Skip to main content

Freerunning and Entrained Circadian Rhythms

  • Chapter

Abstract

Orcadian rhythms “freerun” in constant conditions like self-sustaining oscillations, and they can be synchronized (entrained) by periodic factors in the environment, the Zeitgebers. The period τ of the freerunning rhythm depends on the species, on the individual and its physiological state, on environmental conditions, and on the experimental history. Under conditions of entrainment, the rhythm keeps a distinct phase-relationship to the Zeitgeber. The record of locomotor activity of a pig-tailed macaque, Macaca nemestrina, reproduced in Figure 1, illustrates a few of the major principles. When exposed to a light-dark cycle (LD), the monkey is active during L, with onset of activity occurring shortly before light-on; in constant conditions (LL), the period is shorter than 24 hr and, on the average, somewhat shorter in 0.03 lux than in 0.1 lux; there is day-to-day variability of intervals between the onsets of activity around the mean τ that in itself changes slightly over time (especially in 0.03 lux); reentrainment by the Zeitgeber after Day 78 is accomplished by a series of delay transients. A more detailed discussion of those phenomena follows below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 11–28.

    Article  Google Scholar 

  • Aschoff, J. Circadian rhythms within and outside their ranges of entrainment. In I. Assenmacher and D. Farner (Eds.), Environmental Endocrinology. Berlin-Heidelberg-New York: Springer-Verlag, 1978a.

    Google Scholar 

  • Aschoff, J. Features of circadian rhythms relevant for the design of shift schedules. Ergonomics, 1978b 39, 739–754.

    Article  Google Scholar 

  • Aschoff, J. Problems of re-entrainment of circadian rhythms: Asymmetry effect, dissociation and partition. In I. Assenmacher and D. Farner (Eds.), Environmental Endocrinology. Berlin-Heidelberg-New York: Springer-Verlag, 1978c.

    Google Scholar 

  • Aschoff, J. Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrift für Tierpsychologie, 1979a, 49, 225–249.

    Article  Google Scholar 

  • Aschoff, J. Circadian rhythms: General features and endocrinological aspects. In D. Krieger (Ed.), Endocrine Rhythms. New York: Raven Press, 1979b.

    Google Scholar 

  • Aschoff, J., and Pohl, H. Phase relations between a circadian rhythm and its Zeitgeber within the range of entrainment. Naturwissenschaften, 1978, 65, 80–84.

    Article  Google Scholar 

  • Aschoff, J., and Wever, R. Circadian period and phase-angle difference in chaffinches (Fringilla coelebs L.). Comparative Biochemical Physiology, 1966, 18, 397–404.

    Article  Google Scholar 

  • Aschoff, J., Gerecke, U., Kureck, A., Pohl, H., Rieger, P., Saint Paul, U. von, and Wever, R. Interdependent parameters of circadian activity rhythms in birds and man. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971a.

    Google Scholar 

  • Aschoff, J., Saint Paul, U. von, and Wever, R. Die Lebensdauer von Fliegen unter dem Einfluss von Zeitverschiebungen. Naturwissenschaften, 1971b, 58, 574.

    Article  Google Scholar 

  • Aschoff, J., Hoffman, K., Pohl, H., and Wever, R. Re-entrainment of circadian rhythms after phase shifts of the Zeitgeber. Chronobiologia, 1975, 2, 23–78.

    Google Scholar 

  • Aschoff, J., Berthold, P., Gwinner, E., Pohl, H., and Saint Paul, U. von. Biological clocks in birds. Proceedings of the 17th International Congress of Ornithology, Berlin, 1979.

    Google Scholar 

  • Bovet, J., and Oertli, E. F. Free-running circadian activity rhythms in free-living beaver (Castor canadensis). Journal of Comparative Physiology, 1974, 92, 1–10.

    Article  Google Scholar 

  • Brinkmann, K. Metabolic control of temperature compensation in the circadian rhythm of Euglena gracilis. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971.

    Google Scholar 

  • Daan, S., Damassa, D., Pittendrigh, CS., and Smith, E. R. An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proceedings of the National Academy of Sciences, 1975, 72, 3744–3747.

    Article  Google Scholar 

  • Enright, J. T. Synchronization and ranges of entrainment. In J. Aschoff (Ed.), Circadian Clocks. Amsterdam: North-Holland Publishers, 1965.

    Google Scholar 

  • Eriksson, L. O. Free-running circadian rhythm hos bäckröding (Salvelinus fontinalis Mitchell) under naturliga ljusförhallanden. Fauno och Flora, 1972, 67, 233–234.

    Google Scholar 

  • Erkinaro, E. Der Verlauf desynchronisierter, circadianer Periodik einer Waldmaus (Apodemus flavicollis) in Nordfinnland. Zeitschrift für vergleichende Physiologie, 1969, 64, 407–410.

    Article  Google Scholar 

  • Eskin, A. Some properties of the system controlling the circadian activity rhythm of sparrows. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971.

    Google Scholar 

  • Gwinner, E. Entrainment of a circadian rhythm in birds by species-specific song cycles (Aves, Fringillidae: Carduelis spinus, Serinus serinus). Experientia, 1966, 22, 765.

    Article  Google Scholar 

  • Gwinner, E. Effects of season and external testosterone on the freerunning circadian activity rhythm of European starlings (Sturnus vulgaris). Journal of Comparative Physiology, 1975, 103, 314–328.

    Google Scholar 

  • Hayden, P., and Lindberg, R. G. Circadian rhythm in mammalian body temperature entrained by cyclic pressure changes. Science, 1969, 164, 1288–1289.

    Article  Google Scholar 

  • Hoffmann, K. Zum Einfluss der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik. Zeitschrift für vergleichende Physiologie, 1969, 62, 93–110.

    Article  Google Scholar 

  • Klotter, K. General properties of oscillating rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 185–187.

    Article  Google Scholar 

  • Lindberg, R. G., Gambino, J. J., and Hayden, P. Circadian periodicity of resistance to ionizing radiation in the pocket mouse. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971.

    Google Scholar 

  • Marimuthu, G., Subbaraj, R., and Chandrashekaran, M. K. Social synchronization of the activity rhythm in a cave-dwelling insectivorous bat. Naturwissenschaften, 1978, 65, 6000.

    Article  Google Scholar 

  • Menaker, M., and Eskin, A. Entrainment of circadian rhythms by sound in Passer domesticus. Science, 1966, 154, 1579–1581.

    Article  Google Scholar 

  • Morin, L. P., Fitzgerald, K. M., and Zucker, I. Estradiol shortens the period of hamster circadian rhythms. Science, 1977, 196, 305–306.

    Article  Google Scholar 

  • Page, T. L., and Block, G. D. Circadian rhythmicity in the cockroach: Effects of age, sex, and prior light history. Journal of Insect Physiology, 1980.

    Google Scholar 

  • Pittendrigh, C. S. On temperature independence in the clock controlling emergence time in Drosophila. Proceedings of the National Academy of Sciences, 1954, 40, 1018–1029.

    Article  Google Scholar 

  • Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 159–184.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Calderola, P. C. General homeostasis of the frequency of circadian oscillations. Pro-ceedings of the National Academy of Sciences, 1973, 70, 2697–2701.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. Circadian oscillations in rodents: A systematic increase of their frequency with age. Science, 1974, 186, 548–550.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology, 1976a, 106, 223–252.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemaker in nocturnal rodents. IV. Entrainment: Pacemaker as clock. Journal of Comparative Physiology, 1976b, 106, 291–331.

    Article  Google Scholar 

  • Pohl, H. Interaction of effects of light, temperature and season on the circadian period of Carduelis flammea. Naturwissenschaften, 1974 9, 406.

    Article  Google Scholar 

  • Saint Paul, U. von. Die Aktivitätsperiodik bei Vögeln mit und ohne dunklem Schlafkasten. Journal für Ornithologie, 1973, 114, 429–442.

    Article  Google Scholar 

  • Sulzman, F. M., Fuller, C. A., and Moore-Ede, M. C. Feeding time synchronizes primate circadian rhythms. Physiology and Behaviour, 1977, 18, 775–779.

    Article  Google Scholar 

  • Sweeney, B. M., and Hastings, J. W. Effects of temperature upon diurnal rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 87–104.

    Article  Google Scholar 

  • Turek, F. W., McMillan, J. P., and Menaker, M. Melatonin: Effects on the circadian locomotor rhythm of sparrows. Science, 1976, 194, 1441–1443.

    Article  Google Scholar 

  • Wever, R. Virtual synchronization towards the limits of the range of entrairtment. Journal of Theoretical Biology, 1972, 36, 119–132.

    Article  Google Scholar 

Additional recommended readings

  • Aschoff, J. (Ed.). Circadian Clocks. Amsterdam: North-Holland Publishing Company, 1965.

    Google Scholar 

  • Hastings, J. W., and Schweiger, H. G. (Eds.). The Molecular Basis of Circadian Rhythms. Berlin: Dahlem Konferenzen, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Aschoff, J. (1981). Freerunning and Entrained Circadian Rhythms. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics