:415–418.

    Article  Google Scholar 

  • Goedert, M., Mantyh, P. W., Hunt, S. P., and Emson, P. C., 1983, Mosaic distribution of neurotensin-like immunoreactivity in cat striatum, Nature 307:543–546.

    Article  Google Scholar 

  • Goldman, P. S., and Nauta, W. J. H., 1977, An intricately patterned prefronto-caudate projection in the rhesus monkey, J. Comp. Neurol.171:369–385.

    Article  Google Scholar 

  • Goldman-Rakic, P. S., 1982, Cytoarchitectonic heterogeneity of the primates neostriatum: Subdivision into island and matrix cellular compartments, J. Comp. Neurol. 205:398–413.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., 1984, Modular organization of prefrontal cortex, Trends Neurosci. 7:419–424.

    Article  Google Scholar 

  • Goldman-Rakic, P. S., and Brown, R. M., 1982, Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys, Dev. Brain Res. 4:339–349.

    Article  CAS  Google Scholar 

  • Grabowsky, K., McCabe, R. T., and Wamsley, J. K., 1983, Localization of 3H imipramine binding sites in rat brainLife Sci. 32:2355–2361.

    Article  PubMed  CAS  Google Scholar 

  • Grace, A. A., and Bunney, B. S., 1983, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. I. Identification and characterization, Neuroscience 10:301–315.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M., and Chesselet, M.-F., 1984a, Distribution of cell bodies expressing substance P, enkephalin and dynorphin B in kitten and cat striatum, Anat. Rec. 208:64–64A

    Google Scholar 

  • Graybiel, A. M., and Chesselet, M.-F., 1984b, Compartmental distribution of striatal cell bodies expressing met-enkephalin-like immunoreactivity, Proc. Natl. Acad. Sci. USA 81:7980–7984

    Google Scholar 

  • Graybiel, A. M., and Ragsdale, C. W., 1978, Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylcholinesterase staining, Proc. Natl. Acad. Sci. USA 75:5723–5727.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M., and Ragsdale, C. W., 1983, Biochemical anatomy of the striatum, in:Chemical Neuroanatomy (P. C.Emson, ed.), Raven Press, New York, pp. 427–504

    Google Scholar 

  • Graybiel, A. M., Ragsdale, C. W., Yoneoka, E. S., and Elde, R. P., 1981, An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining, Neuroscience 6:377–387.

    Article  PubMed  CAS  Google Scholar 

  • Grofova, I., 1975, The identification of striatal and pallidal neurons projecting to substantia nigra: An experimental study by means of retrograde axonal transport of horseradish peroxidaseBrain Res. 31:286–291.

    Article  Google Scholar 

  • Groves, P. M., 1983, .A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movementBrain Res. Rev. 5:109–139.

    Article  Google Scholar 

  • Gruol, D. L., Barker, J. L., Huang, L. Y. M., MacDonald, J. F., and Smith, T. G., 1980, Hydrogen ions have multiple effects on the excitability of cultured mammalian neuronsBrain Res. 183:247–252.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson, E. L., and Moore, R. Y., 1985, Differential projections of neuropeptide Y containing neurons in the locus coeruleus of the rat, Soc. Neurosci. Abstr. 11:2710–2710

    Google Scholar 

  • Guyenet, P. C., and Aghajanian, G. K., 1978, Antidromic identification of dopaminergic and other output neurons of the rat substantia nigraBrain Res. 150:69–84.

    Article  PubMed  CAS  Google Scholar 

  • Haber, S. N., Groeneinegar, H. J., Grove, E. A., and Nauta, W. J. H., 1985, Efferent connections of the ventral pallidum: Evidence of a dual striato pallidofugal pathway, J. Comp. Neurol. 235:322–335.

    Article  PubMed  CAS  Google Scholar 

  • Halaris, A. E., Jones, B. E., and Moore, R. Y., 1976, Axonal transport in serotonin neurons of the midbrain rapheBrain Res. 107:555–574.

    Article  PubMed  CAS  Google Scholar 

  • Hall, R. D., and Lindholm, E. P., 1974, Organization of motor and somatosensory neocortex in the albino ratBrain Res. 66:23–38.

    Article  Google Scholar 

  • Haring, J., and Davis, J., 1985, Differential distribution of locus coeruleus projections to the hippocampal formation: Anatomical and biochemical evidenceBrain Res. 325:366–369.

    Article  PubMed  CAS  Google Scholar 

  • Hassler, R., 1979, Electron microscopic differentiation of the extrinsic and intrinsic types of nerve cells and synapses in the striatum and their putative transmitters, Adv. Neurol. 24:93–108.

    Google Scholar 

  • Heimer, L., 1978, The olfactory cortex and the ventral striatum, in:The Continuing Evolution of the Limbic System Concept (K. E. Livingston and O. Hornykiewicz, eds.), Plenum Press, New York, pp. 95–187

    Google Scholar 

  • Heimer, L., and Wilson, R. D., 1975, The subcortical projections of the allo-cortex: Similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex, Golgi Centennial Symposium, Perspectives in Neurobiology (M. Santini, ed.), Raven Press, New York, pp. 177–193

    Google Scholar 

  • Heimer, L., Switzer, R. D., and Van Hoesen, G. W., 1982, Ventral striatum and ventral pallidum: Components of the motor system?, Trends Neurosci. 5:83–87.

    Article  Google Scholar 

  • Heller, A., Harvey, J. A., and Moore, R. Y., 1962, A demonstration of a fall in brain serotonin following central nervous system lesions in the rat, Biochem. Pharmacol. Exp. Ther. 150:1–9.

    Google Scholar 

  • Herkenham, M., and Pert, C. B., 1981, Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in the rat striatum, Nature 291:415–418.

    Article  PubMed  CAS  Google Scholar 

  • Herve, D., Simon, H., Blanc, G., Lisoprawski, A., LeMoal, M., Glowinski, J., and Tassin, J. P., 1979, Increased utilization of dopamine in the nucleus accumbens but not in the cerebral cortex after dorsal raphe lesion in the rat, Neurosci. Lett. 15:127–133.

    Article  PubMed  CAS  Google Scholar 

  • Herve, D., Simon, H., Blanc, G., LeMoal, M., Glowinski, J., and Tassin, J. P., 1981, Opposite changes in dopamine utilization in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the ratBrain Res. 216:422–428.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, T. P., and McLennan, H., 1978, Comparison of the actions of octopamine and catecholamines on single neurons of the rat cerebral cortex, Br. J. Pharmacol. 64:485–491.

    PubMed  CAS  Google Scholar 

  • Hikosaka, H., and Wurtz, R. H., 1983a, Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades, J. Neurophysiol. 49:1230–1253.

    PubMed  CAS  Google Scholar 

  • Hikosaka, H., and Wurtz, R. H., 1983b, Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze, J. Neurophysiol. 49:1254–1267.

    PubMed  CAS  Google Scholar 

  • Hikosaka, H., and Wurtz, R. H., 1983c, Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses, J. Neurophysiol. 49:1268–1284.

    PubMed  CAS  Google Scholar 

  • Hikosaka, H., and Wurtz, R. H., 1983d, Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus, J. Neurophysiol. 49:1285–1301.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., and Ungerstedt, U., 1973, Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: An electron and light microscopic study with special reference to intra-cerebral injection on the nigro-striatal dopamine system, Brain Res. 60:269–297

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Fuxe, K., Johansson, O., and Ljungdahl, A., 1974a, Pharmacohistochemical evidence of the existence of dopamine nerve terminals in the limbic cortex, Eur. J. Pharmacol. 25:108–112

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Fuxe, K., and Johansson, O., 1974b, Dopamine nerve terminals in the rat limbic cortex: Aspects of the dopamine hypothesis of schizophrenia, Science 184:177–179

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Skirboll, L., Rehfeld, J. F., Goldstein, M., Markey, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunochemistry combined with retrograde tracing, Neuroscience 5:2093–2124

    Article  PubMed  Google Scholar 

  • Hökfelt, T., Everitt, B. J., Norheim, E., Rosell, S., and Goldstein, M., 1983, Neurotensin-like immunoreactivity in dopamine neurons in the arcuate nucleus and the ventral mesencephalon, 5th CA Symposium. Suppl. to Progress in Neuro-Psychopharmacology and Biological PsychiatryPergamon Press, Elmsford, N.Y., p. 171–171

    Google Scholar 

  • Holets, V., Hökfelt, T., Terenius, L., and Goldstein, M., 1985, Differential projections of locus coeruleus neurons containing tyrosine hydroxylase and neuropeptide Y and/or galanin, Soc. Neurosci. Abstr. 11:475–475

    Google Scholar 

  • Horn, A. S., Korf, J., and Westernak, B. H. C. (eds.), 1979, The Neurobiology of DopamineAcademic Press, New York

    Google Scholar 

  • Hornykiewicz, O., 1973, Dopamine in the basal ganglia: Its role and therapeutic implications, Br. Med. Bull. 29:172–178.

    PubMed  CAS  Google Scholar 

  • Inagaki, S., and Parent, A., 1984, Distribution of substance P and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkeyBrain Res. Bull. 13:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Innis, R. B., Rade, R., and Aghajanian, G. K., 1985, Substance K excites dopaminergic and nondopaminergic neurons in rat substantia nigra, Brain Res. 335:381–383

    Article  PubMed  CAS  Google Scholar 

  • Itakura, T., Yakate, H., Kimura, H., Kamei, I., Nakakita, K., Naka, Y., Nakai, K., Imai, H., and Komai, N., 1985, 5-Hydroxytryptamine innervation of vessels in the rat cerebral cortex: Immunohistochemical finding and hydrogen clearance studies, J. Neurosurg. 62:42–47.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, S. D., 1984, Cortical monoamines and behavior, in:Monoamine Innervation of Cerebral Cortex (L.Descarries, T.Reader, and H.Jasper, eds.), Liss, New York, pp. 321–349

    Google Scholar 

  • Jacobs, B. L., Foote, S. L., and Bloom, F. E., 1978, Differential projections of neurons within the dorsal raphe nucleus of the rat: A horseradish peroxidase (HRP) study, Brain Res. 147:149–153

    Article  PubMed  CAS  Google Scholar 

  • Jahnsen, H., 1980, The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CA1 of the hippocampus in vitro, Brain Res. 197:83–94

    Article  PubMed  CAS  Google Scholar 

  • Javoy-Agid, F., and Agid, Y., 1980, Is the mesocortical dopaminergic system involved in Parkinson disease?, Neurology 30:1326–1330

    Google Scholar 

  • Jimenez-Castellanos, J., and Graybiel, A. M., 1985, The dopamine-containing innvervation of striosomes: Nigral subsystems and their striatal correspondents, Soc. Neurosci.Abstr. 11:365–365

    Google Scholar 

  • Johnson, E S., Roberts, M. H. T., and Straughan, D. W., 1969, The responses of cortical neurones to monoamines under differing anesthetic conditions, J. Physiol. (London) 203:261–280

    CAS  Google Scholar 

  • Johnston, D., and Brown, T. H., 1984, The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons, Ann.Neurol. 16:565–571.

    Article  Google Scholar 

  • Jones, B. E., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study, Brain Res. 127:23–53.

    Article  Google Scholar 

  • Jones, E. G., Coulter, J. D., Burton, H., and Porter, R., 1977, Cells of origin and terminal distribution of corticostriatal fibres arising in sensory motor cortex of monkeys, J. Comp.Neurol. 181:53–80.

    Article  Google Scholar 

  • Jordan, L. M., Frederickson, R. C. A., Phillis, J. W., and Lake, N., 1972, Microelectrophoresis of 5-hydroxytryptamine: A clarification of its action on cerebral cortical neurones, Brain Res. 40:552–558.

    Article  PubMed  CAS  Google Scholar 

  • Jouvet, M., 1972, The role of monoamine and acetylcholine containing neurons in the regulation of the sleep—walking cycle, Orgeb. Physiol. 64:166–307.

    CAS  Google Scholar 

  • Kalivas, P. W., 1985a, Interactions between neuropeptides and dopamine neurons in the ventromedial mesencephalon, Neurosci. Biobehav. Rev. 9:573–587.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., 1985b, Sensitization to repeated enkephalin administration in the ventral tegmental area of the rat. II. Involvement of the mesolimbic dopamine system, J. Pharmacol. Exp. Ther. 235:544–550.

    PubMed  CAS  Google Scholar 

  • Kalivas, P. W., Nemeroff, C. B., and Prange, A. J., Jr., 1982, Neuroanatomical sites of action of neurotensin, Proc. N.Y. Acad. Sci. 77:307–318.

    Article  Google Scholar 

  • Kalivas, P. W., Deutch, A. Y., Maggio, J. F., Mantyh, P. W., and Roth, R. H., 1985, Substance K and substance P in the ventral tegmental areaBrain Res. 57:241–246.

    CAS  Google Scholar 

  • Kanazawa, I., Emson, C. P., and Cuello, C. A., 1977, Evidence for the existence of substance P containing fibers in striato-nigral and pallido-nigral pathways in rat brainBrain Res. 119:445–467.

    Article  Google Scholar 

  • Kanazawa, I., Ogawa, T., Kimura, S., and Munekata, E., 1984, Regional distribution of substance P, neurokinin alpha and neurokinin beta in rat central nervous system, Neurosci. Res. 2:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Heggelund, P., 1982, Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline, Exp. Brain Res. 45:317–327.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M., 1979, Restoration of visual cortical plasticity by local microperfusion of norepinephrine, J. Comp. Neurol. 185:163–182.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M., 1981, Cortical recovery from effects of monocular deprivation: Acceleration with norepinephrine and suppression with 6-hydroxydopamine, J. Neurophysiol. 45:254–266.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Watabe, K., Scholler, E., and Heggelund, P., 1983, Restoration of neuronal plasticity in cat visual cortex by electrical stimulation of the locus coeruleus, Soc. Neurosci. Abstr. 9:911.

    Google Scholar 

  • Kasamatsu, T., Hakura, T., Jonnson, G., Heggelund, P., Pettigrew, J., Nakai, K., Watabe, K., Kupperman, B., and Ary, M., 1984, Neuronal plasticity in cat visual cortex: A proposed role for the central noradrenaline system, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 301–319

    Google Scholar 

  • Kehr, W., Lindquist, M., and Carlsson, A., 1976, Distribution of dopamine in the rat cerebral cortex, J. Neural Transm. 38:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, A. F., Domesick, V. B., and Nauta, W. J. H., 1982, The amygdalostriatal projection in the rat—An anatomical study by anterograde and retrograde tracing methods, Neuroscience 7:615–630.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, J. M., and Powell, T. P. S., 1971, The structure of the caudate nucleus of the cat:Light and electron microscopy, Philos. Trans. R. Soc. London 262:383–401.

    Article  CAS  Google Scholar 

  • Kitai, S. T., Sugimori, M., and Kocsis, J. D., 1976, Excitatory nature of dopamine in the nigrocaudate pathway, Exp. Brain Res. 24:351-363.

    PubMed  CAS  Google Scholar 

  • Kohler, C., 1982, On the serotonergic innervation of the hippocampal region: An analysis employing immunohistochemistry and retrograde fluorescent tracing in the rat brain, in:Cytochemical Methods in Neuroanatomy (S. Palay and V. Chan-Palay, eds.), Liss, New York, pp. 387–407

    Google Scholar 

  • Kohler, C., 1984, The distribution of serotonin binding sites in the hippocampal region of the rat brain: An autoradiographic study, Neuroscience 13:667–680.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., and Steinbusch, H., 1982, Identification of serotonin and nonserotonin-containing neurons of the midbrain raphe projecting to the entorhinal area and the hippocampal formation: A combined immunohistochemical fluorescent retrograde tracing study in the rat brain, Neuroscience 7:951–975.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., Chan-PalayV., Haglund, L., and Steinbusch, H., 1980, Immunohistochemical localization of serotonin nerve terminals in the lateral entorhinal cortex of the rat: Demonstration of two separate patterns of innervation from the midbrain raphe, Anat. Embryol. 160:121–129

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., Chan-Palay, V., and Steinbusch, H., 1981, The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areas: An immunohistochemical study with anti-serotonin antibodies in the rat’s brain, Anat. Embryol. 161:237–264.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., 1974, Dissociation of the effect of lesions of the orbital or medial aspect of the prefrontal cortex of the rat with respect to activity, Behav. Biol. 10:329–343.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., 1984, Functions of the frontal cortex of the rat: A comparative reviewBrain Res. Rev. 8:65–98.

    Article  Google Scholar 

  • Kosofsky, B., Molliver, M., Morrison, J., and Foote, S., 1984, The serotonin and norepinephrine innervation of primary visual cortex in cynomolgous monkey, J. Comp. Neurol. 230:168–178.

    Article  PubMed  CAS  Google Scholar 

  • Krnjević, K., 1984, Neurotransmitters in cerebral cortex: A general account, in Cerebral Cortex Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 39–62

    Google Scholar 

  • Krnjević, K., and Phillis, J. W., 1963a, Actions of certain amines on cerebral cortical neurons, Br. J. Pharmacol. Chemother. 20:471–490

    PubMed  Google Scholar 

  • Krnjević, K., and Phillis, J. W., 1963b, Iontophoretic studies of neurons in the mammalian cerebral cortex, J. Physiol. (London) 165:274–304

    Google Scholar 

  • Kuhar, M. J., Murrin, L. C., Malouf, A., and Klemn, N., 1978, Dopamine receptor binding in vivo: The feasibility of autoradiography studiesLife Sci.22:203–210.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M., 1962, Corticospinal connections:Postnatal development in the rhesus monkey, Science 138:678–680

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M., and Lawrence, D. G., 1967, Cortical projections to the red nucleus and the brain stem in the rhesus monkey, Brain Res. 4:487-492.

    Article  Google Scholar 

  • Lauder, J., and Bloom, F., 1974, Ontogeny of monoaminergic neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat, J. Comp. Neurol. 155:469–482.

    Article  PubMed  CAS  Google Scholar 

  • Lavielle, S., Tassin, J. P., Thierry, A. M., Blanc, G., Herve, D., Barthelemy, C., and Glowinski, J., 1979, Blockade by benzodiazepines of the selective high increase in dopamine turnover induced by stress im mesocortical dopaminergic neurons of the ratBrain Res. 168:585–594.

    Article  PubMed  CAS  Google Scholar 

  • Leger, L., Wiklund, L., Descarries, L., and Persson, M., 1979, Description of an indole aminergic cell component in the cat locus coeruleusBrain Res. 168:43–56.

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz, G. R., and Astruc, J., 1975, Preliminary evidence for a direct projection of the prefrontal cortex to the hippocampus in the squirrel monkey, Brain Behav. Evol. 11:355–364.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P., and Moore, R. Y., 1978a, Noradrenaline neuron innervation of the neocortex in the ratBrain Res. 139:219–231.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P., and Moore, R. Y., 1978b, Developmental organization of raphe serotonin neuron groups in the cat, Anat. Embryol. 154:241–251.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P., and Moore, R. Y., 1979, Development of the noradrenergic innervation of neocortexBrain Res. 162:243–259.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P., and Rakic, P., 1982, The time of genesis, embryonic origin and differentiation of the brainstem monoamine neurons in the rhesus monkey, Dev. Brain Res. 4:35–57.

    Article  Google Scholar 

  • Levitt, P., Rakic, P., and Goldman-Rakic, P. S., 1981, Region-specific catecholamine innervation of primate cerebral cortex, Soc. Neurosci. Abstr. 7:801.

    Google Scholar 

  • Levitt, P., Rakic, P., and Goldman-Rakic, P.S., 1984a, Comparative assessment of monoamine afferents in mammalian cerebral cortex, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 41–60

    Google Scholar 

  • Levitt, P., Rakic, P., and Goldman-Rakic, P. S., 1984b, Region-specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis, J. Comp. Neurol. 227:23–36.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. A., Campbell, M. J., Foote, S. L., Goldstein, M., and Morrison, J. H., 1987, The dopaminergic innervation of primate neocortex:Widespread yet regionally specific, Proc. Natl. Acad. Sci. USA in press

    Google Scholar 

  • Lewis, M. S., Molliver, M. E., Morrison, J. H., and Lidov, H. G. W., 1979, Complementarity of dopaminergic and noradrenergic innervation of anterior cingulate cortex of the rat, Brain Res. 164:328-333.

    Article  PubMed  CAS  Google Scholar 

  • Leysen, J. E., Geerts, R., Gommeren, W., Verwimp, M., and Van Gompel, P., 1982, Regional distribution of serotonin-2 receptor binding sites in the brain and effects of neural lesions, Arch. Int. Pharmacodyn. Ther. 256:301–305

    PubMed  CAS  Google Scholar 

  • Lidov, H. G. W., and Molliver, M. E., 1982, An immunohistochemical study of serotonin neuron development in the rat: Ascending pathway and terminal fieldsBrain Res. Bull. 8:389–430.

    Article  PubMed  CAS  Google Scholar 

  • Lidov, H. G. W., and Zecevic, N. R., 1978, Characterization of the monoaminergic innervation of immature rat neocortex: A histofluorescence analysis, J. Comp. Neurol. 181:663–680.

    Article  PubMed  CAS  Google Scholar 

  • Lidov, H. G. W., Rice, F. L., and Molliver, M. E., 1978, The organization of the catecholamine innervation of somatosensory cortex: The barrel field of the mouseBrain Res. 153:577–584.

    Article  PubMed  CAS  Google Scholar 

  • Lidov, H. G. W., Grzanna, R., and Molliver, M. E., 1980, The serotonin innervation of the cerebral cortex in the rat—An immunohistochemical analysis, Neuroscience 5:207–227.

    Article  PubMed  CAS  Google Scholar 

  • Lidsky, T. T., Manetto, C., and Schneider, J. S., 1985, Consideration of sensory factors involved in motor functions of the basal gangliaBrain Res. Rev. 9:133–141.

    Article  Google Scholar 

  • Lindvall, O., and Björklund, A., 1974a, The glyoxylic acid fluorescence histochemical method: A detailed account of the methodology for the visualization of central catecholamine neurons, Histochemistry 39:97–127

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., and Björklund, A., 1983, Dopamine and noradrenaline-containing neuron systems: Their anatomy in the rat brain, in:Chemical Neuroanatomy (P. C. Emson, ed.), Raven Press, New York, pp. 229–255

    Google Scholar 

  • Lindvall, O., and Björklund, A., 1984, General organization of cortical monoamine systems, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 9–40

    Google Scholar 

  • Lindvall, O., Björklund, A., Moore, R. Y., and Stenevi, U., 1974, Mesencephalic dopamine neurons projecting to neocortex, Brain Res. 81:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., Björklund, A., and Divac, I., 1978, Organization of catecholamine neurons projecting to the frontal cortex of the rat, Brain Res. 142:1–24

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., Björklund, A., and Skagerberg, G., 1984, Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: New evidence for a dopaminergic innervation of hypothalamic neurosecretory nuclei, Brain Res. 306:19–30

    Article  PubMed  CAS  Google Scholar 

  • Lisoprawski, A., Herve, D., Blanc, G., Glowinski, J., and Tassin, J. P., 1980, Selective activation of the mesocortico-frontal dopaminergic neurons induced by lesion of the habenula in the rat, Brain Res. 183:229–234.

    Article  Google Scholar 

  • Llinas, R., Greenfield, S. A., and Jahnsen, H., 1984, Electrophysiology of pars compacta cells with in vitro substantia nigra-A possible mechanism for dendrite release, Brain Res. 294:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Loizou, L.A., 1972, The postnatal ontogeny of monoamine containing neurons in the central nervous system of the albino rat, Brain Res. 40:395–418.

    Article  PubMed  CAS  Google Scholar 

  • Loranger, A. W., Goodell, H., and McDowell, F. H., 1972, Intellectual impairment in Parkinson’s syndrome, Brain 95:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1949, Cerebral cortex: Architecture, intracortical connections, motor projections, in:Physiology of the Nervous System (J. F.Fulton, ed.), Oxford University Press, London, pp. 288–312

    Google Scholar 

  • Loughlin, S. E., and Fallon, J. H., 1982, Mesostriatal projections from ventral tegmentum and dorsal raphe: Individual cells project ipsilaterally and contralaterally but not bilaterally, Neurosci. Lett. 32:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Loughlin, S.E., and Fallon, J. H., 1984, Substantia nigra and ventral tegmental area projections to cortex: Topography and collateralization, Neuroscience 11:425–436

    Article  PubMed  CAS  Google Scholar 

  • Loughlin, S. E., and Fallon, J. H., 1985, The locus coeruleus, in:The Rat Central Nervous System (G.Paxinos, ed.), Academic Press, New York, pp. 79–94

    Google Scholar 

  • Loughlin, S. E., Foote, S. L., and Fallori, J. H., 1982, Locus coeruleus projections to cortex: Topography, morphology and collateralization, Brain Res. Bull. 9:287–294.

    Article  PubMed  CAS  Google Scholar 

  • Loughlin, S. E., Foote, S. L., and Bloom, F., 1986a, Efferent projections of nucleus locus coeruleus: Topographic organization of cells of origin demonstrated by three-dimensional reconstruction, Neuroscience 18:307–320

    Article  PubMed  CAS  Google Scholar 

  • Loughlin, S. E., Foote, S., and Grzanna, R., l986b, Efferent projections of nucleus locus coeruleus: Morphologic subpopulations have different efferent targets, Neuroscience 18:307–320.

    Article  CAS  Google Scholar 

  • Loy, R., and Moore, R., 1979, Ontogeny of the noradrenergic innervation of the rat hippocampal formation, Anat. Embryol. 157:243–253.

    Article  PubMed  CAS  Google Scholar 

  • Loy, R., Koziell, D., Lindsey, J., and Moore, R., 1980, Noradrenergic innervation of the adult rat hippocampal formation, J. Comp. Neurol. 189:699–710.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, A., 1982, Cytoarchitecture of the central amygdaloid nucleus of the rat, J. Comp. Neurol. 208:401–418.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, A., 1983, Neurons of the bed nucleus of the stria terminalis: A Golgi study in the ratBrain Res. Bull. 10:111–120.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P. L., McGeer, E. G., Scherer, U., and Singh, K., 1977, A glutamatergic corticostriatal pathwayBrain Res. 128:369–373.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton, N., and Mason, S., 1980, The neuropsychology and neuropharmacology of the dorsal ascending bundle—A review, Prog. Neurobiol. 14:157–219.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, T., Kashiba, A., Tohyama, M., Hori, M., Itakura, T., and Shimizu, N., 1975, Demonstration of aminergic terminals and their contacts in rat brain by perfusion fixation with potassium permanganate, Abstr. 10th Int. Congr. Anat. p. 142–142

    Google Scholar 

  • Magistretti, P., and Morrison, J., 1985, VIP neurons in the neocortex, Trends Neurosci. 8:7–8.

    Article  CAS  Google Scholar 

  • Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V., and Bloom, F. E., 1981, Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism, Proc. Natl. Acad. Sci. USA 78:6535–6539

    Article  PubMed  CAS  Google Scholar 

  • Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., and Bloom, F. E., 1983, Effect of 6-hydroxydopamine lesions on norepinephrine-induced (3H) glycogen hydrolysis in mouse cortical slices, Brain Res. 26:159–162.

    Article  Google Scholar 

  • Marchais, D., Tassin, J. P., and Bockaert, J., 1980, Dopaminergic component of (3H) spiroperidol binding in the rat anterior cerebral cortexBrain Res. 183:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Markowitsch, H. J., and Irle, E., 1981, Widespread cortical projections of the ventral tegmental area and of other brain stem structures in the cat, Exp. Brain Res. 41:233–246.

    PubMed  CAS  Google Scholar 

  • Marsden, C. D., 1980, The enigma of the basal ganglia and movement, Trends Neurosurg. 3:284–287.

    Article  Google Scholar 

  • Marshall, J. P., Richardson, J. S., and Teitelbaum, P., 1974, Nigrostriatal bundle damage and the lateral hypothalamic syndrome, J. Comp. Physiol. Psychol. 87:808–830.

    Article  PubMed  CAS  Google Scholar 

  • Martres, M. P., Bouthenet, M. L., Sales, N., Sokoloff, P., and Schwartz, J. C., 1985, Widespread distribution of brain dopamine receptors evidenced with 125I iodosulpride, a highly selective ligandScience 228:752–755.

    Article  PubMed  CAS  Google Scholar 

  • Mason, S., 1980, Noradrenaline and selective attention: A review of the model and the evidenceLife Sci. 27:617–631.

    Article  PubMed  CAS  Google Scholar 

  • Mason, S. T., and Fibiger, H. C., 1979, Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 187:703–724.

    Article  PubMed  CAS  Google Scholar 

  • Matthyse, S., 1981, Nucleus accumbens and schizophrenia, in:The Neurobiology of the Nucleus Accumbens (R. B.Chronister and J. F.DeFrance, eds.), Haer, Brunswick, N., pp. 351–359

    Google Scholar 

  • Meilbach, R. C., Maayani, S., and Green, J. P., 1980, Characterization and radioautography of 3H LSD binding by rat brain slices in vitro: The effect of 5-hydroxytryptamine, Eur. J. Pharmacol. 67:371–382.

    Article  Google Scholar 

  • Mensah, P. L., 1977, The internal organization of the mouse caudate nucleus: Evidence for cell clustering and regional variationBrain Res. 137:53–66.

    Article  PubMed  CAS  Google Scholar 

  • Mercuri, N., Calabresi, P., Stanzione, P., and Bernardi, G., 1985, Electrical stimulation of mesencephalic cell groups (A9-Al0) produces monosynaptic excitatory potentials in rat frontal cortex, Brain Res. 338:192–195.

    Article  Google Scholar 

  • Messiha, F. S., and Kenny, A. D. (eds.), 1977, Parkinson’s Disease: Neurophysiological, Clinical and Related Aspects, Adv. Exp. Med. Biol. 90

    Google Scholar 

  • Milner, B., and Petrides, M., 1984, Behavioral effects of frontal lobe lesions in man, Trends Neurosci. 7:403–407.

    Article  Google Scholar 

  • Mishra, R. K., Demirjian, C., Katzman, R., and Makman, M. H., 1975, A dopamine-sensitive adenylate cyclase in anterior limbic cortex and mesolimbic region of primate brainBrain Res. 96:395–399.

    Article  PubMed  CAS  Google Scholar 

  • Molliver, M E., Grzanna, R., Lidov, H. G. W., Morrison, J. H., and Olschowka, J. A., 1982, Monoamine systems in the cerebral cortex, in: Cytochemical Methods in Neuroanatomy (V. Chan-Palay and S. L. Palay, eds.), Liss, New York, pp. 255-277.

    Google Scholar 

  • Moon, S., and Herkenham, M., 1984, Heterogeneous dopaminergic projections to the neostriatum of the rat: Nuclei of origin dictate discrete relationship to opiate receptor patches, Soc. Neurosci. Abstr. 14:120.

    Google Scholar 

  • Moore, R. Y., and Bloom, F. E., 1978, Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems, Annu. Rev. Neurosci. 1:129–169.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., and Halaris, A. E., 1975, Hippocampal innervation by serotonin neurons of the midbrain raphe in the cat, J. Comp. Neurol. 164:161–184.

    Article  Google Scholar 

  • Moore, R. Y., and Heller, A., 1967, Monoamine levels and neuronal degeneration in rat brain following lateral hypothalamic lesions, J. Pharmacol. Exp. Ther. 156:12–23.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., Halaris, A. E., and Jones, B. E., 1978, Serotonin neurons of the midbrain raphe: Ascending projections, J. Comp. Neurol. 180:417–438.

    Article  PubMed  CAS  Google Scholar 

  • Mora, F., Sweeney, K. F., Rools, E. T., and Sanguinetti, A. M., 1976, Spontaneous firing rate of neurons in the prefrontal cortex of the rat: Evidence for a dopaminergic inhibitionBrain Res. 116:516–522.

    Article  PubMed  CAS  Google Scholar 

  • Morel-Maroger, A., 1977, Effects of levodopa on frontal signs in parkinsonism, Br. Med. J. 2:1543.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Grzanna, R., Molliver, M. E., and Coyle, J. T., 1978, The distribution and orientation of noradrenergic fibers in neocortex of the rat: An immunofluorescence study, J. Comp. Neurol. 181:17–40.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Molliver, M. E., Grzanna, R., and Coyle, J. T., 1981, The intracortical trajectory of the coeruleo-cortical projection in the rat: A tangentially organized cortical afferent, Neuroscience 6:139–158.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Foote, S. L., O’Connor, D., and Bloom, F. E., 1982a, A laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: Dopamine-β-hy-droxylase immunohistochemistry, Brain Res. Bull. 9:309–319

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E., and Lidov, G. W., 1982b, Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study, Proc. Natl. Acad. Sci. USA 79:2401–2405

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J., Foote, S., and Bloom, F., 1984, Regional, laminar, developmental and functional characteristics of noradrenaline and serotonin innervation patterns in monkey cortex, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 61–75

    Google Scholar 

  • Morruzzi, A. S., and Hart, E. R., 1955, Evoked cortical responses under the influence of hallucinogens and related drugs, Electroencephalogr. Clin. Neurophysiol. 7:146.

    Google Scholar 

  • Moruzzi, G., and Magoun, H. W., 1949, Brain stem reticular formation and activation of the cortex, Electroencephalogr. Clin. Neurophysiol. 1:455–473

    Google Scholar 

  • Muldrum, B. S., and Marsden, C. D. (eds.), Primate Models of Neurological Disorders, Adv. Neural. 10.

    Google Scholar 

  • Murrin, K. C., and Kuhar, M. J ., 1979, Dopamine receptors in rat frontal cortex: An autoradiographic study, Brain Res. 177:279-285.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, T., Satoh, K., Imamoto, K., and Maeda, T., 1981, Divergent projections of catecholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labeling technique, Neurosci. Lett. 23:117–123.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, S., Tepper, J. M., Young, S. J., and Groves, P. M., 1981, Neurophysiological consequences of presynaptic receptor activation: Changes in noradrenergic terminal excitabilityBrain Res. 226:155–170.

    Article  PubMed  CAS  Google Scholar 

  • Nastuk, M. A., and Graybiel, A. M., 1983, The distribution of muscarinic binding sites in the feline striatum and its relationship to other histochemical staining patterns, Soc. Neurosci. Abstr. 9:15.

    Google Scholar 

  • Nastuk, M. A., and Graybiel, A. M., 1985, Patterns of muscarinic cholinergic binding in the striatum and their relation to dopamine islands and striosomes, J. Comp. Neurol. 237:176–194.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W. J. H., 1979, A proposed conceptual reorganization of the basal ganglia and telencephalon, Neuroscience 4:1875–1881.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W. J. H., and Domesick, V. B., 1978, Crossroads of limbic and striatal circuitry:Hypothalamonigral connections, in:Limbic Mechanisms (K. E. Livingstone and O. Hornykiewicz, eds.), Plenum Press, New York, pp. 75–93

    Google Scholar 

  • Nauta, W. J. H., and Domesick, V. B., 1979, The anatomy of the extrapyramidal system, in:Dopaminergic Ergot Derivatives and Motor Function (K. Fuxe and D. B. Calne, eds.), Pergamon Press, Elmsford, N.Y., pp. 3–22

    Google Scholar 

  • Nauta, W. J. H., and Domesick, V. B., 1984, Afferent and efferent relationships of the basal ganglia, Ciba Found. Symp. 107:3–29.

    PubMed  CAS  Google Scholar 

  • Nauta, W. J. H., and Kuypers, H. G. J. M., 1958, Some ascending pathways in the brain stem reticular formation, in:Reticular Formation of the Brain (H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello, eds.), Little, Brown, Boston, pp. 3–30

    Google Scholar 

  • Nauta, W. J. H., Smith, G. P., Faull, R. L. N., and Domesick, V. B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neuroscience 3:345–401.

    Article  Google Scholar 

  • Nauta, W. J. H., and Domesick, V. B., 1979, The anatomy of the extrapyramidal system, in:Dopaminergic Ergot Derivatives and Motor Function (K. Fuxe and D. B. Calne, eds.), Pergamon Press, Elmsford, N.Y., pp. 3–22.

    Google Scholar 

  • Nauta, W. J. H., and Kuypers, H. G. J. M., 1958, Some ascending pathways in the brain stem reticular formation, in:Reticular Formation of the Brain (H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello, eds.), Little, Brown, Boston, pp. 3–30

    Google Scholar 

  • Nauta, W. J. H., Smith, G. P., Faull, R. L. N., and Domesick, V. B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neuroscience 3:345–401.

    Article  Google Scholar 

  • Nemeroff, C. B., Hernandez, D. E., Luttinger, D., Kalivas, P. W., and Prange, A. J., 1982, Sites of neurotensin action in the brain, Proc. N.Y. Acad. Sci. 77:330–344.

    Article  Google Scholar 

  • Newman, R., and Winans, S. S., 1980, An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens, J. Camp. Neural. 191:167–192.

    CAS  Google Scholar 

  • Olpe, H. R., 1981, Differential effects of clomipramine and clorgyline on the sensitivity of cortical neurons to serotonin: Effect of chronic treatment, Eur. J. Pharmacol. 69:375–377.

    Article  PubMed  CAS  Google Scholar 

  • Olpe, H. R., Glatt, A., Laszlo, J., and Schellenberg, A., 1980, Some electrophysiological and pharmacological properties of the cortical, noradrenergic projection of the locus coeruleus in the ratBrain Res. 186:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Olschowka, J. A., Molliver, M. E., Grzanna, R., Rice, F. L., and Coyle, J. T., 1981, Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-β3-hydroxylase immunocytochemistry, J. Histochem. Cytochem. 29:271–280

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., and Kuhar, M. J., 1980, Beta-adrenergic-receptor localization by light microscopic autoradiographyScience 208:1378–1380.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., and Kuhar, M. J., 1982, Beta-adrenergic receptor localization in rat brain by light microscopic autoradiography, Neurochem. Int. 4:473–490.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., and Wamsley, J. K., 1982, Receptor for amines, amino acids and peptides. Prog. Brain Res. 55:265–278

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M., and Wamsley, J. K., 1983, Microscopic Localization of adrenoreceptors, in: Adrenoreceptors and Cathecolamine Action, Part B, Vol. 2 (G. Kinos ed.), Wiley, New York, pp. 295–313

    Google Scholar 

  • Palacios, J. M., and Wamsley, J. K., 1984, Autoradiographic distribution of receptor ligand binding— Catecholamine receptors, in:Handbook of ChemicalNeuroanatomy (A. Björklund, T. Hökfelt, and M. J. Kuhar, eds.), Vol. 3, Elsevier/North-Holland, Amsterdam, pp. 325–351

    Google Scholar 

  • Palacios, J. M., Niehoff, D. L., and Kuhar, M. J., 1981, 3H spiperone binding sites in brain: Autoradiographic localization of multiple receptorsBrain Res. 213:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Olschowka, J. A., Molliver, M. E., Grzanna, R., Rice, F. L., and Coyle, J. T., 1981, Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-β-hydroxylase immunocytochemistry, J. Histochem. Cytochem. 29:271–280

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., Descarries, L., and Beaudet, A., 1981, Organization of ascending serotonin systems in the adult rat brain: A radioautographic study after intraventricular administration of (3H)-hydroxytryptamine, Neuroscience 6:115–138.

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas, J., Moises, H., and Speciale, S., 1985, The monoaminergic innervation of the rat visual cortex, Proc. R. Soc. London Ser. B 223:319–329.

    Article  CAS  Google Scholar 

  • Paxinos, G., and Watson, C., 1982, The Rat Brain in Stereotaxic Coordinates.Academic Press, New York

    Google Scholar 

  • Peroutka, S. J., and Snyder, S. H., 1979, Multiple serotonin receptors: Differential binding of (3H)-hydroxytryptamine, (3H) lysergic acid diethylamide and (3H) spiroperidol, Mol. Pharmacol. 16:687–699.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., 1984, Micro-iontophoretic studies of cortical biogenic amines, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 175–194

    Google Scholar 

  • Phillis, J. W., Tebecis, A. K., and York, D. H., 1968, Depression of spinal motoneurons by noradrenaline, 5-hydroxytryptamine and histamine, Eur. J. Pharmacol. 7:471–475

    Article  Google Scholar 

  • Phillis, J. W., Wu, P. H., and Thierry, D. L., 1982, The effect of ß-adrenergic receptor agonists and antagonists on the efflux on 22Na and uptake of 42K by rat brain cortical slices, Brain Res. 236:133–142

    Google Scholar 

  • Pickel, V. M., Segal, M., and Bloom, F. E., 1974, A radioautographic study of the efferent pathways of the nucleus locus coeruleus, J. Camp. Neural. 155:15-42.

    Article  CAS  Google Scholar 

  • Pickel, V. M., Joh, T. H., and Reis, D. J., 1977, A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: Demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase, Brain Res. 131:197-214.

    Article  Google Scholar 

  • Poirier, L. J., Sourkes, T. L., and Bedard, P. J. (eds.)., 1979, The Extrapyramidal System and Its Disorders, Adv. Neurol. 24

    Google Scholar 

  • Porrino, L. J., and Goldman-Rakic, P. S., 1982, Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP, J. Comp. Neurol. 205:63–76.

    Article  PubMed  CAS  Google Scholar 

  • Pycock, C. J., Kerwin, R. W., and Carter, C. J., 1980, Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats, Nature 286:74–77.

    Article  PubMed  CAS  Google Scholar 

  • Quirion, R., Chiueh, C., Evenist, H., and Pert, A., 1985, Comparative localization of neurotensin receptors on nigrostriatal mesolimbic dopaminergic terminals, Brain Res. 327:385–389

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, C. W., and Graybiel, A., 1981, The fronto-striatal projection in the cat and monkey and its relationship to inhomogeneities established by acetylcholinesterase histochemistryBrain Res. 208:259–266.

    Article  PubMed  Google Scholar 

  • Ragsdale, C. W., and Graybiel, A. M., 1984, Further observations on the striosomal organization of frontostriatal projections in cats and monkeys, Soc. Neurosci. Abstr. 10:514.

    Google Scholar 

  • Reader, T. A., 1978, Effects of dopamine, noradrenaline and serotonin in visual cortex of cat, Experientia 34:1586–1588.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., and Jasper, H. H., 1984, Interactions between monoamines and other transmitters in cerebral cortex, in:Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 195–225

    Google Scholar 

  • Reader, T. A., De Champlain, J., and Jasper, H. H., 1979a, Interactions between biogenic amines and acetylcholine, in:Catecholamines: Basic and Clinical Frontiers (E. Usdin, I. J. Kopin, and J. Barchas, eds.), Pergamon Press, Elmsford, N.Y., pp. 1074–1076

    Google Scholar 

  • Reader, T. A., Ferron, A., Descarries, L., and Jasper, H. H., 1979b, Modulatory role for biogenic amines in the cerebral cortex: Microiontophoretic studiesBrain Res. 160:217–229.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., De Champlain, J., and Jasper, H. H., 1979a, Interactions between biogenic amines and acetylcholine, in:Catecholamines: Basic and Clinical Frontiers (E. Usdin, I. J. Kopin, and J. Barchas, eds.), Pergamon Press, Elmsford, N.Y., pp. 1074–1076

    Google Scholar 

  • Reches, A., Burke, R. E., Jiang, D., Wagner, H. R., and Fahn, S., 1983, Neurotensin interacts with dopaminergic neurons in rat brain, Peptides 4:43–48.

    Article  Google Scholar 

  • Redmond, D. E., and Huang, Y. H., 1979, New evidence for a locus coeruleus norepinephrine connection with anxiety, Life Sci. 25:2149–2162.

    Article  PubMed  CAS  Google Scholar 

  • Reymann, K., Pohle, W., Muller-Welde, P., and Ott, T., 1983, Dopaminergic innervation of the hippocampus: Evidence for midbrain raphe neurons as the site of origin, Biomed. Biochem. Acta. 42:1247–1255.

    CAS  Google Scholar 

  • Ribak, C. E., and Fallon, J. H., 1982, The islands of Calleja complex of the basalforebrain of the rat. I. Light and electron microscopic observations, J. Comp. Neurol. 205:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D., Price, M., and Fibiger, H., 1976, The dorsal tegmental noradrenergic projection: An analysis of its role in maze learning, J. Comp. Physiol. Psychol. 90:363–372.

    Article  PubMed  CAS  Google Scholar 

  • Rolls, E. T., 1987, Investigations of the functions of different regions of the basal ganglia, in:Parkinson’s Disease (G. Stern, ed.), Chapman & Hall, London, in press

    Google Scholar 

  • Room, P., Postema, F., and Korf, J., 1981, Divergent axon collaterals of rat locus coeruleus neurons: Demonstration by a fluorescent double labeling technique, Brain Res. 221:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, G. D., Finklestein, S., Stall, A. K., Yutzey, D. A., and Denenberg, V. N., 1984, Neurochemical asymmetries in the albino rat’s cortex, striatum, and nucleus accumbens, Life Sci. 34:1143–1148.

    Article  PubMed  CAS  Google Scholar 

  • Rosvold, H. E., and Szwarcbart, M. K., 1964, Neural structures involved in delayed response performance, in: The Frontal Granular Cortex and Behavior (J. M. Warren and K. Akert, eds.), McGraw-Hill, New York, pp. 1–15.

    Google Scholar 

  • Routtenberg, A., and Sloan, M., 1972, Self stimulation in the frontal cortex of Rattus norwegiens, Behav. Biol. 7:567–572.

    Article  PubMed  CAS  Google Scholar 

  • Sandell, J. H., Graybiel, A. M., and Chesselet, M.-F., 1987, A new enzyme marker for striatal compartmentalization: NADPH diaphorase activity in the caudate nucleus and putamen of the cat, J. Comp. Neurol.

    Google Scholar 

  • Sastry, B. S., and Phillis, J. W., 1977, Metergoline as a selective 5-hydroxytryptamine antagonist in the cerebral cortex, Can. J. Physiol. Pharmacol. 55:130–133.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., Simon, H., LeMoal, M., and Bischoof, S., 1980, Origin of dopaminergic innervation of the rat hippocampal formation, Neurosci. Lett. 18:125–133.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., Rouquier, L., Javoy-Agid, F., and Agid, Y., 1982, Dopamine deficiency in the cerebral cortex in Parkinson’s disease, Neurology 32:1039–1040.

    Google Scholar 

  • Scheibel, M. E., and Scheibel, A. B., 1958, Structural substrates for integrative patterns in the brain stem reticular core, in:ReticularFormation of the Brain (H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello, eds.), Little, Brown, Boston, pp. 31–55

    Google Scholar 

  • Scheibner, T., 1986, The morphology and distribution of the mesocortical and mesostriatal projections in the cat, Ph.D. thesis, University of New South Wales

    Google Scholar 

  • Schlumpf, M., Shoemaker, W. J., and Bloom, F. E., 1980, Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers, J. Comp. Neurol. 192:361–377.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. H., Björklund, A., Lindvall, O., and Loren, I., 1982, Prefrontal cortex: Dense dopaminergic input in the newborn rat, Dev. Brain Res. 5:222–228

    Article  Google Scholar 

  • Schneider, L. H., Alpert, J. E., and Iversen, S. D., 1983, CCK-8 modulation of mesolimbic dopamine: Antagonism of amphetamine-stimulated behavior, Peptides 4:749–753.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M., Sontag, K.-H., and Wand, P., 1984, Sensory-motor processing in substantia nigra pars reticulata in conscious cats, J. Physiol. (London) 347:129–147.

    Google Scholar 

  • Seeman, P., Westman, K., Coscina, D., and Marsh, J. J., 1980, Serotonin receptors in hippocampus and frontal cortex, Eur. J. Pharmacal. 66:179–191.

    Google Scholar 

  • Segal, M., and Bloom, F., 1974, The action of norepinephrine in the rat hippocampus, I. Iontophoretic studiesBrain Res. 72:79–97.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., and Bloom, F., 1987a, The action of norepinephrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake ratBrain Res. 107:499–511.

    Article  Google Scholar 

  • Segal, M., and Bloom, F., 1976b, The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activityBrain Res. 107:513–525.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., and Landis, S. C., 1974, Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidaseBrain Res. 78:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Seiger, A., and Olson, L., 1973, Late prenatal ontogeny of central monoamine neurons in the rat:Fluorescence histochemical observations, Z. Anat. Entwicklungsgesch. 140:281–318.

    Article  PubMed  CAS  Google Scholar 

  • Selemon, L. D., and Goldman-Rakic, P. S., 1985, Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkeyJ. Neurosci. 5:776–794.

    PubMed  CAS  Google Scholar 

  • Seroogy, K. B., Dangaran, K., Lin, S., Haycock, J., and Fallon, J. H., 1987a, Innervation of forebrain structures by ventral mesencephalic neurons containing both CCK and TH-like immunoreactivity, Brain Res. in press

    Google Scholar 

  • Seroogy, K. B., Mehta, A., and Fallon, J. H., 1987b, Neurotensin and cholecystokinin coexist within neurons of the ventral mesencephalon and project to forebrain regions, J. Neurosci. in press

    Google Scholar 

  • Sette, M., Raisman, R., Briley, M., and Langer, S. Z., 1981, Localization of tricyclic antidepressant binding sites on serotonin nerve terminals, J. Neurochem. 37:40–42.

    Google Scholar 

  • Sharma, J. N., 1977, Microiontophoretic application of some monoamines and their antagonists to cortical neurons of the rat, Neuropharmacology 16:83–88.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, P. D., and Gorman, D. C., 1984, A subpopulation of mesocortical dopamine neurons possesses autoreceptors, Eur. J. Pharmacal. 98:555–566.

    Google Scholar 

  • Simon, H., Le Moal, M., Galey, D., and Carbo, B., 1976, Silver impregnation of dopaminergic systems after radio frequency and 6-OHDA lesions of the rat ventral tegmentumBrain Res. 115:215–231.

    Article  PubMed  CAS  Google Scholar 

  • Simon, H., Le Moal, M., and Calas, A., 1979, Efferents and afferents of the ventral tegmental—A 10 region studied after local injection of (3H) leucine and horseradish peroxidaseBrain Res. 178:17–40.

    Article  PubMed  CAS  Google Scholar 

  • Skirboll, L. R., Grace, A. A., Hommer, J., Rehfeld, J., Goldstein, M., Hökfelt, T., and Bunney, B. S., 1981, Peptide—monoamine co-existence: Studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons, Neuroscience 6:2111–2124

    Article  PubMed  CAS  Google Scholar 

  • Skofitsch, G., and Jacobowitz, D. M., 1985, Immunohistochemical mapping of galanin-like neurons in the rat central nervous system, Peptides 6:509–546.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, J. R., and Björklund, A., 1982, Monoamine transmitter histochemistry: A twenty year commemoratum, Brain Res. Bull. 9

    Google Scholar 

  • Slopsema, J. S., Van der Guten, J., and De Bruin, J., 1982, Regional concentration of noradrenaline and dopamine in the frontal cortex of the rat: Dopaminergic innervation of the prefrontal subareas and lateralization of prefrontal dopamine, Brain Res. 250:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B. S., and Millhouse, O. E., 1985, The connections between the basolateral and central amygdaloid nuclei, Neurosci. Lett. 56:307–309.

    Article  PubMed  CAS  Google Scholar 

  • Smith, O. A., and DeVito, J. L., 1984, Central neural integration for the control of autonomic responses associated with emotion, Annu. Rev. Neurosci. 7:43–65.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Bolan, J. P., and Smith, A. D., 1981, Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons: A light and electron microscopic study using the Golgi—peroxidase transport degeneration procedure, J. Comp. Neurol. 195:567–584.

    Article  PubMed  CAS  Google Scholar 

  • Starr, M. S., 1985, Multiple opiate receptors may be involved in suppressing gamma-aminobutyrate release in substantia nigraLife Sci. 37:2249–2255.

    Article  PubMed  CAS  Google Scholar 

  • Stein, L., 1978, Reward transmitters: Catecholamines and opioid peptides, in:Psychopharmacology: A Generation of Progress (M.Lipton, A. DiMascio, and K. Killam, eds.), Raven Press, New York, pp. 569–581

    Google Scholar 

  • Steinbusch, H. W. M., 1981, Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals, Neuroscience 6:557–618.

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch, H. W. M., Nieuwenhuys, R., 1983, The raphe nuclei of the rat brainstem: A cytoarchitectonic and immunohistochemical study, in:Chemical Neuroanatomy (P. C. Emson, ed.), Raven Press, New York, pp. 131–207

    Google Scholar 

  • Steinbusch, H. W. M., Verhofstad, A. A. J., and Joosten, H. W. J., 1978, Localization of serotonin in central nervous system by immunohistochemistry: Description of a specific and sensitive technique and some applications, Neuroscience 3:811–819.

    Article  PubMed  CAS  Google Scholar 

  • Steindler, D. A., 1981, Locus coeruleus neurons have axons that branch to the forebrain and cerebellum, Brain Res. 223:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, J. R., 1983, The raphe nuclei of the rat brainstem: A cytoarchitectonic and immunohistochemical study, in:Chemical Neuroanatomy (P. C. Emson, ed.), Raven Press, New York, pp. 131–207

    Google Scholar 

  • Stockmeier, C. A., Martin, A. M., and Kellar, K. J., 1985, A strong influence of serotonin axons on β-adrenergic receptors in rat brainScience 230:323–325.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., and Guldberg, H., 1974, 5-Hydroxytryptamine and noradrenaline in the hippocampal region, J. Neurochem. 22:793–803.

    Article  PubMed  CAS  Google Scholar 

  • Studler, J. M., Simon, H., Cesselin, F., Legrand, J. C., Glowinski, J., and Tassin, J. P., 1981, Biochemical investigation in the localization of the cholecystokinin octapeptide in dopaminergic neurons originating from the ventral tegmental area of the rat, Neuropeptides 2:131–139.

    Article  CAS  Google Scholar 

  • Swanson, L. W., 1976, The locus coeruleus: A cytoarchitectonic Golgi and immunohistochemical study in the albino ratBrain Res. 110:39–56.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., 1982, The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the ratBrain Res. Bull. 9:321–353.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1975, A note on the connections and development of the nucleus accumbensBrain Res. 92:324–330.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Sawchenko, P. E., 1983, Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei, Annu. Rev. Neurosci. 6:269–324.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Sawchenko, P. E., Rivier, J., and Vale, W. W., 1983, Organization of ovine corticotropin releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study, Neuroendocrinology 36:165–186.

    Article  PubMed  CAS  Google Scholar 

  • Switzer, R. C., Hill, J., and Heimer, L., 1982, The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat: A cyto- and chemoarchitectural study, Neuroscience 7:1891–1904.

    Article  PubMed  CAS  Google Scholar 

  • Taber, E., Brodal, A., and Walberg, F., 1960, The raphe nuclei of the brain stem in the cat. I. Normal topography and cytoarchitecture and general discussion, J. Comp. Neurol. 114:161–187.

    Article  PubMed  CAS  Google Scholar 

  • Tagliamonte, A., DeMontis, G., and Olianas, M., 1975, Selective increase of brain dopamine synthesis by sulpiride, J. Neurochem. 24:707–710.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., and Sano, Y., 1983, Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata), Anat. Embiyol. 166:155–168.

    Article  CAS  Google Scholar 

  • Tassin, J. P., Thierry, A. M., Blanc, G., and Glowinski, J., 1974, Evidence for a specific uptake of dopamine by dopaminergic terminals of the rat cerebral cortex, Naunyn Schmiedebergs Arch. Pharmacol. 282:239–244.

    Article  PubMed  CAS  Google Scholar 

  • Tassin, J. P., Velley, L., Stinus, L., Blanc, G., Glowinski, J., and Thierry, A. M., 1975, Development of cortical and nigro-neostriatal dopaminergic systems after destruction of central noradrenergic neurons in fetal or neonatal ratsBrain Res. 83:93–106.

    Article  CAS  Google Scholar 

  • Tassin, J. P., Stinus, L., Simon, H., Blanc, G., Thierry, A. M., Le Moral, M., Cardo, B., and Glowinski, J., 1977, Distribution of dopaminergic terminals in rat cerebral cortex:Role of dopaminergic mesocortical system in ventral temental area syndrome, Adv. Biochem. Psychopharmacol. 16:21–28.

    PubMed  CAS  Google Scholar 

  • Tassin, J. P., Lavielle, S., Herve, D., Blanc, G., Thierry, A. M., Alvarez, C., Berger, B., and Glowinski, J., 1979, Collateral sprouting and reduced activity of the rat mesocortical dopaminergic neurons after selective destruction of the ascending noradrenergic bundles, Neuroscience 4:1569–1582.

    Article  PubMed  CAS  Google Scholar 

  • Tassin, J. P., Simon, H., Herve, D., Blanc, G., Le Moal, M., Glowinski, J., and Bockaert, J., 1982, Non-dopaminergic fibers may regulate dopamine-sensitive adenylate cyclase in the prefrontal cortex and nucleus accumbens, Nature 295:696–698.

    Article  PubMed  CAS  Google Scholar 

  • Tassin, J. P., Studler, J. M., Herve, D., Blanc, G., and Glowinski, J., 1986, Contribution of noradrenergic neurons to the regulation of dopaminergic (DI) receptor denervation supersensitivity in rat prefrontal cortex, J. Neurochem. 46:243–248.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A. M., Stinus, L., Blanc, G., and Glowinski, J., 1973, Some evidence for the existence of dopaminergic neurons in the rat cortexBrain Res. 50:230–234.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A. M., Hirsch, J. C., Tassin, J. P., Blanc, G., and Glowinski, J., 1974, Presence of dopaminergic terminals and absence of dopaminergic cell bodies in the cerebral cortex of the catBrain Res. 79:77–88.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A. M., Tassin, J. P., Blanc, G., and Glowinski, J., 1976, Selective activation of the mesocortical DA system by stress, Nature 263:242–244.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A. M., Deniau, J. M., Herve, D., and Chevalier, G., 1980, Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the ratBrain Res. 201:210–214.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A. M., Tassin, J. P., and Glowinski, J., 1984, Biochemical and electrophysiological studies of the mesocortical dopamine system, in:Monoamine Innervation of Central Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 233–261

    Google Scholar 

  • Tork, I., and Turner, S., 1981, Histochemical evidence for a catecholaminergic (presumably dopaminergic) projection from the ventral mesencephalic tegmentum to visual cortex in the cat, Neurosci. Lett. 24:215–219.

    Article  PubMed  CAS  Google Scholar 

  • Twarog, B. M., and Page, I. H., 1953, Serotonin content of some mammalian tissues and urine, Am. J. Physiol. 175:157–161.

    PubMed  CAS  Google Scholar 

  • Uhl, G. R., Goodman, R. R., and Snyder, S., 1979, Neurotensin-containing cell bodies, fibers and ner e terminals in teh brainstem of the rat: Immunohistochemical mapping, Brain Res. 167:77–91

    Article  PubMed  Google Scholar 

  • Ungerstedt U., 1971, Stereotaxic mapping of the monoamine pathways of the rat brain, Acta Physiol. Scand. Suppl. 367:1–49.

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1974, Brain dopamine neurones and behavior, in:The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, Mass. pp. 695–705

    Google Scholar 

  • Vaccarino, F. J., and Franklin, K. B. J., 1982, Self-stimulation and circling reveal functional differences between medial and lateral substantia nigra, Behav. Brain Res. 5:281–295.

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino, F. J., and Koob, G. F., 1984, Microinjections of nanogram amounts of sulfated CCK-8 into the rat nucleus accumbens attenuates brain stimulation reward, Neurosci. Lett. 52:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino, F. J., and Prupas, D., 1985, The role of the midbrain reticular formation in the expression of two opposing nigral denervation syndromes, Physiol. Behav. 35:749–752.

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino, F. J., Franklin, K. B., Prupas, D., 1985, Opposite locomotor asymmetries elicited from the medial and lateral substantia nigra:Role of the superior colliculus, Physiol. Behav. 35:741–747.

    Article  PubMed  CAS  Google Scholar 

  • van den Pol, A. N., Smith, A. D., and Powell, J. F., 1985, GABA axons in synaptic contact with dopamine neurons in the substantia nigra: Double immunochemistry with biotin—peroxidase and protein A—colloidal goldBrain Res. 348:146–154.

    Article  PubMed  CAS  Google Scholar 

  • van der Kooy, D., 1983, Developmental relationships between opiate receptors and dopamine information of caudate—putamen patches, Soc. Neurosci. Abstr. 9:659.

    Google Scholar 

  • van der Kooy, D., and Hattori, T., 1980, Bilaterally situated dorsal raphe cell bodies have only unilateral forebrain projections in ratBrain Res. 192:550–554.

    Article  PubMed  CAS  Google Scholar 

  • van der Kooy, D., and Kuypers, H. G. J. M., 1979, Fluorescent retrograde double labeling: Axonal branching in the ascending raphe and nigral projectionsScience 204:873–875.

    Article  PubMed  CAS  Google Scholar 

  • van der Kooy, D., Coscina, D. V., and Hattori, T., 1981, Is there a non-dopaminergic nigrostriatal pathway?, Neuroscience 6:345–357.

    Article  PubMed  CAS  Google Scholar 

  • Van der Maelen, C P., and Aghajanian, G. K., 1980, Intracellular studies showing modulation of facial motorneurons excitability by serotonin, Nature 287:346–347

    Article  Google Scholar 

  • Van Dengen, P., 1981, The central norepinephrine transmission and the locus coeruleus: A review of the data, Prog. Neurobiol.16:117–143.

    Article  Google Scholar 

  • Versteeg, D., Van der Gugten, J., De Jong, W., and Palkovits, M., 1976, Regional concentrations of noradrenaline and dopamine in the rat brain. Brain Res. 113:563–574

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S. R., Johansson, O., Hökfelt, T., Skirboll, L., Elde, R. P., Terenius, L., Kimmel, J., and Goldstein, M., 1983, NADPH diaphorase: A histochemical selective marker for striatal neurons containing both somatostatin and avian pancreatic polypeptide (AP) like immunoreactivities, J. Comp. Neurol. 217:252–263

    Article  PubMed  CAS  Google Scholar 

  • Von Hungen, K., Roberts, S., and Hill, D. F., 1974, LSD as an agonist and antagonist at central dopamine receptors, Nature 252:588–589.

    Article  Google Scholar 

  • Wamsley, J. K., 1984a, Autoradiographic localization of receptor sites in the cerebral cortex, in:Cerebral Cortex Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 173–202

    Google Scholar 

  • Wamsley J., 1984b, Autoradiographic localization of cortical biogenic amine receptors, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. Reader, and H. Jasper, eds.), Liss, New York, pp. 153–174.

    Google Scholar 

  • Wamsley, J. K., Palacios, J. M., Young, W. S., and Kuhar, M. J., 1981, Autoradiographic determination of neurotransmitter receptor distributions in the cerebral and cerebellar cortices, J. Histochem. Cytochem. 29:125–135.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., 1981, Dopaminergic neurons in the rat ventral tegmental area. III. Effects of d and l-amphetamine, Brain Res. Rev. 3:153–165.

    Article  CAS  Google Scholar 

  • Warembourg, M., 1981, Localization of steroid receptors in the amygdaloid complex, in: The Amygdaloid Complex (Y. Ben-Ari, ed.), Elsevier, Amsterdam, pp. 203–208.

    Google Scholar 

  • Wassef, M., Berod, A., and Sotelo, C., 1981, Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input: Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration, Neuroscience6:2125–2139.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse, B. D., and Woodward, D. J., 1980, Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the ratExp. Neurol. 67:11–34.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse, B. D., Lin, C. S., Burne, R. A., and Woodward, D. J., 1983, The distribution of neocortical projection neurons in the locus coeruleus, J. Comp. Neurol. 217:418–431.

    Article  PubMed  CAS  Google Scholar 

  • White, F. J., and Wang, R. Y., 1984, Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neuronsBrain Res. 300:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Widerlov, E., and Breese, G. R., 1982, Actions of neurotensin on dopaminergic and serotonergic pathways in rat brain, Proc. N.Y. Acad. Sci. 77:428–430.

    Article  Google Scholar 

  • Wiklund, L., Leger, L., and Persson M., 1980, Monoamine cell distribution in the cat brain stem: A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups, J. Comp. Neurol. 203:613–647

    Article  Google Scholar 

  • Williams, M. N., and Faull, R. L., 1985, The striatonigral projection and nigrostriatal neurons in the rat: A correlated light and electron microscopic study demonstrating a monosynaptic striatal input to identified nigrotectal neurons using a combined degeneration and horseradish peroxidase procedure, Neuroscience 14:991–1010.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. J ., and Phelan, K. D., 1982, Dual topographic representation of neostriatum in the globus pallid us of rats, Brain Res. 243:354–359.

    Article  PubMed  CAS  Google Scholar 

  • Wise, S. P., and Strick, P. L., 1984, Anatomical and physiological organization of the nonprimary motor cortex, Trends Neurosci. 7:442–446.

    Article  Google Scholar 

  • Wolf, M. E., Galloway, M. P., and Roth, R. H., 1986, Regulation of dopamine synthesis in the medial prefrontal cortex: Studies in brain slices, J. Pharmacol. Exp. Ther. 236:699–707.

    PubMed  CAS  Google Scholar 

  • Wyss, J. M., Swanson, L. W., and Cowan, W. M., 1979, A study of subcortical afferents to the hippocampal formation in the rat, Neuroscience 4:463–476.

    Article  PubMed  CAS  Google Scholar 

  • Yahr. M. R. (ed.). 1976, The Basal GangliaRaven Press, New York

    Google Scholar 

  • Yarbrough, G., and Lake, N., 1973, The role of calcium in monamine induced depression of cerebral cortical neuronesLife Sci. 13:703–711.

    Article  CAS  Google Scholar 

  • Yarbrough, G. G., Lake, N., and Phillis, J. W., 1974, Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neuronesBrain Res. 67:77–88.

    Article  PubMed  CAS  Google Scholar 

  • Yeterian, E. H., and van Hoesen, G. W., 1978, Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections, Brain Res. 67:77–88

    Google Scholar 

  • Young, W. S., and Kuhar, M. J., 1980a, Noradrenergic, alpha1 and alpha2 receptors:Light microscopic autoradiographic localization, Proc. Natl. Acad. Sci. USA 77:1696–1700.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S., and Kuhar, M. J., 1980b, Serotonin receptor localization in rat brain by light microscopic autoradiography, Eur. J. Pharmacol. 62:237–239.

    Article  PubMed  CAS  Google Scholar 

  • Zornetzer, S., Abraham, W., and Appleton, R., 1978, Locus coeruleus and labile memory, Pharmacol. Biochem. Behav. 9:227–234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1932 Julius Springer in Vienna

About this chapter

Cite this chapter

Fallon, J.H., Loughlin, S.E. (1932). Monoamine Innervation of Cerebral Cortex and a Theory of the Role of Monoamines in Cerebral Cortex and Basal Ganglia. In: Jones, E.G., Peters, A. (eds) Cerebral Cortex. Cerebral Cortex, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6616-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6616-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6618-2

  • Online ISBN: 978-1-4615-6616-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics