Skip to main content

Circadian Systems: General Perspective

  • Chapter

Abstract

The physical environment of life is characterized by several major periodicities that derive from the motions of the earth and the moon relative to the sun. From its origin some billions of years ago, life has had to cope with pronounced daily and annual cycles of light and temperature. Tidal cycles challenged life as soon as the edge of the sea was invaded; and on land, humidity and other daily cycles were added to the older challenges of light and temperature. These physical periodicities clearly raise challenges—caricatured by the hostility of deserts by day and of high latitudes in winter—that natural selection has had to cope with; on the other hand, the unique stability of these cycles based on celestial mechanics presents a clear opportunity for selection: their predictability makes anticipatory programming a viable strategy. The result has been widespread occurrence in eukaryotic systems of innate temporal programs for metabolism and behavior that are most appropriately undertaken during a restricted fraction of the external cycle of physical change. Feeding behavior in nocturnal rodents is programmed into early hours of the night; the behavior persists at that phase—recurring at intervals close to 24 hr—in animals retained in cueless constant darkness; and mobilization of the enzymes necessary for digestion by the intestine and subsequent metabolic processing in the liver is appropriately programmed to that same (or slightly earlier) time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia in Quantitative Biology, 1960, 25, 11–28.

    Article  Google Scholar 

  • Aschoff, J. Desynchronization and resynchronization of human circadian rhythms. Aerospace Medicine, 1969, 40, 844–849.

    Google Scholar 

  • Aschoff, J. Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrift Tierpsychologie, 1979, 49, 225–249.

    Article  Google Scholar 

  • Aschoff, J., Saint Paul, U., and Wever, R. Die Lebensdauer von Fliegen inter dem Einfluss von Zeit-verschie-bungen. Naturwissenschaft, 1971, 58, 574.

    Article  Google Scholar 

  • Bech, S. D. Photoperiodic induction of diapause in an insect. Biological Bulletin, 1962, 122, 1–12.

    Article  Google Scholar 

  • Beling, I. Über das Zeitgedachtnis der Bienen. Zeitschrift für vergleichende Physiologie, 1929, 9, 259–338.

    Article  Google Scholar 

  • Benson, J. A., and Lewis, R. D. An analysis of the activity rhythm of the sand beach amphipod, Talorchestia guoyana. Journal of Comparative Physiology, 1976, 105, 339–352.

    Article  Google Scholar 

  • Bruce, V. G. Cell division rhythms and the circadian clock. In J. Aschoff (Ed.), Circadian Clocks. Amsterdam: North-Holland Publ. Company, 1965, pp. 125–138.

    Google Scholar 

  • Bünning, E. Die endonome Tagesperiodik als Grundlage der photoperiodischen Reaktion. Berichte deutsches Botanisches Gesellschaft, 1936, 54, 590–607.

    Google Scholar 

  • Bünning, E. Biological clocks. Cold Spring Harbor Symposia in Quantitative Biology, 1960, 25, 1–10.

    Article  Google Scholar 

  • Daan, S., and Berde, C. Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. Journal of Theoretical Biology, 1978, 70, 297–313.

    Article  Google Scholar 

  • Daan, S., and Pittendrigh, C. S. A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. Journal of Comparative Physiology, 1976a 106, 252–266.

    Google Scholar 

  • Daan, S., and Pittendrigh, C. S. A functional analysis of circadian pacemakers in nocturnal rodents. III. Heavy water and constant light: Homeostasis of frequency? Journal of Comparative Physiology, 1976b, 106, 267–290.

    Article  Google Scholar 

  • Daan, S., Damassa, D., Pittendrigh, C. S., and Smith, E. An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proceedings of the National Academy of Sciences, USA, 1975, 72, 3744–3747.

    Article  Google Scholar 

  • Danilevskii, A. S. Photoperiodism and Seasonal Development of Insects. Edinburgh and London: Oliver and Boyd, 1965.

    Google Scholar 

  • Deuguchi, T. Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science, 1979, 203, 1245–1247.

    Article  Google Scholar 

  • Edmunds, L. N. Persistent circadian rhythm of cell division in Euglena: Some theoretical considerations and the problem of intercellular communication. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 594–611.

    Google Scholar 

  • Enright, J. T. Resetting a tidal clock: a phase-response curve for Excirolana. In P. J. DeCoursey (Ed.), Biological Rhythms in the Marine Environment. Columbia: University of South Carolina Press, 1976, pp. 103–114.

    Google Scholar 

  • Gaston, S., and Menaker, M. Pineal function: The biological clock in the sparrow? Science, 1968, 160, 1125–1127.

    Article  Google Scholar 

  • Gwinner, E. Testosterone induces “splitting” of circadian locomotor activity rhythms in birds. Science, 1974, 185, 172.

    Article  Google Scholar 

  • Hastings, J. W. Biochemical aspects of rhythms: Phase shifting by chemicals. In Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 131–143.

    Article  Google Scholar 

  • Hastings, J. W., and Schweiger, H. G. The molecular basis of circadian rhythms. Dahlem Workshop Report, 1975.

    Google Scholar 

  • Hoffmann, K. Experimental manipulation of the orientational clock in birds. Cold Spring Harbor Symposia in Quantitative Biology, 1960, 25, 370–388.

    Google Scholar 

  • Hoffmann, K. Temperaturcyclen als Zeitgeber der circadianen Periodik. Verhandlungen der Deutschen Zoologischen Gesellschaft. Innsbruck, 1968, pp. 265–274.

    Google Scholar 

  • Hoffmann, K. Splitting of the circadian rhythm as a function of light intensity. In Michael Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 134–150.

    Google Scholar 

  • Hudson, D., and Lickey, M. Weak negative coupling between the circadian pacemakers of the eyes of Aplysia. Neuroscience Abstracts, 1977, 3, 179.

    Google Scholar 

  • Hufeland, C. W. Makrobiotik oder die Kunst das menschliche Leben zu verlängern. Berlin: G. Reimer, 1823.

    Google Scholar 

  • Inouye, S. T., and Kawamura, H. Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nuclei, 1980. Proceedings of the Natural Academy of Sciences, USA, 1979, 76, 5962–5966.

    Article  Google Scholar 

  • Jacklet, J. W. Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science, 1969, 164, 562–563.

    Article  Google Scholar 

  • Koehler, W. K., and Fleissner, G. Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature (London), 1978, 274, 708–710.

    Article  Google Scholar 

  • Konopka, R., and Benzer, S. Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA, 1971, 68, 2112–2116.

    Article  Google Scholar 

  • Lickey, M. E., Block, G. D. Hudson, D. J., and Smith, J. T. Circadian oscillators and photoreceptors in the gastropod, Aplysia. Photochemistry and Photobiology, 1976, 23, 253–273.

    Article  Google Scholar 

  • Lindberg, R. G., and Hayden, P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia, 1974, 1, 356–361.

    Google Scholar 

  • Loher, W. Circadian control of stridulation in the cricket, Teleogryllus commodus Walker. Journal of Comparative Physiology, 1972, 79, 173–190.

    Article  Google Scholar 

  • Lukat, R., and Wever, F. The structure of locomotor activity in bilobectomized cockroaches (Blaberus fuscus). Experientia, 1979, 35, 38–39.

    Article  Google Scholar 

  • McGinnis, J. W. A tidal rhythm in the terrestial sand beach amphipod Orchestoidea corniculata. Unpublished student research report, Hopkins Marine Station, Stanford University, 1972.

    Google Scholar 

  • Minis, D. H., and Pittendrigh, C. S. Circadian oscillation controlling hatching: Its ontogeny during embryo-genesis of a moth. Science (Washington), 1968, 159, 534–536.

    Article  Google Scholar 

  • Moore, R.Y., and Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rate. Brain Research, 1972, 42, 201–206.

    Article  Google Scholar 

  • Morin, L. P., Fitzgerald, K. M. and Zucker, I. Estradiol shortens period of hamster circadian rhythms. Science, 1977, 196, 305–307.

    Article  Google Scholar 

  • Nanda, K. K., and Hamner, K. C. Photoperiodic cycles of different lenghts in relation to flowering in Biloxi soybean. Planta, 1959, 53, 45–52.

    Article  Google Scholar 

  • Neumann, D. Entrainment of a semi-lunar rhythm. In P. J. deCoursey (Ed.), Biological Rhythms in the Marine Environment. Columbia: University of South Carolina Press, 1976, pp. 115–128.

    Google Scholar 

  • Nishiitsutsuji-Uwo, J., and Pittendrigh, C. S. Central nervous system control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Zeitschrift für vergleichende Physiologie, 1968, 58, 14–46.

    Article  Google Scholar 

  • Page, T. L. Interactions between bilaterally paired components of the cockroach circadian system. Journal of Comparative Physiology, 1978, 124, 225–236.

    Article  Google Scholar 

  • Page, T. L., Caldarola, D. C., and Pittendrigh, C. S. Mutual entrainment of bilaterally distributed circadian pacemakers. Proceedings of the National Academy of Sciences, USA, 1977, 74, 1277–1281.

    Article  Google Scholar 

  • Page, T. L. Block, G. G., and Pittendrigh, C. S. Unpublished observations, 1980.

    Google Scholar 

  • Pittendrigh, C. S. On temperature independence in the clock system controlling emergency time in Drosophila. Proceedings of the National Academy of Sciences, USA, 1954, 40, 1018–1029.

    Article  Google Scholar 

  • Pittendrigh, C. S. Adaptation, natural selection and behavior. In A. Roe and C. G. Simpson (Eds.), Behavior and Evolution. New Haven, Conn.: Yale University Press, 1958, pp. 390–416.

    Google Scholar 

  • Pittendrigh, C. S. Circadian rhythms and circadian organization of living systems. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 159–182.

    Article  Google Scholar 

  • Pittendrigh, C. S. On temporal organization in living systems. Harvey Lectures, 1961, 56, 93–125.

    Google Scholar 

  • Pittendrigh, C. S. Biological clocks: The functions, ancient and modern, of circadian oscillations. “Science in the Sixties,” Proceedings of the 1965 Couldcroft Symposium, Air Force Office of Scientific Research, 1965, pp. 96–111.

    Google Scholar 

  • Pittendrigh, C. S. The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clock. Zeitschrift für Pflanzenphysiologie, 1966, 54, 275–307.

    Google Scholar 

  • Pittendrigh, C. S. Circadian rhythms, space research and manned space light. In Life Sciences and Space Research. Vol. 5. Amsterdam: North-Holland Publ. Company, 1967, pp. 122–134.

    Google Scholar 

  • Pittendrigh, C. S. Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proceedings of the National Academy of Sciences, USA, 1972, 69, 2734–2737.

    Article  Google Scholar 

  • Pittendrigh, C. S. Circadian oscillations in cells and the circadian organization of multicellular systems. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences: Third Study Program. Cambridge, Mass.: MIT Press, 1974, pp. 437–458.

    Google Scholar 

  • Pittendrigh, C. S. Functional aspects of circadian pacemakers. In M. Suda, O. Hayaishi, and H. Nakagawa (Eds.), Biological Rhythms, Their Central Mechanism. New York: Elsevier Press, 1980.

    Google Scholar 

  • Pittendrigh, C. S. Circadian organization and the photoperiodic phenomena. In B. K. Follett (Ed.), Biological Clocks in Reproductive Cycles. Bristol: John Wright, 1981.

    Google Scholar 

  • Pittendrigh, C. S., and Caldarola, P. C. General homeostasis of the frequency of circadian oscillations. Proceedings of the National Academy of Sciences, USA, 1973, 70, 2697–2701.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. I. Stability and lability of spontaneous frequency. Journal of Comparative Physiology, 1976a, 106, 233–252.

    Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. Journal of Comparative Physiology, 1976b, 106, 291–331.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 1976c, 106, 333–355.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Minis D. H. Circadian systems: Longevity as a function of circadian resonance in Drosophila pseudoobscurra. Proceedings of the National Academy of Sciences, USA, 1972, 69, 1537–1539.

    Google Scholar 

  • Rence, B., and Loher, W. Arrythmically singing circkets: Thermoperiodic re-entrainment after bilobectomy. Science, 1975, 190, 385–387.

    Article  Google Scholar 

  • Saint Paul, U., and Aschoff, J. Longevity among blowflies (Phormia terranovae R. D.) kept in non-24 hour light-dark cycles. Journal of Comparative Physiology, 1978, 127, 191–195.

    Article  Google Scholar 

  • Saunders, D. S. The temperature-compensated photoperiodic clock “programming” development and pupal diapause in the flesh-fly Sarcophaga argyrostoma. Journal of Insect Physiology, 1971, 17, 801–812.

    Article  Google Scholar 

  • Saunders, D. S. Circadian control of larval growth rate in Sarcophaga argyrostoma. Proceedings of the National Academy of Sciences, USA, 1972, 69, 2738–2740.

    Article  Google Scholar 

  • Saunders, D. S. The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma. Journal of Insect Physiology, 1973, 19, 1941–1954.

    Article  Google Scholar 

  • Saunders, D. S. Evidence for “dawn” and “dusk” oscillators in the Nasonia photoperiodic clock. Journal of Insect Physiology, 1974, 20, 77–88.

    Article  Google Scholar 

  • Saunders, D. S. Insect Clocks. London: Pergamon Press, 1976, pp. 1–279.

    Google Scholar 

  • Schweiger, E., Wallraff, H. G. and Schweiger, H.-G. Endogenous circadian rhythm in cytoplasm of Acetabu-laria: Influence of the nucleus. Science 1964a, 146, 657–659.

    Article  Google Scholar 

  • Schweiger, E., Wallraff, H. G. and Schweiger, H.-G. Über tagesperiodische Schwankungen der Sauerstoffbilanz kernhaltiger und kernloser Acetabularia mediterraneana. Zeitschrift für Naturforschung, 1964b, 19, 499–505.

    Google Scholar 

  • Sokolove, P. G. Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Research, 1975, 87, 13–21.

    Article  Google Scholar 

  • Stephan, F. K., and Zucker, I. Circadian rhythms in drinking behavior and locomotory activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences, USA, 1972, 69, 1583–1586.

    Article  Google Scholar 

  • Suda, M., and Saito, M. Coordinative regulation of feeding behavior and metabolism by a circadian timing system. In M. Suda, O. Hayaishi, and H. Nakagawa (Eds.), Biological Rhythms, Their Central Mechanism. New York: Elsevier Press, 1980.

    Google Scholar 

  • Sweeney, B. M. Rhythmic Phenomena in Plants. New York: Academic Press, 1969.

    Google Scholar 

  • Sweeney, B., and Hastings, J. W. Effects of temperature upon diurnal rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 87–104.

    Article  Google Scholar 

  • Takahashi, J., and Menaker, M. Brain mechanisms in avian circadian systems. In M. Suda, O. Hayaishi, and H. Nakagawa (Eds.), Biological Rhythms, Their Central Mechanism. New York: Elsevier Press, 1980.

    Google Scholar 

  • Takahashi, J., Hamm, H. and Menaker, M. Circadian rhythms of melatonin release from individual super-fused chicken pineal glands in vitro. Proceedings of the National Academy of Sciences, USA, 1980 77, 2319–2322.

    Article  Google Scholar 

  • Truman, J. W. Physiology of insect rhythms. II. The silk moth brain as the location of the biological clock controlling eclosion. Journal of Comparative Physiology, 1972, 81, 99–114.

    Article  Google Scholar 

  • Truman, J. W. Extraretinal photoreception in insects. Photochemistry and Photobiology, 1976, 23, 215–225.

    Article  Google Scholar 

  • Turek, F. McMillan J. P. and Menaker, M. Melatonin: Effects on the circadian locomotor rhythm of sparrows. Science, 1976, 194, 1441–1443.

    Article  Google Scholar 

  • Tyschenko, V. P. Two-oscillatory model of the physiological mechanism of insect photoperiodic reaction. Zhur-nal Obshcei Biologii, 1966, 33, 21–31.

    Google Scholar 

  • Underwood, H. Circadian organization in lizards: The role of the pineal organ, Science, 1977, 195, 587–589.

    Article  Google Scholar 

  • Underwood, H., and Menaker, M. Extraretinal photoreception in lizards. Photochemistry and Photobiology, 1976, 23, 221–243.

    Article  Google Scholar 

  • Wahl, O. Neue Untersuchungen über das Zeitgedachtnis der Bienen. Zeitschrift für vergleichende Physiologie, 1932, 16, 529–589.

    Google Scholar 

  • Went, F. Photo-and Thermoperiodic effects in plant growth. Cold Spring Harbor Symposia in Quantitative Biology, 1960, 25, 221–230.

    Article  Google Scholar 

  • Zimmerman, N. H., and Menaker, M. The pineal gland: A pacemaker within the circadian system of the house sparrow. Proceedings of the National Academy of Sciences, USA, 1979, 76, 999–1003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Pittendrigh, C.S. (1981). Circadian Systems: General Perspective. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics