Skip to main content

Behavioral Rhythms in Invertebrates

  • Chapter
Biological Rhythms

Abstract

Two divergent approaches have been followed in research on the rhythmicity of behavior. One has been followed by physiologists, who have measured behavior simply as an easy means of inferring the phase of the underlying driving oscillator. The other has been followed by experimental behaviorists, who have found themselves inconvenienced by diel changes in the responsiveness of their subjects. The former have had much interest in circadian processes, but little in the integration of behavior; the latter have had much interest in behavior, but little in the nature of circadian control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allemand, R. Influence de l’intensité d’éclairement sur l’expression du rythme journalier d’oviposition de Drosophila melanogaster en conditions lumineuses LD 12:12. Compte Rendu Hebdomadaire des Séances de l’Académie des Sciences. Paris. 1977, Ser. D, 284, 1553–1556.

    Google Scholar 

  • Arbit, J. Diurnal cycles and learning in earthworms. Science, 1957, 126, 654–655.

    Article  Google Scholar 

  • Aréchiga, H., and Fuentes, B. Correlative changes between retinal shielding pigments position and electro-retinogram in crayfish. The Physiologist, 1970, 13, 137.

    Google Scholar 

  • Aréchiga, H., Huberman, A., and Naylor, E. Hormonal modulation of circadian neural activity in Carcinus maenas (L.). Proceedings of the Royal Society of London, 1974, B. 187, 229–313.

    Google Scholar 

  • Aschoff, J. Exogenous and endogenous components in circadian rhythms. In Biological ClocksCold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 11–28.

    Article  Google Scholar 

  • Aschoff, J., Giedke, H., Poppel, E., and Wever, R. The influence of sleep-interruption and sleep-deprivation on circadian rhythms in human performance. In W. P. Colquhoun (Ed.), Aspects of Human Efficiency Diurnal Rhythm and Loss of Sleep. London: English Universities Press, 1972, pp. 135–150.

    Google Scholar 

  • Bagnoli, P., Brunelli, N., Magni, F., and Musumeci, D. Neural mechanisms underlying spontaneous flashing and its modulation in the firefly Luciola lusitanica. Journal of Comparative Physiology, 1976, 108, 133–156.

    Article  Google Scholar 

  • Bartell, R. J., and Shorey, H. H. A quantitative bioassay for the sex pheromone of Epiphyaspostvittana (Lepidoptera) and factors limiting male responsiveness. Journal of Insect Physiology, 1969, 15, 33–40.

    Article  Google Scholar 

  • Bates, M. Laboratory observations on the sexual behavior of anopheline mosquitoes. Journal of Experimental Zoology, 1941, 86, 153–173.

    Article  Google Scholar 

  • Batham, E. J., and Pantin, C. F. A. Phases of activity in the sea-anemone Metridium senile L. and their relation to external stimuli. Journal of Experimental Biology, 1950, 27, 377–399.

    Google Scholar 

  • Batiste, W. C., Olson, W. H., and Berlowitz, A. Codling moth: Influence of temperature and daylight intensity on periodicity of daily flight in the field. Journal of Economic Entomology, 1973, 66, 883–892.

    Google Scholar 

  • Behrens, M. Photomechanical changes in the ommatidia of the Limulus lateral eye during light and dark adaptation. Journal of Comparative Physiology, 1974, 89, 45–57.

    Article  Google Scholar 

  • Beier, W., and Lindauer, M. Der Sonnenstand als Zeitgeber für die Biene. Apidologie, 1970, 1, 5–28.

    Article  Google Scholar 

  • Bennett, M. F., and Reinschmidt, D. C. The diurnal cycle and locomotion in earthworms. Zeitschrift für Ver-gleichende Physiologie, 1965, 51, 224–226.

    Article  Google Scholar 

  • Birukow, G. Innate types of chronometry in insect orientation. In Biological ClocksCold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 403–412.

    Article  Google Scholar 

  • Birukow, G. Aktivitäts- und Orientierungsrhythmik beim Kornkäfer (Calandra granaria L.). Zeisehrift für Tierpsychologie, 1964, 21, 279–301.

    Article  Google Scholar 

  • Blest, A. D. The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: The daily cycle. Proceedings of the Royal Society of London, 1978, B. 200, 463–483.

    Article  Google Scholar 

  • Brady, J. Spontaneous, circadian components of tsetse fly activity. Journal of Insect Physiology, 1972a, 18, 471–484.

    Article  Google Scholar 

  • Brady, J. The visual responsiveness of the tsetse fly Glossina morsitans Westw. (Glossinidae) to moving objects: The effects of hunger, sex, host odour and stimulus characteristics. Bulletin of Entomological Research, 1972b, 62, 257–279.

    Article  Google Scholar 

  • Brady, J. The physiology of insect circadian rhythms. Advances in Insect Physiology, 1974, 10, 1–115.

    Article  Google Scholar 

  • Brady, J. Circadian changes in central excitability—The origin of behavioural rhythms in tsetse flies and other animals? Journal of Entomology (A), 1975, 50, 79–95.

    Google Scholar 

  • Brady, J. Biological Clocks (Studies in Biology, No. 104). London: Edward Arnold, 1979.

    Google Scholar 

  • Brady, J., and Crump, A. J. The control of circadian activity rhythms in tsetse flies: Environment or physiological clock? Physiological Entomology, 1978, 3, 177–190.

    Article  Google Scholar 

  • Bregazzi, P. K., and Naylor, E. The locomotor activity rhythm of Talitrus saltator (Montagu) (Crustacea, Amphipoda). Journal of Experimental Biology, 1972, 57, 375–391.

    Google Scholar 

  • Brinkmann, K. Metabolic control of temperature compensation in the circadian rhythm of Euglena gracilis. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 567–593.

    Google Scholar 

  • Buck, J. B. Studies on the firefly. I. The effects of light and other agents on flashing in Photinus pyralis, with special reference to periodicity and diurnal rhythm. Physiological Zoölogy, 1937, 10, 45–58.

    Google Scholar 

  • Caldwell, R. L., and Rankin, M. A. Separation of migratory from feeding and reproductive behavior in Oncopeltus fasciatus. Journal of Comparative Physiology, 1974, 88, 383–394.

    Article  Google Scholar 

  • Campan, R., Lacoste, G., and Morvan, R. Le rhythme journalier de l’orientation scototactique chez le grillon des bois Nemobius sylvestris (Bosc): Approche de la signification biologique. Monitore Zoologico Italiano (W.S.J, 1975, 9, 119–136.

    Google Scholar 

  • Cardé, R. T., Comeau, A., Baker, T. C., and Roelofs, W. L. Moth mating periodicity: Temperature regulates the circadian gate. Experientia, 1975, 31, 46–48.

    Article  Google Scholar 

  • Charlwood, J. D., and Jones, M. D. R. Mating behaviour in the mosquito, Anopheles gambiae s.l. I. Close range and contact behaviour. Physiological Entomology, 1979, 4, 111–120.

    Article  Google Scholar 

  • Cloudsley-Thompson, J. L. Entrainment of the “circadian clock” in Buthotus minax (Scorpiones: Buthidae). Journal of Interdisciplinary Cycle Research, 1973, 4, 119–123.

    Article  Google Scholar 

  • Doube, B. M. Regulation of the circadian rhythm of detachment of engorged larvae and nymphs of the argasid kangaroo tick, Ornithodoros gurneyi. Journal of Medical Entomology, 1975, 12, 15–22.

    Google Scholar 

  • Dreisig, H. Environmental control of the daily onset of luminescent activity in glowworms and fireflies. Oecologia, 1975, 18, 85–99.

    Google Scholar 

  • Dreisig, H. The circadian rhythm of bioluminescence in the glowworm, Lampyris noctiluca L. (Coleoptera, Lampyridae). Behavioral Ecology and Sociobiology, 1978, 3, 1–18.

    Article  Google Scholar 

  • Dumortier, B. Photoreception in the circadian rhythm of stridulatory activity in Ephippiger (Ins., Orthoptera). Journal of Comparative Physiology, 1972, 77, 80–112.

    Article  Google Scholar 

  • Dürrwächter, G. Untersuchungen über Phototaxis und Geotaxis einiger Drosophila-Mutanten nach Aufzucht in verschiedenen Lichtbedingungen. Zeitschrift für Tierpsychologie, 1957, 14, 1–28.

    Article  Google Scholar 

  • Edwards, D. K. Activity rhythms of lepidopterous defoliators. II. Halisidota argentata Pack. (Arctiidae), and Nepytia phantasmaria Stkr. (Geometridae). Canadian Journal of Zoology, 1964, 42, 939–958.

    Article  Google Scholar 

  • Enright, J. T. When the beachhopper looks at the moon: The moon-compass hypothesis. In S. R. Galler, K. Schmidt-Koenig, G. J. Jacobs, and R. E. Belleville (Eds.), Animal Orientation and Navigation. Washington, D.C.: National Aeronautics and Space Administration, 1972, pp. 523–555.

    Google Scholar 

  • Enright, J. T. Plasticity in an isopod’s clockworks: Shaking shapes form and affects phase and frequency. Journal of Comparative Physiology, 1976, 107, 13–37.

    Article  Google Scholar 

  • Enright, J. T., and Hamner, W. M. Vertical diurnal migration and endogenous rhythmicity. Science, 1967, 157, 937–941.

    Article  Google Scholar 

  • Fatzinger, C. W. Circadian rhythmicity of sex pheromone release by Dioryctria abietella (Lepidoptera: Pyr-alidae (Phycitinae)) and the effect of a diel light cycle on its precopulatory behavior. Annals of the Entomological Society of America, 1973, 66, 1147–1154.

    Google Scholar 

  • Feldman, J. F., and Bruce, V. G. Circadian rhythm changes in autotrophic Euglena induced by organic carbon sources. Journal of Protozoology, 1972, 19, 370–373.

    Google Scholar 

  • Fleissner, G. Entrainment of the scorpion’s circadian rhythm via the median eyes. Journal of Comparative Physiology, 1977, 118, 91–99.

    Google Scholar 

  • Fowler, D. J., and Goodnight, C. J. Physiological populations of the arachnid, Leiobunum longipes (Opiliones: Phalangiidae). Systematic Zoology, 1974, 23, 219–225.

    Article  Google Scholar 

  • Gilhodes, J.-C. Étude du rythme d’activité locomotrice de Callipus foetidissimus Bröl (Diplopode) en libre cours. Revue du Comportement Animal, 1974, 8, 63–70.

    Google Scholar 

  • Gillett, J. D., Corbet, P. S., and Haddow, A. J. Observations on the oviposition-cycle of Aedes (Stegomyia) aegypti (Linnaeus). VI. Annals of Tropical Medicine and Parasitology, 1961, 55, 427–431.

    Google Scholar 

  • Gillies, M. T. The duration of the gonotrophic cycle in Anopheles gambiae and Anopheles fune stus, with a note on the efficiency of hand catching. East African Medical Journal, 1953, 30, 129–135.

    Google Scholar 

  • Gould, J. L. Honey bee recruitment: The dance-language controversy. Science, 1975, 189, 685–693.

    Article  Google Scholar 

  • Haddow, A. J., and Ssenkubuge, Y. Laboratory observations on the oviposition-cycle in the mosquito Anopheles (Cellia) gambiae Giles. Annals of Tropical Medicine and Parasitology, 1962, 56, 352–355.

    Google Scholar 

  • Hall, M. J. Circadian rhythm of proboscis extension responsiveness in the blowfly: Central control of threshold changes. Physiological Entomology, 1980, 5, 223–233.

    Article  Google Scholar 

  • Hammack, L., and Burkholder, W. E. Circadian rhythm of sex pheromone-releasing behaviour in females of the dermestid beetle, Trogoderma glabrum: Regulation by photoperiod. Journal of Insect Physiology, 1976, 22, 385–388.

    Article  Google Scholar 

  • Hauenschild, C., Fischer, A., and Hofmann, D. K. Untersuchungen am pazifischen Palolowurm Eunice viridis (Polychaeta) in Samoa. Helgolander Wissenschaftliche Meeresuntersuchungen, 1968, 18, 254–295.

    Article  Google Scholar 

  • Hawking, F., Gammage, K., and Worms, M. J. The periodicity of microfilariae. X. The relation between the circadian temperature cycle of monkeys and the microfilarial cycle. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1965, 59, 675–680.

    Article  Google Scholar 

  • Hunter, D. M. Eclosion and oviposition rhythms in Simulium ornatipes (Diptera: Simuliidae). Journal of the Australian Entomological Society, 1977, 16, 215–220.

    Article  Google Scholar 

  • Jahn, T. L., and Wulff, V. J. Electrical aspects of a diurnal rhythm in the eye of Dytiscus fasciventris. Physiological Zoölogy, 1943, 16, 101–109.

    Google Scholar 

  • Jones, M. D. R., and Gubbins, S. J. Changes in the circadian flight activity of the mosquito Anopheles gambiae in relation to insemination, feeding and oviposition. Physiological Entomology, 1978, 3, 213–220.

    Article  Google Scholar 

  • Jones, M. D. R., and Reiter, P. Entrainment of the pupation and adult activity rhythms during development in the mosquito Anopheles gambiae. Nature (London), 1975, 254, 242–244.

    Article  Google Scholar 

  • Karakashian, M. W. The circadian rhythm of sexual reactivity in Paramecium aurelia, Syngen 3. In J. Aschoff (Ed.), Circadian Clocks. Amsterdam: North-Holland, 1965, pp. 301–304.

    Google Scholar 

  • Keeble, F. Plant Animals. Cambridge: Cambridge University Press, 1910.

    Google Scholar 

  • Klapow, L. A. Fortnightly molting and reproductive cycles in the sand-beach isopod, Excirolana chiltoni. Biological Bulletin, 1972, 143, 568–591.

    Article  Google Scholar 

  • Koltermann, R. Periodicity in the activity and learning performance of the honeybee. In L. Barton Browne (Ed.), Experimental Analysis of Insect Behaviour. Berlin: Springer-Verlag, 1974, pp. 218–227.

    Chapter  Google Scholar 

  • Lickey, M. E., Block, G. D., Hudson, D. J., and Smith, J. T. Circadian oscillators and photoreceptors in the gastropod, Aplysia. Photochemistry and Photobiology, 1976, 23, 253–273

    Article  Google Scholar 

  • Lipton, G. R., and Sutherland, D. J. Feeding rhythms in the American cockroach, Periplaneta americana. Journal of Insect Physiology, 1970, 16, 1757–1767.

    Article  Google Scholar 

  • Loher, W., and Chandrashekaran, M. K. Circadian rhythmicity in the oviposition of the grasshopper Chorthippus curtipennis. Journal of Insect Physiology, 1970, 16, 1677–1688.

    Article  Google Scholar 

  • Lohmann, M. Zur Bedeutung der lokomotorischen Aktivität in circadianen Systemen. Zeitschrift für Vergleichende Physiologie, 1967, 55, 307–332.

    Article  Google Scholar 

  • Martin, L. La mémoire chez Convoluta roscoffensis. Compte Rendu Hebdomadaire des Séances de l’Académie des Sciences. Paris, 1907, 145, 555–557.

    Google Scholar 

  • McCluskey, E. S., and Carter, C. E. Loss of rhythmic activity in female ants caused by mating. Comparative Biochemistry and Physiology, 1969, 31, 217–226.

    Article  Google Scholar 

  • Meyer-Rochow, V. B., and Horridge, G. A. The eye of Anoplognathus (Coleoptera, Scarabaeidae). Proceedings of the Royal Society of London, 1975, B. 188, 1–30.

    Article  Google Scholar 

  • Minis, D. H. Parallel peculiarities in the entrainment of a circadian rhythm and photoperiodic induction in the pink boll worm (Pectinophora gossypiella). In J. Aschoff (Ed.), Circadian Clocks. Amsterdam: North-Holland, 1965, pp. 333–343.

    Google Scholar 

  • Minis, D. H., and Pittendrigh, C. S. Circadian oscillation controlling hatching: Its ontogeny during embryo-genesis of a moth. Science, 1968, 159, 534–536.

    Article  Google Scholar 

  • Mori, S. Influence of environmental and physiological factors on the daily rhythmic activity of a sea-pen. In Biological ClocksCold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 333–344.

    Article  Google Scholar 

  • Morton, B. The tidal rhythm and rhythm of feeding and digestion in Cardium edule. Journal of the Marine Biological Association of the United Kingdom, 1970, 50, 488–512.

    Article  Google Scholar 

  • Nayar, J. K. The pupation rhythm in Aedes taeniorhynchus (Diptera: Culicidae). II. Ontogenetic timing, rate of development, and endogenous diurnal rhythm of pupation. Annals of the Entomological Society of America. 1967, 60, 946–971.

    Google Scholar 

  • Nayar, J. K., Samarawickrema, W. A., and Sauerman, D. M., Jr. Photoperiodic control of egg hatching in the mosquito Mansonia titillans. Annals of the Entomological Society of America, 1973, 66, 831–835.

    Google Scholar 

  • Neumann, D. Adaptations of chironomids to intertidal environments. Annual Review of Entomology, 1976, 21, 387–414.

    Article  Google Scholar 

  • Nielsen, E. T. Activity patterns of Eugaster (Orthoptera: Ensifera). Entomologia Experimentalis et Applicata, 1974, 17, 325–347.

    Article  Google Scholar 

  • Ollason, J. C., and Slater, P. J. B. Changes in the behaviour of the male zebra finch during a 12-hr day. Animal Behaviour, 1973, 21, 191–196.

    Article  Google Scholar 

  • Palmer, J. D. A persistent, light-preference rhythm in the fiddler crab, Uca pugnax, and its possible adaptive significance. American Naturalist, 1964, 98, 431–434.

    Article  Google Scholar 

  • Palmer, J. D. Tidal rhythms: The clock control of the rhythmic physiology of marine organisms. Biological Reviews, 1973, 48, 377–418.

    Article  Google Scholar 

  • Palmer, J. D., and Round, F. E. Persistent, vertical-migration rhythms in benthic microflora. VI. The tidal and diurnal nature of the rhythm in the diatom Hantzschia virgata. Biological Bulletin, 1967, 132, 44–55.

    Article  Google Scholar 

  • Payne, T. L., Shorey, H. H., and Gaston, L. K. Sex pheromones of noctuid moths: Factors influencing antennal responsiveness in males of Trichoplusia ni. Journal of Insect Physiology, 1970, 16, 1043–1055.

    Article  Google Scholar 

  • Phelps, R. J., and Jackson, P. J. Factors influencing the moment of larviposition and eclosion in Glossina morsitans orientalis Vanderplank (Diptera: Muscidae). Journal of the Entomological Society of South Africa, 1971, 34, 145–157.

    Google Scholar 

  • Pittendrigh, C. S. The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clock. Zeitschrift für Pflanzenphysiologie, 1966, 54, 275–307.

    Google Scholar 

  • Pittendrigh, C. S., and Skopik, S. D. Circadian systems. V. The driving oscillation and the temporal sequence of development. Proceedings of the National Academy of Sciences, USA, 1970, 65, 500–507.

    Article  Google Scholar 

  • Polcik, B., Nowosielski, J. W., and Naegele, J. A. Daily rhythm of oviposition in the two-spotted spider mite. Journal of Economic Entomology, 1965, 58, 467–469.

    Google Scholar 

  • Rankin, M. A., Caldwell, R. L., and Dingle, H. An analysis of a circadian rhythm of oviposition in Oncopeltus fasciatus. Journal of Experimental Biology, 1972, 56, 353–359.

    Google Scholar 

  • Rao, K. P. Tidal rhythmicity of rate of water propulsion in Mytilus, and its modifiability by transplantation. Biological Bulletin, 1954, 106, 353–359.

    Article  Google Scholar 

  • Rensing, L. Tagesperiodik von Aktivität und Phototaxis bei Corixa punctata und Anticorixa sahlbergi. Zeitschrift für Vergleichende Physiologie, 1965, 50, 250–253.

    Google Scholar 

  • Riddiford, L. M. The role of hormones in the reproductive behavior of female wild silkmoths. In L. Barton Brown (Ed.), Experimental Analysis of Insect Behaviour. Berlin: Springer-Verlag, 1974, pp. 278–285.

    Chapter  Google Scholar 

  • Ringelberg, J., and Servaas, H. A circadian rhythm in Daphnia magna. Oecologia, 1971, 6, 289–292.

    Article  Google Scholar 

  • Roberts, S. K. Circadian rhythms in cockroaches—effects of optic lobe lesions. Journal of Comparative Physiology, 1974, 88, 21–30.

    Article  Google Scholar 

  • Saunders, D. S. Insect Clocks. Oxford: Pergamon Press, 1976.

    Google Scholar 

  • Schnabel, G. Der Einfluss von Licht auf die circadiane Rhythmik von Euglena gracilis bei Autotrophic und Mixotrophie. Planta, 1968, 81, 49–63.

    Article  Google Scholar 

  • Shorey, H. H., and Gaston, L. K. Sex pheromones of noctuid moths. V. Circadian rhythm of pheromone-responsiveness in males of Autographa californica, Heliothis virescens, Spodoptera exigua, and Trichoplu-sia ni (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1965, 58, 597–600.

    Google Scholar 

  • Sokolove, P. G. Locomotory and stridulatory circadian rhythms in the cricket, Teleogryllus commodus. Journal of Insect Physiology, 1975, 21, 537–558.

    Article  Google Scholar 

  • Sokolove, P. G., and Loher, W. Rôle of eyes, optic lobes, and pars intercerebralis in locomotory and stridulatory circadian rhythms of Teleogryllus commodus. Journal of Insect Physiology, 1975, 21, 785–799.

    Article  Google Scholar 

  • Sokolove, P. G., Beiswanger, C. M., Prior, D. J., and Gelperin, A. A circadian rhythm in the locomotor behaviour of the giant garden slug Limax maximus. Journal of Experimental Biology, 1977, 66, 47–64.

    Google Scholar 

  • Spangler, H. G. Role of light in altering the circadian oscillations of the honey bee. Annals of the Entomological Society of America, 1973, 66, 449–451.

    Google Scholar 

  • Stier, T. J. B. Diurnal changes in activities and geotropism in Thyone briareus. Biological Bulletin, 1933, 64, 326–332.

    Article  Google Scholar 

  • Sukumar, R. Learning behavior and changes in the levels of RNA during learning in grasshopper, Poecilocera picta. Behavioral Biology, 1975, 14, 343–351.

    Article  Google Scholar 

  • Traynier, R. M. M. Sexual behaviour of the Mediterranean flour moth, Anagasta kühniella: Some influences of age, photoperiod, and light intensity. Canadian Entomologist, 1970, 102, 534–540.

    Article  Google Scholar 

  • Treherne, J. E., Foster, W. A., Evans, P. D., and Ruscoe, C. N. E. Free-running activity rhythm in the natural environment. Nature (London) 1977, 269, 796–797.

    Article  Google Scholar 

  • Truman, J. W. Hour-glass behavior of the circadian clock controlling eclosion of the silkmoth Antheraea pernyi. Proceedings of the National Academy of Sciences, USA, 1971, 68, 595–599.

    Article  Google Scholar 

  • Truman, J. W. Temperature sensitive programming of the silkmoth flight clock: A mechanism for adapting to the seasons. Science, 1973, 182, 727–729.

    Article  Google Scholar 

  • Truman, J. W. Development and hormonal release of adult behavior patterns in silkmoths. Journal of Comparative Physiology, 1976, 107, 39–48.

    Article  Google Scholar 

  • Truman, J. W. Hormonal release of stereotyped motor programmes from the isolated nervous system of the cecropia silkmoth. Journal of Experimental Biology, 1978, 74, 151–173.

    Google Scholar 

  • Tsutsumi, C. Characteristics of the daily behavior and activity patterns of the adult housefly with special reference to time-keeping device. Japanese Journal of Medical Science and Biology, 1973, 26, 119–141.

    Google Scholar 

  • Tychsen, P. H. The effect of photoperiod on the circadian rhythm of mating responsiveness in the fruit fly, Dacus tryoni. Physiological Entomology, 1978, 3, 65–69.

    Article  Google Scholar 

  • Tychsen, P. H., and Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. Journal of Insect Physiology, 1971, 17, 2139–2156.

    Article  Google Scholar 

  • Vick, K. W., Drummond, P. C., and Coffelt, J. A. Trogoderma inclusum and T. glabrum: Effects of time of day on production of female pheromone, male responsiveness, and mating. Annals of the Entomological Society of America, 1973, 66, 1001–1004.

    Google Scholar 

  • Von Frisch, K. The Dance Language and Orientation of Bees. London: Staples, 1967.

    Google Scholar 

  • Wigglesworth, V. B. The Principles of Insect Physiology (7th ed.). London: Chapman and Hall, 1972.

    Google Scholar 

  • Wright, J. E., Kappus, K. D., and Venard, C. E. Swarming and mating behavior in laboratory colonies of Aedes triseriatus (Diptera: Culicidae). Annals of the Entomological Society of America, 1966, 59, 1110–1112.

    Google Scholar 

  • Zann, L. P. Relationships between intertidal zonation and circatidal rhythmicity in littoral gastropods. Marine Biology, 1973, 18, 243–250.

    Article  Google Scholar 

  • Zimmerman, W. F., and Ives, D. Some photophysiological aspects of circadian rhythmicity in Drosophila. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 381–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Brady, J. (1981). Behavioral Rhythms in Invertebrates. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics