Skip to main content

Ontogeny of Circadian Rhythms

  • Chapter
Book cover Biological Rhythms

Abstract

Ontogeny is the life history of the individual organism, including its physical construction from a fertilized egg, the functional maturation of its behavioral, homeostatic and reproductive systems, and the decline of these systems with age. Because so many functions— behavioral, physiological, and biochemical—within an individual organism show circadian rhythmicity, the ontogeny of any particular function is likely to include the appearance of and changes in its rhythmic control. The ontogeny of circadian rhythms, as a set of biological questions, must, however, go beyond a simple cataloging of many rhythms and their ontogenic changes. Different circadian rhythms are not independent of one another. Whether controlled by a single circadian pacemaker or by many, overt rhythms are temporally organized with respect to each other and to the environment. The pacemakers, the pathways to overt rhythms, and the mechanisms of entrainment are all part of the “circadian system” that underlies not only internal temporal organization of multiple functions but also the remarkable ability of organisms to measure, precisely and adaptively, the passage of astronomical time.

The original experimental work reported here was supported by NIH grant HD-03803 to Michael Menaker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader, R. Early experiences accelerate maturation of the 24-hour adrenocortical rhythm. Science, 1969, 163, 1225–1226.

    Article  Google Scholar 

  • Allen, C., and Kendall, J. W. Maturation of the circadian rhythm of plasma corticosterone in the rat. Endocrinology, 1967, 80, 926–930.

    Article  Google Scholar 

  • Asano, Y. The maturation of the circadian rhythm of brain norepinephrine and serotonin of the rat. Life Sciences, 1971, 10, 883–894.

    Article  Google Scholar 

  • Aschoff, J. Tagesperiodik von Mäusestämmen unter konstanten Umgebungesbedingungen. Pflügers Archiv für die Gesamte Physiologie, 1955, 262, 51–59.

    Article  Google Scholar 

  • Aschoff, J., and Meyer-Lohmann, J. Angeborene 24-Stunden-Periodik beim Kücken. Pflügers Archive, 1954, 260, 170–176.

    Google Scholar 

  • Aschoff, J., Gerecke, U., and Wever, R. Desynchronization of human circadian rhythms. Japanese Journal of Physiology, 1967, 17, 450–457.

    Article  Google Scholar 

  • Aschoff, J., Pöppel, E., and Wever, R. Circadiane Periodik des Menschen unter dem Einfluss von Licht-Dunkel-Wechseln unterschiedlicher Perioden. Pflügers Archive, 1969, 306, 58–70.

    Article  Google Scholar 

  • Aschoff, J., Saint Paul, U. von, and Wever, R. Die Lebensdauer von Fliegen unter dem Einfluss von Zeitverschiebungen. Naturwissenschaften, 1971, 58, 574.

    Article  Google Scholar 

  • Axelrod, J., and Zatz, M. The β-adrenergic receptor and the regulation of circadian rhythms in the pineal gland. In G. Litwack (Ed.), Biochemical Actions of Hormones. Vol. 4. New York: Academic Press, 1977.

    Google Scholar 

  • Barr, M. Prenatal growth of Wistar rats: Circadian periodicity of fetal growth late in gestation. Teratology, 1973, 1, 283–287.

    Article  Google Scholar 

  • Binkley, S. Comparative biochemistry of the pineal glands of birds and mammals. American Zoologist, 1976, 16, 57–65.

    Google Scholar 

  • Binkley, S., and Geller, E. B. Pineal enzymes in chickens: Development of daily rhythmicity. General and Comparative Endocrinology, 1975, 27, 424–429.

    Article  Google Scholar 

  • Boyar, R. M., Rosenfeld, R. S., Kapen, S., Finkelstein, J. W., Roffwarg, H. P., Weitzman, E. D., and Hellman, L. Human puberty: Simultaneous augmented secretion of LH and testosterone during sleep. Journal of Clinical Investigation, 1974, 54, 609–618.

    Article  Google Scholar 

  • Brammer, M. Daily serotonin changes persist in rat pineals in organ culture. Life Sciences, 1979, 24, 967–972.

    Article  Google Scholar 

  • Browman, L. G. Artificial sixteen-day activity rhythms in the white rat. American Journal of Physiology, 1952, 168, 694–697.

    Google Scholar 

  • Brown, F. M. 27-hour effects on reproduction and circadian activity period in rats. In L. E. Scheving, F. Halberg, and J. E. Pauly (Eds.), Chronobiology. Tokyo: Igoku Shoin, 1974.

    Google Scholar 

  • Cahn, A. A., Folk, G. E., and Huston, P. E. Age comparison of human day-night physiological differences. Aerospace Medicine, 1968, 39, 608–610.

    Google Scholar 

  • Critchlow, V., Liebelt, R. A., Bar-Sela, M., Mountcastle, W., and Lipscomb, H. S. Sex difference in resting pituitary-adrenal function in the rat. American Journal of Physiology, 1963, 205, 807–815.

    Google Scholar 

  • Crowley, W. R., O’Donohue, T. L., and Jacobowitz, D. M. Sex differences in catecholamine content in discrete brain nuclei of the rat; effects of neonatal castration or testosterone treatment. Acta Endocrinologica, 1978, 89, 20–28.

    Google Scholar 

  • D’Agata, R., Vigneri, R., and Polosa, P. Chronobiological study on growth hormone secretion in man: Its relation to sleep-wake cycles and to increasing age. In L. E. Scheving, F. Halberg, and J. E. Pauly (Eds.), Chronobiology. Tokyo: Iguku Shoin, 1974.

    Google Scholar 

  • Davis, F. C. Circadian rhythmicity in the wheel running activity of rodents: Factors affecting development of the pacemaker. Ph.D. thesis, University of Texas, Austin, 1980.

    Google Scholar 

  • Davis, F. C., and Menaker, M. Development of the mouse circadian pacemaker: Independence from environmental cycles. In preparation.

    Google Scholar 

  • Davis, F. C., Darrow, J. M., and Menaker, M. Sexual dimorphism of the hamster circadian pacemaker. In preparation.

    Google Scholar 

  • Deguchi, T. Ontogenesis of biological clock for serotonin: Acetyl coenzyme a N-acetyltransferase in pineal gland of rat. Proceedings of the National Academy of Sciences USA, 1975, 72, 2814–2818.

    Article  Google Scholar 

  • Deguchi, T. Circadian rhythms of enzyme and running activity under ultradian lighting schedule. American Journal of Physiology, 1977, 232, E375–E381.

    Google Scholar 

  • Ehret, C. F., Groh, K. R., and Meinert, J. C. Circadian dyschronism and chronotypic ecophilia as factors in aging and longevivity. In H. V. Samis, Jr., and S. Capobianco (Eds.), Aging and Biological Rhythms. New York and London: Plenum Press, 1978.

    Google Scholar 

  • Ellison, N., Weiler, J. L., and Klein, D. C. Development of a circadian rhythm in the activity of pineal serotonin N-acetyltransferase. Journal of Neurochemistry, 1972, 19, 1335–1341.

    Article  Google Scholar 

  • Everett, J. W. The mammalian female reproductive cycle and its controlling mechanisms. In W. C. Young (Ed.), Sex and Internal Secretions. Baltimore: Williams & Wilkins, 1961.

    Google Scholar 

  • Finkelstein, J. W., Roffwarg, H. P., Boyar, R. M., Kream, J., and Hellman, L. Age related changes in the 24-hour spontaneous secretion of growth hormone. Journal of Clinical Endocrinology and Metabolism, 1972, 35, 665–670.

    Article  Google Scholar 

  • Franks, R. Diurnal variations of plasma 17-hydroxycorticosteroids in children. Journal of Clinical Endocrinology and Metabolism, 1967, 26, 75–78.

    Article  Google Scholar 

  • Gorski, R. A. Gonadal hormones and the prenatal development of neuroendocrine function. In L. Martini and W. Ganong (Eds.), Frontiers in Neuroendocrino logy. New York: Oxford University Press, 1971.

    Google Scholar 

  • Gorski, R. A., Gordon, J. H., Shryne, J. E., and Southham, A. M. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 1978, 148, 333–346.

    Article  Google Scholar 

  • Grota, L. J., and Ader, R. Rhythmicity of the maternal behavior in Rattus norvegicus. Animal Behavior, 1970, 18, 144–150.

    Article  Google Scholar 

  • Halberg, F., and Nelson, W. Chronobiologic optimization of aging. In H. V. Samis, Jr., and S. Capobianco (Eds.), Aging and Biological Rhythms. New York and London: Plenum Press-, 1978.

    Google Scholar 

  • Halberg, F., Bittner, J. J., Gully, R. J., Albrecht, P. G., and Brackney, E. L. 24-hour periodicity and audiogenic convulsions in I mice of various ages. Proceedings of the Society for Experimental Biology and Medicine, 1955, 88, 169–173.

    Google Scholar 

  • Hellbrügge, T. The development of circadian rhythms in infants. Cold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 311–323.

    Article  Google Scholar 

  • Hellbrügge, T. The development of circadian and ultradian rhythms of premature and full-term infants. In L. E. Scheving, F. Halberg, and J. E. Pauly (Eds.), Chronobiology. Tokyo: Iguku Shoin, 1974.

    Google Scholar 

  • Hiroshige, T., and Sato, T. Circadian rhythm and stress-induced changes in hypothalamic content of cortico-tropin-releasing activity during postnatal development in the rat. Endocrinology, 1970, 86, 1184–1186.

    Article  Google Scholar 

  • Hiroshige, T., Abe, K., Wada, S., and Kaneko, M. Sex difference in circadian periodicity of CRF activity in the rat hypothalamus. Neuroendocrinology, 1973, 11, 306–320.

    Article  Google Scholar 

  • Hoffman, K. Angeborene Tagesperiodik bei Eidechsen. Naturwissenschaften, 1957, 44, 359–360.

    Article  Google Scholar 

  • Hoffman, K. Die Aktivitätsperiodik von im 18- und 36-Stunden-Tag erbrüteten Eidechsen. Zeitschrift für Vergleichende Physiologie, 1959, 42, 422–432.

    Article  Google Scholar 

  • Honma, S., and Hiroshige, T. Pubertal manifestation of sex difference in circadian rhythm of corticotropin-releasing activity in the rat hypothalamus. Acta Endocrinilogia, 1977, 86, 225–234.

    Google Scholar 

  • Honova, E., Miller, S. A., Ehrenkranz, R. A., and Woo, A. Tyrosine transminase: Development of daily rhythm in liver of neonatal rat. Science, 1968, 162, 999–1001.

    Article  Google Scholar 

  • Illnerova, H., and Skopkova, J. Regulation of the diurnal rhythm in rat serotonin-N-acetyltransferase activity and serotonin content during ontogenesis. Journal of Neurochemistry, 1976, 26, 1051–1052.

    Article  Google Scholar 

  • Kapen, S., Boyar, R., Hellman, L., and Weitzman, E. Twenty-four-hour patterns of luteinizing hormone secretion in humans: ontogenetic and sexual considerations. Progress in Brain Research, 1975, 42, 103–113.

    Article  Google Scholar 

  • Kleitman, N., and Englemann, T. G. Sleep characteristics of infants. Journal of Applied Physiology, 1953, 7, 269–282.

    Google Scholar 

  • Krieger, D. T. Circadian corticosteroid periodicity: Critical period for abolition by neonatal injection of corticosteroid. Science, 1972, 178, 1205–1207.

    Article  Google Scholar 

  • Lanman, J. T., and Seidman, L. Length of gestation in mice under a 21-hour day. Biology of Reproduction, 1977, 17, 224–227.

    Article  Google Scholar 

  • Lee, M. H. S., and Williams, D. I. A longitudinal study of mother-young interaction in the rat: The effects of infantile stimulation, diurnal rhythms, and pup maturation. Behavior, 1977, 63, 241–261.

    Article  Google Scholar 

  • Lengvari, I., Branch, B. J., and Taylor, A. N. The effect of perinatal thyroxine treatment on the development of the plasma corticosterone diurnal rhythm. Neuroendocrinology, 1977, 24, 65–73.

    Article  Google Scholar 

  • Lenn, N. J., Bruce, B., and Moore, R. Y. Postnatal development of suprachiasmatic hypothalamic nucleus of the rat. Cell and Tissue Research, 1977, 178, 463–475.

    Article  Google Scholar 

  • Levin, R., and Levine, S. Development of circadian periodicity in base and stress levels of corticosterone. American Journal of Physiology, 1975, 229, 1397–1399.

    Google Scholar 

  • Levin’, R., and Stern, E. Maternal influences on ontogeny of suckling and feeding rhythms in the rat. Journal of Comparative and Physiological Psychology, 1975, 89, 711–721.

    Article  Google Scholar 

  • Levine, S. The pituitary-adrenal system and the developing brain. Progress in Brain Research, 1970, 32, 79–85.

    Article  Google Scholar 

  • Lobban, M. C., and Tredre, B. E. Diurnal rhythms of renal excretion and of body temperature in aged subjects. Journal of Physiology (London), 1967, 188, 48P–49P.

    Google Scholar 

  • Lorenz, R. J., Branch, B. J., and Taylor, A. N. Ontogenesis of circadian pituitary-adrenal periodicity in rats affected by neonatal treatment with ACTH. Proceedings of the Society for Experimental Biology and Medicine, 1974, 145, 528–532.

    Google Scholar 

  • Machado, C. R. S., Machado, A. B. M., and Wragg, L. E. Circadian serotonin rhythm control: Sympathetic and nonsympathetic pathways in rat pineals of different ages. Endocrinology, 1969, 85, 846–848.

    Article  Google Scholar 

  • Machado, C. R. S., Wragg, L. E., and Machado, A. B. M. Circadian rhythm of serotonin in the pineal body of immunosympathectomized rats. Science, 1969, 164, 442–443.

    Article  Google Scholar 

  • Martin du Pan, R. Some clinical applications of our knowledge of the evolution of the circadian rhythm in infants. In L. E. Scheving, F. Halberg, and J. E. Pauly (Eds.), Chronobiology. Tokyo: Iguku Shoin, 1974.

    Google Scholar 

  • Miles, L. E. M., Raynal, D. M., and Wilson, M. A. Blind man living in normal society has circadian rhythms of 24.9 hours. Science, 1977, 198, 421–423.

    Article  Google Scholar 

  • Miyabo, S., and Hisada, T. Sex difference in ontogenesis of circadian adrenocortical rhythm in cortisone-primed rats. Nature, 1975, 256, 590–592.

    Article  Google Scholar 

  • Mohan, C., and Radha, E. Circadian rhythm in acetylcholinesterase activity during aging of the central nervous system. Life Sciences, 1974, 15, 231–237.

    Article  Google Scholar 

  • Mohan, C., and Radha, E. Circadian rhythms in the central cholinergic system in aging animals. In H. V. Samis, Jr., and S. Capobianco (Eds.), Aging and Biological Rhythms. New York and London: Plenum Press, 1978.

    Google Scholar 

  • Moore, R. Y., and Eichler, V. B. Loss of an adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research, 1972, 42, 201–206.

    Article  Google Scholar 

  • Mosko, S., and Moore, R. Y. Neonatal suprachiasmatic nucleus ablation: Absence of functional morphological plasticity. Proceedings of the National Academy of Science, USA, 1978, 75, 6243–6247.

    Article  Google Scholar 

  • Moudgil, V. K., and Kanungo, M. S. Effect of age on the circadian rhythm of acetylcholinesterase of the brain of the rat. Comparative and General Pharmacology, 1973, 4, 127–130.

    Article  Google Scholar 

  • Mullin, J. J. Development of the diurnal temperature and motility patterns in a baby. American Journal of Physiology, 1939, 126, 589.

    Google Scholar 

  • Nagamachi, N. The effects of ovariectomy on the nuclear sizes of the neurons of the hypothalamic nuclei and the sex differences in the nuclear sizes of the neurons of the hypothalamic nuclei in developing rats. Shikoku Acta Medica, 1977, 33, 251–262.

    Google Scholar 

  • Okada, F. The maturation of the circadian rhythm of brain serotonin in the rat. Life Sciences, 1971, 10, 1186.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. Circadian oscillations in rodents: A systematic increase of their frequency with age. Science, 1974, 186, 548–550.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology, 1976a, 106, 223–252.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 1976b, 106, 1537–1539.

    Google Scholar 

  • Pittendrigh, C. S., and Minis, D. H. Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Science, USA, 1972, 69, 1537–1539.

    Article  Google Scholar 

  • Quay, W. B. Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Transactions of the New York Academy of Sciences, 1972, 34, 239–254.

    Article  Google Scholar 

  • Ralph, C. L., Binkley, S., MacBride, S. E., and Klein, D. C. Regulation of pineal rhythms in chickens: Effects of blinding, constant light, constant dark, and superior cervical ganglionectomy. Endocrinology, 1975, 97, 1373–1378.

    Article  Google Scholar 

  • Ramaley, J. A. Changes in daily serum corticosterone values in maturing male and female rats. Steroids, 1972, 20, 185–197.

    Article  Google Scholar 

  • Ramaley, J. A. The effect of an acute light cycle change on adrenal rhythmicity in prepubertal rats. Neuroen-docrinology, 1975, 19, 126–136.

    Article  Google Scholar 

  • Ramaley, J. A. The adrenal rhythm and puberty onset in the female rat. Life Sciences, 1978, 23, 2079–2088.

    Article  Google Scholar 

  • Richter, C. P. Inborn nature of the rat’s 24-hour clock. Journal of Comparative and Physiological Psychology, 1971, 75, 1–4.

    Article  Google Scholar 

  • Sacher, G. A., and Duffy, P. H. Age changes in rhythms of energy metabolism, activity, and body temperature in Mus and Peromyscus. In H. V. Samis, Jr., and S. Capobianco (Eds.), Aging and Biological Rhythms. New York and London: Plenum Press, 1978.

    Google Scholar 

  • Saint Paul, U. von, and Aschoff, J. Longevity among blowflies Phormia terraenovae R. D. kept in non-24-hour light-dark cycles. Journal of Comparative Physiology, 1978, 127, 191–195.

    Article  Google Scholar 

  • Samis, H. V. Aging: the loss of temporal organization. Perspectives in Biology and Medicine, 1968, 12, 95–102.

    Google Scholar 

  • Sander, L. W., Stechler, G., Burns, P., and Julia, H. L. Early mother-infant interaction and 24-hour patterns of activity and sleep. Journal of the American Academy of Child Psychiatry, 1970, 9, 103–123.

    Article  Google Scholar 

  • Schild, M. Ontogeny of nocturnal feeding rhythm in rats and effect of prolonged diurnal feeding experience. In L. E. Scheving, F. Halberg, and J. E. Pauly (Eds.), Chrono bio logy. Tokyo: Iguku Shoin, 1974.

    Google Scholar 

  • Selinger, M., and Levitz, M. Diurnal variation of total plasma estriol levels in late pregnancy. Journal of Clinical Endocrinology and Metabolism, 1969, 29, 005–997.

    Article  Google Scholar 

  • Serio, M., Piolanti, P., Romano, S., De Magistris, L., and Guisti, G. The circadian rhythm of plasma Cortisol in subjects over 70 years of age. Journal of Gerontology, 1970, 25, 95–97.

    Article  Google Scholar 

  • Silver, J. Abnormal development of the suprachiasmatic nuclei of the hypothalamus in a strain of genetically anophthalmic mice. Journal of Comparative Neurology, 1977, 176, 589–606.

    Article  Google Scholar 

  • Smolensky, M., Halberg, F., and Sargent, F., II. Chronobiology of the life sequence. In S. Itoh, K. Ogata, and H. Yoshimura (Eds.), Advances in Climatic Physiology. Tokyo: Iguku Shoin, 1972.

    Google Scholar 

  • Stein, D. G., Rosen, J. J., and Butters, N. Plasticity and Recovery of Function in the Central Nervous System. New York: Academic Press, 1974.

    Google Scholar 

  • Sterman, M. B. Relationship of intrauterine fetal activity to maternal sleep stage. Experimental Neurology, 1967, Suppl. 4, 98–106.

    Article  Google Scholar 

  • Takahashi, K., Hanada, K., Kobayashi, K., Hayafuji, C., Otani, S., and Takahashi, Y. Development of the circadian adrenocortical rhythm in rats: Studied by determination of 24- or 48-hour patterns of blood corticosterone levels in individual pups. Endocrinology, 1979, 104, 954–961.

    Article  Google Scholar 

  • Taylor, A. N., and Lengvari, I. Effect of combined perinatal thyroxine and corticosterone treatment on the development of the diurnal pituitary-adrenal rhythm. Neuroendocrinology, 1977, 24, 74–79.

    Article  Google Scholar 

  • ter Haar, M. B., MacKinnon, P. C. B., and Bulmer, M. G. Sexual differentiation in the phase of the circadian rhythm of [35 S] methionine incorporation into cerebral proteins, and of serum gonadotropin levels. Journal of Endocrinology, 1974, 62, 254–265.

    Google Scholar 

  • Ulrich, R. S., and Yuwiler, A. Adrenocortical influences on the development of the diurnal rhythm in hepatic tyrosine transaminase. Endocrinology, 1971, 89, 936–942.

    Article  Google Scholar 

  • Webb, W. B. Sleep biological rhythms and aging. In H. V. Samis, Jr., and S. Capobianco (Eds.), Aging and Biological Rhythms. New York and London: Plenum Press, 1978.

    Google Scholar 

  • Wenisch, H., and Hartwig, H. G. Karyometric investigations of the suprachiasmatic nucleus in blinded rats. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 1973, 142, 142–147.

    Google Scholar 

  • Wever, R. Das Problem des Alterns unter den Bedingungen des Weltraumflugs. Bundesministerium für Wissenschaftliche Forschung, Forschungsberichte, 1968, W68–30, 328–333.

    Google Scholar 

  • Wever, R. The meaning of circadian rhythmicity with regard to aging. Verhandlungen der Deutschen Gesellschaft für Pathologie, 1975, 59, 160–180.

    Google Scholar 

  • Yunis, E. J., Fernandes, G., Nelson, W., and Halberg, F. Circadian temperature rhythms and aging in rodents. In L. E. Scheving, F. Halberg, and J. E. Pauly (Eds.), Chronobiology. Tokyo: Iguku Shoin, 1974.

    Google Scholar 

  • Yuwiler, A., Klein, D. C., Buda, M., and Weller, J. L. Adrenergic control of pineal N-acetyltransferase activity: Devlopmental aspects. American Journal of Physiology, 1977, 233, E141–E146.

    Google Scholar 

  • Zucker, I. Light-dark rhythms in rat eating and drinking behavior. Physiology and Behavior, 1971, 6, 115–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Davis, F.C. (1981). Ontogeny of Circadian Rhythms. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics