Skip to main content

Effect of Ethanol on Intracellular Respiration and Cerebral Function

  • Chapter
The Biology of Alcoholism

Abstract

As yet, there is no satisfactory explanation of the mechanism of the anesthetic action of any compound classified as a general depressant, including ethanol. This lack of knowledge is basically due to our limited insight into how the central nervous system works. Anesthetic agents cause changes in both function and metabolism of the brain. Consequently, depression of energy-yielding metabolic reactions as well as direct action on the excitable membranes have been proposed as alternative explanations of narcosis, as in Verworn’s (1912) asphyxial hypothesis or Meyer-Overton’s classical formulation from 1901–1902 which suggests solubility in membrane lipoids as the basis for anesthetic potency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, N., 1961. Dehydrogenase activity in alcohol-habituated rats, Tohoku Med. J. 64: 267. (Abstr. 1964, Quart. J. Studies Alc. 25: 581.)

    Google Scholar 

  • Agin, D., Hersh, L., and Holtzmann, D., 1965. The action of anesthetics on excitable membranes: a quantum-chemical analysis, Proc. Nat. Acad. Sci. U.S. 53: 952.

    Google Scholar 

  • Albers, R. W., 1967. Biochemical aspects of active transport, Ann. Rev. Biochem. 36: 727.

    Google Scholar 

  • Ammon, H. P. T., 1964. Der Kohlenhydrat-und Energiestoffwechsel des Gehirns weisser Mäuse unter dem Einfluss von Äthanol, Arch. Exp. Pathol. Pharmakol. 247: 313.

    Google Scholar 

  • Ammon, H. P. T., and Estler, C.-J., 1968. Inhibition of ethanol-induced glycogenolysis in brain and liver by adrenergic a-blockade, J. Pharm. Pharmacol. 20: 164.

    Google Scholar 

  • Ammon, H. P. T., Estler, C.-J., and Heim, F., 1965. Der Einfluss von Äthylalkohol auf den Kohlenhydrat-und Energiestoffwechsel des Gehirns weisser Mäuse, Arch. Intern. Pharmacodyn. 154: 108.

    Google Scholar 

  • Armstrong, C. M., and Binstock, L., 1964. The effects of several alcohols on the properties of the squid giant axon, J. Gen. Physiol. 48: 265.

    Google Scholar 

  • Ashford, C. A., and Dixon, K. C., 1935. The effect of potassium on the glucolysis of brain tissue with reference to the Pasteur effect, Biochem. J. 29: 157.

    Google Scholar 

  • Battey, L. L., Heyman, A., and Patterson, J. L., 1953. Effects of ethyl alcohol on cerebral blood flow and metabolism, J. Am. Med. Assoc. 152: 6.

    Google Scholar 

  • Beer, C. T., and Quastel, J. H., 1958a. The effects of aliphatic aldehydes on the respiration of rat brain cortex slices and rat brain mitochondria, Can. J. Biochem. Physiol. 36: 531.

    Google Scholar 

  • Beer, C. T., and Quastel, J. H., 1958b. The effects of aliphatic alcohols on the respiration of rat brain cortex slices and rat brain mitochondria, Can. J. Biochem. Physiol. 36: 543.

    Google Scholar 

  • Berl, S., Cheng, S.-C., and Waelsch, H., 1964. Carbon dioxide fixation in vertebrate and invertebrate nervous tissue, Comp. Neurochem., Proc. Intern. Neurochem. Symp., 5th, St. Wolfgang, Austria, 1962, p. 207.

    Google Scholar 

  • Bourrinet, P., 1964. Étude expérimentale de l’influence de l’alcoolisation aiguë et chronique sur l’activité des médicaments, Revue Alcoolisme 10: 186.

    Google Scholar 

  • Brink, F., 1957. In Metabolism of the Nervous System (D. Richter, ed.), pp. 187–207, Pergamon Press, London.

    Google Scholar 

  • Brink, F., and Posternak, J. M., 1948. Thermodynamic analysis of the relative effectiveness of narcotics, J. Cellular Comp. Physiol. 32: 211.

    Google Scholar 

  • Bronk, D. W., and Brink, F., 1951. Mechanism connecting impulse conduction and oxygen metabolism in peripheral nerve, Fed. Proc. 10: 19.

    Google Scholar 

  • Buchel, L., 1951. In Mécanisme de la Narcose Vol. 26, pp. 129–132, Coll. Int. du CNRS, Paris.

    Google Scholar 

  • Butler, T. C., 1950. Theories of general anesthesia, Pharmacol. Rev. 2: 121.

    Google Scholar 

  • Cherayil, A., Kandera, J., and Lajtha, A., 1967. Cerebral amino acid transport in vitro.-IV. The effect of inhibitors on exit from brain slices, J. Neurochem. 14: 105.

    Google Scholar 

  • Clarke, D. W., and Evans, R. L., 1959. The influence of ethyl alcohol on the oxygen consumption of cerebral slices, Can. J. Biochem. Physiol. 37: 1525.

    Google Scholar 

  • De Gregorio, G., Lofrumento, N. E., Alifano, A., Manno, M. L., Serra, C., and Logoluso, R., 1965. Effetto dell’alcool sulla respirazione dei mitocondrio di cervello, Boll. Soc. It. Biol. Sper. 41: 425.

    Google Scholar 

  • Deneau, G., Yanagita, T., and Seevers, M. H., 1969. Self-administration of psychoactive substances by the monkey. A measure of psychological dependence, Psychopharmacologia 16: 30.

    Google Scholar 

  • Dickens, F., and Greville, G. D., 1935. The metabolism of normal and tumour tissue. XIII. Neutral salt effects, Biochem. J. 29: 1468.

    Google Scholar 

  • Ehrenpreis, S., 1966. An approach to the molecular basis of nerve activity, J. Cellular Comp. Physiol. 66: Suppl. 2, 159.

    Google Scholar 

  • Essig, C. F., and Lam, R. C., 1968. Convulsions and hallucinatory behavior following alcohol withdrawal in the dog, Arch. Neurol. 18: 626.

    Google Scholar 

  • Estler, C.-J., and Ammon, H. P. T., 1965. Phosphorylaseaktivität und Glykogengehalt des Gehirns unter dem Einfluss von Äthanol und Adrenalin, J. Neurochem. 12: 871.

    Google Scholar 

  • Ettinger, G. H., Brown, A. B., and Megill, A. H., 1941. Potentiation of acetylcholine by alcohol and ether, J. Pharmacol. Exp. Therap. 73: 119.

    Google Scholar 

  • Fazekas, J. F., Albert, S. N., and Alman, R. W., 1955. Influence of chlorpromazine and alcohol on cerebral hemodynamics and metabolism, Am. J. Med. Sci. 230: 128.

    Google Scholar 

  • Feinstein, M. B., and Paimre, M., 1967. Mode of anticholinergic action of local anaesthetics, Nature 214: 151.

    Google Scholar 

  • Ferrari, R. A., and Arnold, A., 1961. The effect of central nervous system agents on rat-brain y-aminobutyric acid level, Biochim. Biophys. Acta 52: 361.

    Google Scholar 

  • Ferguson, J., 1939. The use of chemical potentials as indices of toxicity, Proc. Roy. Soc. (London) B 127: 387.

    Google Scholar 

  • Ferguson, J., 1951. In Mécanisme de la Narcose, pp. 25–39, Centre National de la Récherche Scientifique, Paris.

    Google Scholar 

  • Fischer, E., 1957. In Alcoholism. Basic Aspects and Treatment (H. E. Himwich, ed.), pp. 19–27, Publ. No. 47 of Am. Assoc. Advan. Sci., Washington, D.C.

    Google Scholar 

  • Frank, G. B., and Sanders, H. D., 1963. A proposed common mechanism of action for general and local anesthetics in the central nervous system, Brit. J. Pharmacol. 21: 1.

    Google Scholar 

  • Fuhrman, F. A., and Field, J., 1948. Inhibition of brain respiration by ethyl alcohol at varied temperature levels, Proc. Soc. Exp. Biol. Med. 69: 331.

    Google Scholar 

  • Fujita, F., 1954. Experimental studies on habituation to alcohol, Folia Pharmacol. Japon. 50: 258. (Abstr. 1955, Excerpta Med., Sect. II, Vol. 8, No. 2460.)

    Google Scholar 

  • Gage, P. W., 1965a. Effect of cardiac glycosides on neuromuscular transmission, Nature 205: 84.

    Google Scholar 

  • Gage, P. W., 1965b. The effect of methyl, ethyl and n-propyl alcohol on neuromuscular transmission in the rat, J. Pharmacol. Exp. Therap. 150: 236.

    Google Scholar 

  • Ghosh, J. J., and Quastel, J. H., 1954. Narcotics and brain respiration, Nature 174: 28.

    Google Scholar 

  • Gimeno, A. L., Gimeno, M. F., and Webb, J. L., 1962. Effects of ethanol on cellular membrane potentials and contractility of isolated rat atrium, Am. J. Physiol. 203: 194.

    Google Scholar 

  • Goldberg, N. D., Passonneau, J. V., and Lowry, O. H., 1966. Effects of changes in brain metabolism on the levels of citric acid cycle intermediates, J. Biol. Chem. 241: 3997.

    Google Scholar 

  • Gordon, E. R., 1967. The effect of ethanol on the concentration of y-aminobutyric acid in the rat brain, Can. J. Physiol. Pharmacol. 45: 915.

    Google Scholar 

  • Göres, E., 1964. Einige pharmakologische Probleme der Äthanolwirkung, 2. Teil., Pharmazie 19: 489.

    Google Scholar 

  • Grenell, R. G., 1957. In Alcoholism. Basic Aspects and Treatment (H. E. Himwich, ed.), pp. 7–17, Publ. No. 47 of Am. Assoc. Advan. Sci., Washington, D.C.

    Google Scholar 

  • Grenell, R. G., and O’Neill, L., 1965. Cerebral cell membranes and the action of ethanol, Fed. Proc. 24: 327.

    Google Scholar 

  • Hagen, D. Q., 1967. GABA levels in rat brain after prolonged ethanol intake, Quart. J. Studies Alc. 28: 613.

    Google Scholar 

  • Häkkinen, H.-M., and Kulonen, E., 1959. Increase in the y-aminobutyric acid content of rat brain after ingestion of ethanol, Nature 184: 726.

    Google Scholar 

  • Häkkinen, H.-M., and Kulonen, E., 1961. The effect of ethanol on the amino acids of the rat brain with a reference to the administration of glutamine, Biochem. J. 78: 588.

    Google Scholar 

  • Häkkinen, H.-M., and Kulonen, E., 1963a. Comparison of various methods for the determination of y-aminobutyric acid and other amino acids in rat brain with reference to ethanol intoxication, J. Neurochem. 10: 489.

    Google Scholar 

  • Häkkinen, H.-M., and Kulonen, E., 1965. The amino acid metabolism in fractions of rat-brain homogenates with reference to the effect of ethanol, Biochem. J. 96: 65 P.

    Google Scholar 

  • Häkkinen, H.-M., and Kulonen, E., 1967. Amino acid metabolism in various fractions of rat-brain homogenates with special reference to the effect of ethanol, Biochem. J. 105: 261.

    Google Scholar 

  • Häkkinen, H.-M., Kulonen, E., and Wallgren, H., 1963. The effect of ethanol and electrical stimulation on the amino acid metabolism of rat-brain-cortex slices in vitro, Biochem. J. 88: 488.

    Google Scholar 

  • Heald, P. J., 1954. Rapid changes in creatine phosphate level in cerebral cortex slices, Biochem. 57: 673.

    Google Scholar 

  • Heald, P. J., 1960. Phosphorus Metabolism of Brain, Pergamon Press, Oxford. Heckmann, K., 1954. Leitfähigkeitsmessungen and Aktivitätsbestimmungen an Seifen, Kolloid-Z. 136: 67.

    Google Scholar 

  • Heim, F., Ammon, H. P. T., Estler, C.-J., and Mikschiczek, D., 1965. Funktion and Stoffwechsel des Gehirns unter Einwirkung niedriger Alkoholkonzentrationen, Med. Pharmacol. Exp. 13: 361.

    Google Scholar 

  • Henderson, V. E., 1930. The present status of the theories of narcosis, Physiol. Rev. 10: 171.

    Google Scholar 

  • Higgins, E. S., 1962. The effect of ethanol on GABA content of rat brain, Biochem. Pharmacol. 11, 394.

    Google Scholar 

  • Hillman, H. H., and Mcllwain, H., 1961. Membrane potentials of mammalian cerebral tissues in vitro: Dependence on ionic environment, J. Physiol. (London) 157: 263.

    Google Scholar 

  • Himwich, H. E., 1956. In Alcoholism (G. N. Thompson, ed.), pp. 291–408, Charles C Thomas, Springfield, Ill.

    Google Scholar 

  • Himwich, H. E., Sykowski, P., and Fazekas, J. F., 1941. A comparative study of excised cerebral tissues of adult and infant rats, Am. J. Physiol., 132: 293.

    Google Scholar 

  • Hine, C. H., Shick, A. F., Margolis, L., Burbridge, T. N., and Simon, A., 1952. Effects of alcohol in small doses and tetraethylthiuram-disulphide (Antabus) on the cerebral blood flow and cerebral metabolism, J. Pharmacol. Exp. Therap. 106: 253.

    Google Scholar 

  • Hurwitz, L., Battle, F., and Weiss, G. B., 1962. Action of the calcium antagonists cocaine and ethanol on contraction and potassium efflux of smooth muscle, J. Gen. Physiol. 46: 315.

    Google Scholar 

  • Hurwitz, L., v. Hagen, S., and Joiner, P. D., 1967. Acetylcholine and calcium on membrane permeability and contraction of intestinal smooth muscle, J. Gen. Physiol. 50: 1157.

    Google Scholar 

  • Inoue, F., and Frank, G. B., 1967. Effects of ethyl alcohol on excitability and on neuro-muscular transmission in frog skeletal muscle, Brit. J. Pharmacol. 30: 186.

    Google Scholar 

  • Israel-Jacard, Y., and Kalant, H., 1965. Effect of ethanol on electrolyte transport and electrogenesis in animal tissues, J. Cellular Comp. Physiol. 65: 127.

    Google Scholar 

  • Israel, Y., and Salazar, I., 1967. Inhibition of brain microsomal adenosine triphosphatases by general depressants, Arch. Biochem. Biophys. 122: 310.

    Google Scholar 

  • Israel, Y., Kalant, H., and Laufer, I., 1965. Effects of ethanol on Na, K, Mg-stimulated microsomal ATPase activity, Biochem. Pharmacol. 14: 1803.

    Google Scholar 

  • Israel, Y., Kalant, H., and LeBlanc, A. E., 1966. Effects of lower alcohols on potassium transport and microsomal adenosine-triphosphatase activity of rat cerebral cortex, Biochem. J. 100: 27.

    Google Scholar 

  • Järnefelt, J., 1961. Inhibition of the brain microsomal adenosinetriphosphatase by depolarizing agents, Biochim. Biophys. Acta 48: 111.

    Google Scholar 

  • Jowett, M., 1938. The action of narcotics on brain respiration, J. Physiol. (London) 92: 322.

    Google Scholar 

  • Judah, J. D., and Ahmed, K., 1964. The biochemistry of sodium transport, Biol. Rev. Cambridge Phil. Soc. 39: 160.

    Google Scholar 

  • Kalant, H., 1961. The pharmacology of alcohol intoxication, Quart. J. Studies Alc. Suppl. 1, 1.

    Google Scholar 

  • Kalant, H., and Grose, W., 1967. Effects of ethanol and pentobarbital on release of acetylcholine from cerebral cortex slices, J. Pharmacol. Exp. Therap. 158: 386.

    Google Scholar 

  • Kalant, H., and Israel, Y., 1967. In Biochemical Factors in Alcoholism (R. P. Maickel, ed.), pp. 25–37, Pergamon Press, Oxford.

    Google Scholar 

  • Kaniike, K., and Yoshida, H., 1963. Increase in accumulation of L-dopa (3,4-dihydroxy-phenylalanine) in brain slices by alcohol, Japan. J. Pharmacol. 13: 292.

    Google Scholar 

  • Karler, R., Sulkowski, T. S., and Miyhara, J. T., 1965. Interaction of ethanol and thyroxine on mitochondria, Biochem. Pharmacol. 14: 1025.

    Google Scholar 

  • Keesey, J. C., and Wallgren, H., 1965. Movements of radioactive sodium in cerebralcortex-slices in response to electrical stimulation, Biochem. J. 95: 301.

    Google Scholar 

  • Keesey, J. C., Wallgren, H., and Mcllwain, H., 1965. The sodium, potassium and chloride of cerebral tissues: maintenance, change on stimulation and subsequent recovery, Biochem. J. 95: 289.

    Google Scholar 

  • Kiessling, K.-H., and Tilander, Karin, 1961. Biochemical changes in rat tissues after prolonged alcohol consumption, Quart. J. Studies Alc. 22: 535.

    Google Scholar 

  • Kinard, F. W., and Hay, M. G., 1960. Effect of ethanol administration on brain and liver enzyme activities, Am. J. Physiol. 198: 657.

    Google Scholar 

  • Kishimoto, U., and Adelman, W. J., 1964. Effect of detergent on electrical properties of squid axon membrane, J. Gen. Physiol. 47: 975.

    Google Scholar 

  • Kochmann, M., 1923. In Handbuch der Experimentellen Pharmakologie (A. Heffter, ed.), Vol. 1, pp. 262–372, Julius Springer, Berlin.

    Google Scholar 

  • Kochman, M., 1936. In Handbuch der Experimentellen Pharmakologie, Vol. 2 pp. 1–263, Julius Springer, Berlin.

    Google Scholar 

  • Larrabee, M. G., and Posternak, J. M., 1952. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia, J. Neurophysiol. 15: 91.

    Google Scholar 

  • Larrabee, M. G., Ramos, J. G., and Bülbring, E., 1950. Do anesthetics depress nerve cells by depressing oxygen consumption? Fed. Proc. 9: 75.

    Google Scholar 

  • Larrabee, M. G., Horowicz, P., Stekiel, W., and Dolivo, M., 1957. In Metabolism of the Nervous System (D. Richter, ed.), pp. 208–230, Pergamon Press, London.

    Google Scholar 

  • Lévy, J., and Olszycka, L., 1940. Respiration des céllules du cerveau sous l’influence des hypnotiques, Compt. Rend. Soc. Biol. 133: 370.

    Google Scholar 

  • Lindbohm, R., and Wallgren, H., 1962. Changes in respiration of rat brain cortex slices induced by some aliphatic alcohols, Acta Pharmacol. Toxicol. 19: 53.

    Google Scholar 

  • Majcrowicz, E., 1965. Effects of aliphatic alcohols and aldehydes on the metabolism of potassium-stimulated rat brain cortex slices, Can. J. Biochem. Physiol. 43: 1041.

    Google Scholar 

  • Martin, G. J., 1965. A concept of the etiology of alcoholism, Exp. Med. Surg. 23: 315.

    Google Scholar 

  • Mcllwain, H., 1951. Metabolic response in vitro to electrical stimulation of sections of mammalian brain, Biochem. J. 49: 382.

    Google Scholar 

  • Mcllwain, H., 1963. Chemical Exploration of the Brain. A Study of Cerebral Excit-ability and Ion Movement, Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Mcllwain, H., 1966. Biochemistry and the Central Nervous System, 3rd ed., Little, Brown, Boston.

    Google Scholar 

  • Mcllwain, H., 1968. Membrane functioning in preparations from the mammalian brain, Brit. Med. Bull. 24: 174.

    Google Scholar 

  • McQuarrie, D. G., and Fingl E., 1958. Effects of single doses and chronic administration of ethanol on experimental seizures in mice, J. Pharmacol. Exp. Therap. 124: 264.

    Google Scholar 

  • Mendelson, J. H., and Mello, N. K., 1964. Potassium-stimulated respiration of rat cerebral cortex. Effect of ethanol on tissue from alcohol preferring and non-preferring animals, Quart. J. Studies Alc. 25: 235.

    Google Scholar 

  • Miller, D. A., and Miller, J. A., Jr., 1967. Interactions among ethanol, hypothermia, and asphyxia in guinea pigs, Cryobiology 3: 400.

    Google Scholar 

  • Miller, K. W., Paton, W. D. M., and Smith, E. B., 1965. Site of action of general anaesthetics, Nature 206: 574.

    Google Scholar 

  • Miller, S. L., 1961. A theory of gaseous anaesthetics, Proc. Natl. Acad. Sci. U.S. 47: 151.

    Google Scholar 

  • Moore, J. W., 1966. Effects of ethanol on ionic conductances in the squid axon membrane, Psychosomat. Med. 28: 450.

    Google Scholar 

  • Moore, J. W., Ulbricht, W., and Takata, M., 1964. Effect of ethanol on the sodium and potassium conductances of the squid membrane, J. Gen. Physiol. 48: 279.

    Google Scholar 

  • Moss, J. N., Smyth, R. D., Beck, H., and Martin, G. J., 1967. Ethanol impact on brain acetylcholine and its modification by cysteine, Arch. Intern. Pharmacodyn. 168: 235.

    Google Scholar 

  • Mouton, M., Lefournier-Contensou, C., and Chalopin, H., 1967. Incidence de l’in-toxication alcoolique sur la teneur en acide y-aminobutyrique du cerveau de la Souris, Compt. Rend. Acad. Sci. (Paris) 264: 2649.

    Google Scholar 

  • Nachmansohn, D., 1959. Chemical and Molecular Basis of Nerve Activity, Academic Press, New York and London.

    Google Scholar 

  • Nelemans, F. A., 1962. The influence of various substances on the acetylcholine contracture of the frog’s isolated abdominal muscle, Acta Physiol. Pharmacol. Neerl. 11: 76.

    Google Scholar 

  • Nukada, T., and Andoh, N., 1967. Ethyl alcohol inhibition of brain mitochondrial re-spiration stimulated by dinitrophenol, Japan. J. Pharmacol. 17: 325.

    Google Scholar 

  • Ogata, S., and Saji, H., 1966. Distribution of alcohol in various internal organs of alcoholic habit and non-habit mice, Japan. J. Studies Alc. 1: 118.

    Google Scholar 

  • Okada, K., 1967. Effects of calcium and magnesium ions on the frequency of miniature end-plate potential discharges in amphibian muscle in the presence of ethyl alcohol, Experientia 23: 363.

    Google Scholar 

  • Okada, K., and Adachi, M., 1962. Effect of ethyl alcohol on the end-plate potential, J. Physiol. Soc. Japan 23: 655.

    Google Scholar 

  • Pauling, L., 1961. A molecular theory of general anesthesia, Science 134: 15.

    Google Scholar 

  • Pauling, L., 1964. The hydrate microcrystal theory of general anesthesia, Anesth. Analg. 43: 1.

    Google Scholar 

  • Quastel, J. H., 1957. In Neuropharmacology, (H. A. Abramson, ed.), pp. 169–175, Trans. Conf., 3rd, Princeton, N. J., 1956, Josiah Macy, Jr. Foundation, New York.

    Google Scholar 

  • Quastel, J. H., 1958. Effects of aliphatic alcohol on the metabolism of brain and liver, Quart. J. Studies Alc. 20: 428.

    Google Scholar 

  • Quastel, J. H., 1959. Enzymatic mechanisms of the brain and the effects of some neuro-tropic agents, Proc. Intern. Congr. Biochem., 4th, Vienna, 1958, Vol. 3: 90.

    Google Scholar 

  • Quastel, J. H., 1962. In Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel

    Google Scholar 

  • eds.), 2nd ed. pp. 790–812, Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Quastel, J. H., 1965. Effects of drugs on metabolism of the brain in vitro, Brit. Med., Bull. 21: 49.

    Google Scholar 

  • Quastel, J. H., and Quastel, D. M. J., 1961. The Chemistry of Brain Metabolism in Health and Diseases, Charles C Thomas, Springfield, Ill.

    Google Scholar 

  • Rang, H., 1960. Unspecific drug action. The effects of a homologous series of primary alcohols, Brit J. Pharmacol. 15: 185.

    Google Scholar 

  • Redetzki, H. M., 1967. Effects of alcohol on adenine nucleotide levels of mouse brain, Quart. J. Studies Alc. 28: 225.

    Google Scholar 

  • Rehak, M. J., 1964. The effects of ethyl alcohol and acetaldehyde on oxidative phosphorylation on rat brain mitochondria and rat liver mitochondria, Dissertation. University Microfilms 63–6395, Ann Arbor, Mich.

    Google Scholar 

  • Ritchie, J. M., 1967. The oxygen consumption of mammalian non-myelinated nerve fibres at rest and during activity, J. Physiol. (London) 188: 309.

    Google Scholar 

  • Robertson, J. D., and Stewart, C. P., 1932. The effect of alcohol on the oxygen uptake of brain tissue, Biochem. J. 26: 65.

    Google Scholar 

  • Rosenberg, P., and Bartels, E., 1967. Drug effects on the spontaneous electrical activity of the squid giant axon, J. Pharmacol. Exptl. Therap. 155: 532.

    Google Scholar 

  • Rosenfeld, G., 1960a. Inhibitory influence of ethanol on serotonin metabolism, Proc. Soc. Exp. Biol. Med. 103: 144.

    Google Scholar 

  • Sachdev, K. S., Panjwani, M. H., and Joseph, A. D., 1963. Potentiation of the response to acetylcholine on the frog’s rectus abdominis by ethyl alcohol, Arch. Intern. Pharmacodyn. Therap. 145: 36.

    Google Scholar 

  • Sachdev, K. S., Rana, P. K., Dave, K. C., and Joseph, A. D., 1964. A study of the mechanism of action of the potentiation by aliphatic alcohols of the acetylcholine response on the frog’s rectus abdominis, Arch. Intern. Pharmacodyn. Therap. 152: 408.

    Google Scholar 

  • Saito, H., 1962. Study of the effect of central nervous depressants on the acid-soluble nucleotides of the brain, Jap., Tohoku Med. J. 65: 113. (Abstr., 1964, Quart. J. Studies Alc. 25: 759 ).

    Google Scholar 

  • Singer, I., and Tasaki, I., 1968. In Biological Membranes. Physical Fact and Function (D. Chapman, ed.), pp. 347–438, Academic Press, London and New York.

    Google Scholar 

  • Skou, J. C., 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23: 394.

    Google Scholar 

  • Skou, J. C., 1958. Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nerve-tissue lipids, Biochim. Biophys. Acta 30: 625.

    Google Scholar 

  • Skou, J. C., 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev. 45: 596.

    Google Scholar 

  • Sutherland, V. C., and Rikimaru, M., 1964. The regional effects of adrenalectomy and ethanol on cerebral amino acids in the rat. Intern. J. Neuropharmacol. 3: 135.

    Google Scholar 

  • Sutherland, V. C., Hine, C. H., and Burbridge, T. N., 1956. The effect of ethanol on cerebral cortex metabolism in vitro, J. Pharmacol. Exp. Therap. 116: 469.

    Google Scholar 

  • Sutherland, V. C., Burbridge, T. N., Adams, J. E., and Simon, A., 1960. Cerebral metabolism in problem drinkers under the influence of alcohol and chlorpromazine hydrochloride, J. Appl. Physiol. 15: 189.

    Google Scholar 

  • Sytinskii, I. A., and Priyatkina, T. N., 1964. Effect of certain drugs on gamma-aminobutyric acid content of the central nervous system, Fed. Proc. ( Trans. Suppl. ) 23: 879.

    Google Scholar 

  • Takemori, A. E., 1961. Cellular adaptation to morphine in rats, Science 133: 1018.

    Google Scholar 

  • Taylor, R. E., 1959. The effect of procaine on electrical properties of squid axon membrane, Am. J. Physiol. 196: 1071.

    Google Scholar 

  • Truitt, E. B., Bell, F. K., and Krantz, J. C., 1956. Anesthesia. LIII. Effects of alcohols and acetaldehyde on oxidative phosphorylation in brain, Quart. J. Studies Alc. 17: 594.

    Google Scholar 

  • Verworn, M., 1912. Narcosis, Harvey Lectures, 1911–12: 52.

    Google Scholar 

  • Wallgren, H., 1960. Comparison of the effect of ethanol and malonate on the respiration of rat brain cortex slices, Acta Physiol. Scand. 49: 216.

    Google Scholar 

  • Wallgren, H., 1961. Effects of acetylcholine analogues and ethanol on the respiration of brain cortex tissue in vitro, Biochem. Pharmacol. 6: 195.

    Google Scholar 

  • Wallgren, H., 1963. Rapid changes in creatine and adenosine phosphates of cerebral cortex slices on electrical stimulation with special reference to the effect of ethanol, J. Neurochem. 10: 349.

    Google Scholar 

  • Wallgren, H., 1966. Effects of alcohol on biochemical processes in the central nervous system, Psychosomat. Med. 28: 431.

    Google Scholar 

  • Wallgren, H., 1967. Biochemical aspects of the effects of ethanol on the central nervous system, XXXVI Congrès Int. Chim. Industrielle, Bruxelles 1966, Compt. Rend. 3: 812.

    Google Scholar 

  • Wallgren, H., 1971. In Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 6, Plenum Press, New York (in press).

    Google Scholar 

  • Wallgren, H., and Barry, H., III,1970. Action of Alcohol (2 Vols.), Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Wallgren, H., and Kulonen, E., 1960. Effect of ethanol on respiration of rat-brain-cortex slices, Biochem. J. 75: 150.

    Google Scholar 

  • Wallgren, H., and Lindbohm, R., 1961. Adaptation to ethanol in rats with special reference to brain tissue respiration, Biochem. Pharmacol. 8: 423.

    Google Scholar 

  • Yamamoto, C., and Mcllwain, H., 1966. Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro, J. Neurochem. 13: 1333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wallgren, H. (1971). Effect of Ethanol on Intracellular Respiration and Cerebral Function. In: Kissin, B., Begleiter, H. (eds) The Biology of Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6525-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6525-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6527-7

  • Online ISBN: 978-1-4615-6525-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics