Skip to main content

Genetics and Development of Circadian Rhythms in Invertebrates

  • Chapter
Book cover Biological Rhythms

Abstract

The scope of this review includes the developmental ontogeny and genetics of the driving oscillator and overt rhythms in invertebrates. The discussion is generally confined to meta-zoan organisms, except in cases where comparison with data from lower organisms is useful. The terms pacemaker and oscillator are usually used in the singular, although the actual physiological pacemaker may be made up of components—a population of coupled oscillators—or, at least, represented bilaterally in the two hemispheres of the brain. Only true circadian rhythms—those that persist in constant conditions—are covered; diel rhythms, which are expressed in LD but not in constant conditions, are not discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkisson, P. L. Effect of larval diet on the seasonal occurrence of diapause in the pink bollworm. Journal of Economic Entomology, 1961, 54, 1107–1112.

    Google Scholar 

  • Adkisson, P. L., Bell, R. A., and Wellso, S. G. Environmental factors controlling the induction of diapause in the pink bollworm, Pectinophora gossypiella (Saunders). Journal of Insect Physiology, 1963, 9, 299–310.

    Article  Google Scholar 

  • Bateman, M. A. The effect of light and temperature on the rhythm of pupal ecdysis in the Queensland fruit-fly Dacus (Strumeta) tryoni (Frogg). Australian Journal of Zoology, 1955, 3, 22–33.

    Article  Google Scholar 

  • Brett, W. J. Persistent diurnal rhythmicity in Drosophila emergence. Annals of the Entomological Society of America, 1955, 48, 119–131.

    Google Scholar 

  • Bull, D. L., and Adkisson, P. L. Certain factors influencing diapause in the pink bollworm, Pectinophora gossypiella.Journal of Economic Entomology, 1960, 53, 793–798.

    Google Scholar 

  • Bull, D. L., and Adkisson, P. L. Fat contents of the larval diet as a factor influencing diapause and growth rate of the pink bollworm. Annals of the Entomological Society of America, 1962, 55, 499–502.

    Google Scholar 

  • Clayton, D. L., and Paietta, J. V. Selection for circadian eclosion time in Drosophila melanogaster. Science, 1972, 178, 994–995.

    Article  Google Scholar 

  • Engelmann, W., and Mack, J. Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. Journal of Comparative Physiology, 1978, 127, 229–237.

    Article  Google Scholar 

  • Feldman, J. F., and Hoyle, M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics, 1973, 75, 605–613.

    Google Scholar 

  • Feldman, J. F., and Hoyle, M. N. Complementation analysis of linked circadian clock mutants of Neurospora crassa.Genetics, 1976, 82, 9–17.

    Google Scholar 

  • Handler, A. M., and Konopka, R. J. Transplantation of a circadian pacemaker in Drosophila. Nature, 1979, 279, 236–238.

    Article  Google Scholar 

  • Handler, A. M., and Postlethwait, J. H. Endocrine control of vitellogenesis in Drosophila melanogaster: Effects of the brain and corpus allatum. Journal of Experimental Zoology, 1977, 202, 389–402.

    Article  Google Scholar 

  • Judd, B. H., Shen, M. W., and Kaufman, T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics, 1972, 71, 139–156.

    Google Scholar 

  • Kayser, C., and Heusner, A. A. Le rhythme nycthéméral de la dépense d’énergie: Etude de physiologie comparée. Journal de Physiologie, 1967, 59(1 Supplement), 3–116.

    Google Scholar 

  • Konopka, R. J. Circadian clock mutants of Drosophila melanogaster. Ph.D. thesis, California Institute of Technology, Pasadena, 1972.

    Google Scholar 

  • Konopka, R. J., and Benzer, S. Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA, 1971, 68, 2112–2116.

    Article  Google Scholar 

  • Konopka, R. J., and Wells, S. Drosophila clock mutations affect the morphology of a brain neurosecretory cell group. Journal of Neurobiology, 1980, 11, 411–415.

    Article  Google Scholar 

  • Lees, A. D. The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton. II. The operation of the “interval timer” in young clones. Journal of Insect Physiology, 1960, 4, 154–175.

    Article  Google Scholar 

  • Martin, U., Martin, H., and Lindauer, M. Transplantation of a time-signal in honeybees. Journal of Comparative Physiology, 1978, 124, 193–201.

    Article  Google Scholar 

  • Minis, D. H., and Pittendrigh, C. S. Circadian oscillation controlling hatching: Its ontogeny during embryoge-nesis of a moth. Science, 1968, 159, 534–536.

    Article  Google Scholar 

  • Nayar, J. K., and Sauerman, D. M. The effect of light regimes on the circadian rhythm of flight activity in the mosquito Aedes taeniorhynchus. Journal of Experimental Biology, 1971, 54, 745–756.

    Google Scholar 

  • Neumann, D. Genetic adaptation in emergence time of Clunio populations to different tidal conditions. Hel-goländer Wissenschaftliche Meeresuntersuchungen, 1967, 15, 163–171.

    Article  Google Scholar 

  • Pittendrigh, S. C. On temperature independence in the clock system controlling emergence time in Drosophila, Proceedings of the National Academy of Sciences, USA, 1954, 40, 1018–1029.

    Article  Google Scholar 

  • Pittendrigh, C. S. The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clock. Zeitschrift für Pflanzenphysiologie, 1966, 54, 275–307.

    Google Scholar 

  • Pittendrigh, C. S. Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences, USA, 1967, 58, 1762–1767.

    Article  Google Scholar 

  • Pittendrigh, C. S. Circadian oscillations in cells and the circadian organization of multicellular systems. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences Third Study Program. Boston: MIT Press, 1974.

    Google Scholar 

  • Pittendrigh, C. S., and Minis, D. H. The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971.

    Google Scholar 

  • Pittendrigh, C. S., and Skopik, S. D. Circadian systems. V. The driving oscillation and the temporal sequence of development. Proceedings of the National Academy of Sciences, USA, 1970, 65, 500–507.

    Article  Google Scholar 

  • Rensing, L., and Hardeland, R. Zur Wirkung der circadianen Rhythmik auf die Entwicklung von Drosophila. Journal of Insect Physiology, 1967, 13, 1547–1568.

    Article  Google Scholar 

  • Rensing, L., Brunken, W., and Hardeland, R. On the genetics of a circadian rhythm in Drosophila. Experien-tia, 1968, 15, 509–510.

    Article  Google Scholar 

  • Saunders, D. S. Insect Clocks. New York: Pergamon Press, 1976.

    Google Scholar 

  • Truman, J. W. Physiology of insect rhythms. IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoths. Journal of Comparative Physiology, 1974, 95, 281–296.

    Article  Google Scholar 

  • Winfree, A. T. The investigation of oscillatory processes by perturbation experiments. In B. Chance, E. K. Pye, A. K. Ghosh, and B. Hess (Eds.), Biological and Biochemical Oscillators. New York: Academic Press, 1973.

    Google Scholar 

  • Winfree, A. T., and Gordon, H. The photosensitivity of a mutant circadian clock. Journal of Comparative Physiology, 1977, 122, 87–109.

    Article  Google Scholar 

  • Young, M. W., and Judd, B. H. Nonessential sequences, genes, and the polytene chromosome bands of Drosophila melanogaster. Genetics, 1978, 88, 723–742.

    Google Scholar 

  • Zimmerman, W. F. On the absence of circadian rhythmicity in Drosophila pseudoobscura pupae. The Biological Bulletin, 1969, 136, 494–500.

    Article  Google Scholar 

  • Zimmerman, W. F., and Ives, D. Some photophysiological aspects of circadian rhythmicity in Drosophila. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Konopka, R.J. (1981). Genetics and Development of Circadian Rhythms in Invertebrates. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics