Skip to main content

Influence of Attachment on Microbial Metabolism and Growth in Aquatic Ecosystems

  • Chapter
Bacterial Adhesion

Abstract

Among diverse microbial habitats, the aquatic environment offers readily available energy sources to both autotrophic and heterotrophic organisms. Photoreductive energy in the form of photosynthetically active radiation (PAR) can be transmitted to at least a depth of 100 m of much of the world’s pelagic oceanic and freshwater systems (Hutchinson, 1957, Raymont, 1980). Products of photosynthesis are either directly released by photoautotrophs (Fogg, 1966) or are introduced into the water column through cellular lysis and decomposition processes (Golterman, 1964; Mankaeva, 1966; Daft and Stewart, 1973). Such products, as well as dissolved and particulate inorganic nutrients, are effectively dispersed either through molecular diffusion or turbulent mixing, the latter being particularly important in radiant-energy-rich, near-surface layers (epilimnia). Despite the abundance of PAR and positive effects of convective, diffusive, and turbulent mixing on microbial growth, vast regions, approximating 70 to 80% of our oceans and at least 50% of our freshwater systems, exhibit exceedingly low rates of photosynthetic and chemosynthetic primary production (Parsons and Takahashi, 1973; Wetzel, 1983). As a result, biomass production among heterotrophic I microorganisms and higher-ranked animal consumers of organic matter is also restricted. Waters where such production processes are severely limited in magnitude are termed oligotrophia (Hutchinson, 1957). Most often, inorganic nutrient deficiencies have been identified as the chief factors controlling, and hence limiting, photosynthetic production in illuminated (euphotic) surface waters (Ryther, 1963; Likens, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., 1969, Chemoreceptors in bacteria, Science 166:1588–1597.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, M., 1971, Microbial Ecology, Wiley, New York.

    Google Scholar 

  • Altman, F. P., 1972, An Introduction to the Use of Tetrazolium Salts in Quantitative Enzyme Cytochemistry, Koch-Light Laboratories, Colnbrook, England.

    Google Scholar 

  • Arends, J., and Jongebloed, W. L., 1977, The enamel substrate characteristics of the enamel surface, Swed. Dent.J. 1:215–221.

    PubMed  CAS  Google Scholar 

  • Austin, B., Allen, D. A., Zachary, A., Belas, M. R., and Colwell, R. R., 1978, Ecology and taxonomy of bacteria attaching to wood surfaces in a tropical harbor. Can. J. Microbiol. 25:447–461.

    Article  Google Scholar 

  • Bautista, M. F., 1983, Photosynthesis and N2 fixation in microbial intertidal mat (Shackleford Island), North Carolina, M.Sc. thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Bell, W., and Mitchell, R., 1972, Chemotactic and growth responses of marine bacteria to algal extracellular products, Biol. Bull. 143:265–277.

    Article  Google Scholar 

  • Bitton, G., and Marshall, K. C. (eds.), 1980, Adsorption of Microorganisms to Surfaces, Wiley, New York.

    Google Scholar 

  • Brown, C. M., Ellwood, D. C., and Hunter, J. R., 1977, Growth of bacteria on surfaces: Influence of nutrient limitation, FEMS Microbiol. Lett. 1:163–166.

    Article  CAS  Google Scholar 

  • Burris, J. E., 1977, Photosynthesis, photorespiration, and dark respiration in eight species of algae, Mar. Biol. 39:371–379.

    Article  CAS  Google Scholar 

  • Caldwell, D. E., and Caldwell, S. J., 1978, A Zoogloea sp. associated with blooms of Anabaenaflos-aquae, Can.J. Microbiol. 24:922–931.

    Article  PubMed  CAS  Google Scholar 

  • Calow, P., 1977, Conversion efficiencies in heterotrophic organisms, Biol. Rev. Cambridge Philos. Soc. 52:385–409.

    Article  Google Scholar 

  • Cappenberg, T. E., and Jongejan, E., 1977, Microenvironments for sulfate reduction and methane production in freshwater sediments, in: Environmental Bio geochemistry and Geomicrobiology, Volume 1 (W. E. Krumbein, ed.), Ann Arbor Science, Michigan, pp. 129–138.

    Google Scholar 

  • Carlucci, A. F., and Strickland, J. D. H., 1968, The isolation, purification and some kinetic studies of marine nitrifying bacteria, J. Exp. Mar. Biol. Ecol. 2:156–166.

    Article  CAS  Google Scholar 

  • Carpenter, E. J., and Price, C. C., IV, 1976, Marine Oscillatoria (Trichodesmium): Explanation for aerobic nitrogen fixation without heterocysts, Science 191:1278–1279.

    Article  PubMed  CAS  Google Scholar 

  • Chet, I., and Mitchell, R., 1976, Ecological aspects of microbial chemotactic behavior, Annu. Rev. Microbiol. 30:221–239.

    Article  PubMed  CAS  Google Scholar 

  • Chet, I., Asketh, P., and Mitchell, R., 1975, Repulsion of bacteria from marine surfaces, Appl. Microbiol. 30:1043–1045.

    PubMed  CAS  Google Scholar 

  • Clark, A., 1974, The Chemisorptive Bond, Academic Press, New York.

    Google Scholar 

  • Cole, J. J., Likens, G. E., and Strayer, D., 1982, Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria, Limnol. Oceanogr. 27:1080–1090.

    Article  CAS  Google Scholar 

  • Corpe, W. A., 1980, Microbial surface components involved in adsorption of microorganisms onto surfaces, Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 105–144.

    Google Scholar 

  • Costerton, J. W., 1980, Some techniques involved in study of adsorption of microorganisms to surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York. pp. 403–424.

    Google Scholar 

  • Daft, M. J., and Stewart, W. D. P., 1973, Light and electron microscope observations on algal lysis by bacterium CP-1, New Phytol. 72:799–808.

    Article  Google Scholar 

  • Dawson, M. P., Humphrey, B., and Marshall, K. C., 1981, Adhesion: A Tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol. 6:195–198.

    Article  Google Scholar 

  • Dazzo, F., 1980, Adsorption of microorganisms to roots and other plant surfaces, in: Adsorption of Microorganismsto Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 253–316.

    Google Scholar 

  • Dempsey, M. J., 1981, Colonisation of antifouling paints by marine bacteria, Bot. Mar. 24:185–191.

    Article  CAS  Google Scholar 

  • Derjaguin, B. V., and Landau, L., 1941, Theory of stability of strongly charged lyophobic soils and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physiochim. URSS 14:633–651.

    Google Scholar 

  • Eighmy, T. T., Maratea, D., and Bishop, P. L., 1983, Electron microscopic examination of wastewater biofilm formation and structural components, Appl. Environ. Microbiol. 45:1921–1931.

    PubMed  CAS  Google Scholar 

  • Ellwood, D. C., Melling, J., and Rutter, P. (eds.), 1979, Adhesion of Microorganisms to Surfaces, Academic Press, New York.

    Google Scholar 

  • Eloff, J. N., Steinitz, Y., and Shilo, M., 1976, Photooxidation of cyanobacteria in natural conditions, Appl.Environ. Microbiol. 31:119–126.

    PubMed  CAS  Google Scholar 

  • Engelmann, T. W., 1881, Neue Methode zur Untersuchung der Sauerstoffauscheidung Pflanzicher und Thierischer Organismen, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 25:285–292.

    Article  Google Scholar 

  • Estermann, E. F., and McLaren, A. D., 1959, Stimulation of bacterial proteolysis by adsorbents, J. Soil. Sci. 10:64–69.

    Article  CAS  Google Scholar 

  • Finenko, Z. Z., and Zaika, V. E., 1970, Particulate organic matter and its role in the productivity of the sea, in: Marine Food Chains (J. H. Steele, ed.), University of California Press, Berkeley, pp. 32–44.

    Google Scholar 

  • Fletcher, M., 1979a, A microautoradiographic study of the activity of attached and free-living bacteria, Arch.Microbiol. 122:271–274.

    Article  Google Scholar 

  • Fletcher, M., 1979b, The attachment of bacteria to surfaces in aquatic environments, in: Adhesion of Micro-organisms to Surfaces (D. C. Ellwood, J. Melling, and P. Rutter, eds.), Academic Press, New York, pp. 87–108.

    Google Scholar 

  • Fletcher, M., and Floodgate, G. D., 1973, An electron microcopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces, J. Gen. Microbiol. 74:325–334.

    CAS  Google Scholar 

  • Fletcher, M., and Loeb, G., 1979, The influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37:67–72.

    PubMed  CAS  Google Scholar 

  • Fogel, S., Chet, I., and Mitchell, R., 1971, The ecological significance of bacterial chemotaxis, Bacteriol. Proc. 28:G31 (abstract).

    Google Scholar 

  • Fogg, G. E., 1966, The extracellular products of algae, Oceanogr. Mar. Biol. Annu. Rev. 4:195–212.

    CAS  Google Scholar 

  • Fogg, G. E., Stewart, W. D. P., Fay, P., and Walsby, A. E., 1973, The Blue-Green Algae, Academic Press, New York.

    Google Scholar 

  • Gallon, J. R., Kurz, W. G. W., and LaRue, T. A., 1975, The physiology of nitrogen fixation by a Gloeocapsa sp., in: Nitrogen Fixation by Free-Living Microorganisms (W. D. P. Stewart, ed.), Cambridge University Press, London, pp. 159–173.

    Google Scholar 

  • Gallucci, K. K., 1981, Algal-bacterial symbiosis in the Chowan River, N. C., M.Sc. thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Geesey, G. G., Mutch, R., Costerton, J. W., and Green, R. B., 1978, Sessile bacteria: An important component of the microbial population in a small mountain stream, Limnol. Oceanogr. 23:1214–1223.

    Article  CAS  Google Scholar 

  • Goldman, C. R., and De Amezaga, E., 1974, Primary productivity of the littoral zone of Lake Tahoe, California-Nevada, Symp. Biol. Hung. 15:49–62.

    Google Scholar 

  • Goldman, C. R., and De Amezaga, E., 1975, Spatial and temporal changes in the primary productivity of Lake Tahoe, California-Nevada between 1959 and 1971, Verh.-Int. Ver. Theor. Limnol. Angew. 19:812–819.

    Google Scholar 

  • Golterman, H. L., 1964, Mineralization of algae under sterile conditions or by bacterial breakdown, Verh.-Int. Ver.Theor. Angew. Limnol. 15:544–548.

    Google Scholar 

  • Haack, T. K., and McFeters, G. A., 1982, Nutritional relationships among microorganisms in an epilithic biofilm community, Microb. Ecol. 8:115–126.

    Article  CAS  Google Scholar 

  • Harden, F. P., and Harris, J. O., 1953, The isoelectric point of bacterial cells, J. Bacteriol. 65:198–202.

    PubMed  CAS  Google Scholar 

  • Harrison, P. G., and Harrison, B. J., 1980, Interactions of bacteria, microalgae and copepods in a detritus microcosm through a flask darkly, in: Marine Benthic Dynamics (K. R. Tenore and B. C. Coull, eds.), University of South Carolina Press, Columbia, pp. 373–386.

    Google Scholar 

  • Harvey, R. W., and Young, L. Y., 1980, Enumeration of particle-bound and unattached respiring bacteria in the salt marsh environment, Appl. Environ. Microbiol. 40:156–160.

    PubMed  CAS  Google Scholar 

  • Haydon, D. A., 1964, The electric double layer and electrokinetic phenomena, Recent Prog. Surf. Sci. 1:94–158.

    CAS  Google Scholar 

  • Hendricks, C. W., 1974, Sorption of heterotrophic and enteric bacteria to glass surfaces in the continuous culture of river water, Appl. Microbiol. 28:572–578.

    PubMed  CAS  Google Scholar 

  • Herbst, V., and Overbeck, J., 1978, Metabolic coupling between the alga Oscillatoria redekei and accompanying bacteria, Naturwissenschaften 65:598–599.

    Article  CAS  Google Scholar 

  • Heukelekian, H., and Heller, A., 1940, Relation between food concentration and surface for bacterial growth, J.Bacteriol. 40:547–558.

    CAS  Google Scholar 

  • Higgins, I. V., and Burns, R. G., 1975, The Chemistry and Microbiology of Pollution, Academic Press, New York.

    Google Scholar 

  • Hirsch, P., 1978, Microbial mats in a hypersaline solar lake: Types, composition, in: Abstr. Third Int. Symp.Environ. Biogeochem. (W. E. Krumbein, ed.) Occasional Publication No. 1, University of Oldenburg, West Germany, pp. 56–57.

    Google Scholar 

  • Hobbie, J. E., and Crawford, C. C., 1969, Bacterial uptake of organic substrate: New Methods of study and application to eutrophication, Verh.-Int. Ver. Theor. Angew. Limnol. 17:725–730.

    Google Scholar 

  • Hull, M., and Kitchener, J. A., 1969, Interactions of spherical colloidal particles with planar surfaces, FaradaySoc. Trans. 65:304–310.

    Google Scholar 

  • Hutchinson, G. E., 1957, A Treatise on Limnology, Volume 2, Wiley, New York.

    Google Scholar 

  • Hutchinson, G. E., 1961, The paradox of the plankton, Am. Nat. 115:137–143.

    Article  Google Scholar 

  • Hutzinger, O., Van Lelyveld, I. H., and Zoeteman, B. C. J., 1977,Aquatic Pollutants: Transformation andBiological Effects, Pergammon Press, Elmsford, N.Y.

    Google Scholar 

  • Hynes, H. B. N., 1970, The Ecology of Running Waters, University of Toronto Press, Toronto.

    Google Scholar 

  • Indrebo, B., Pengerud, B., and Dundas, I., 1977, Microbial activities in a permanently stratified estuary. II. Microbial activities at the oxic-anoxic interface, Mar. Biol. 51:305–309.

    Article  Google Scholar 

  • Jannasch, H. W., and Pritchard, P. H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, Mem. Ist. Ital. Idrobiol. Suppl. 29:289–308.

    CAS  Google Scholar 

  • Jorgensen, B. B., 1977, Bacterial sulfate reduction within reduced microniches of oxidised marine sediments, Mar.Biol. 41:7–17.

    Article  Google Scholar 

  • Jorgensen, B. B., and Revsbech, N. P., 1983, Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp. in O2 and H2S microgradients, Appl. Environ. Microbiol. 45:1261–1270.

    Google Scholar 

  • Jorgensen, B. B., Revsbech, N. P., Blackburn, T. H., and Cohen, Y., 1979, Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in cyanobacterial mat sediments, Appl. Environ. Microbiol. 38:46–58.

    PubMed  CAS  Google Scholar 

  • Kaneko, T., and Colwell, R. R., 1975, Adsorption of Vibrio parahemolyticus onto chitin and copepods, Appl.Microbiol. 29:269–274.

    PubMed  CAS  Google Scholar 

  • Kefford, B., Kjelleberg, S., and Marshall, K. C., 1982, Bacterial scavenging: Utilization of fatty acids located at a solid-liquid interface, Arch. Microbiol. 133:257–260.

    Article  CAS  Google Scholar 

  • Kholdebarin, B., and Oertli, J. J., 1977, Effect of suspended particles and their sizes on nitrification in surface water, J. Water Pollut. Control Fed. 49:1693–1697.

    CAS  Google Scholar 

  • Kirchman, D., and Mitchell, R., 1982, Contribution of particle bound bacteria to total microheterotrophic activity in five ponds and two marshes, Appl. Environ. Microbiol. 43:200–209.

    PubMed  CAS  Google Scholar 

  • Kitchener, J. A., 1973, Surface forces in the deposition of small particles, J. Soc. Cosmet. Chem. 24:709–713.

    Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43:1166–1172.

    PubMed  CAS  Google Scholar 

  • Koshland, D. E., 1980, Bacterial Chemotaxis as a Model Behavioral System, Raven Press, New York.

    Google Scholar 

  • Kuhn, R., and Jerchel, D., 1941, Uber Investseifen. VIII. Mitteil. Reduktion von Tetrazoliumsalzen durch Bacterien, garende Hefe und Keimende Samen, Ber. Dtsch. Chem. Ges. 74:949–952.

    Article  Google Scholar 

  • Kunc, F., and Stotzky, G., 1980, Acceleration by montmorillonite of nitrification in soil, Folia Microbiol. (Prague) 25:106–125.

    Article  CAS  Google Scholar 

  • Lange, W., 1973, Bacteria assimilable organic compounds, phosphate and enhanced growth of bacteria associated blue-green algae, J. Phycol. 9:507–511.

    Article  Google Scholar 

  • Larsson, V., and Hagstrom, A., 1979, Phytoplankton extracellular release as an energy source for bacterial growth in a pelagic ecosystem, Mar. Biol. 52:199–206.

    Article  Google Scholar 

  • Laycock, A., 1974, The detrital food chain based on seaweed. I. Bacteria associated with the surface of Laminaria fronds, Mar. Biol. 25:223–231.

    Article  Google Scholar 

  • Lehman, J. T., and Scavia, D., 1982, Microscale patchiness of nutrients in plankton communities, Science 216:729–730.

    Article  PubMed  CAS  Google Scholar 

  • Likens, G. E. (ed.), 1972, Nutrients and Eutrophication: The Limiting Nutrient Controversy, Am. Soc. Limnol. Oceanogr. Spec. Symp. Volume 1.

    Google Scholar 

  • Loeb, G. I., and Neihof, R. A., 1975, Marine conditioning films, Adv. Chem. Serv. 145:319–335.

    Article  CAS  Google Scholar 

  • Loeb, S. L., and Reuter, J. E., 1981, The epilithic periphyton community: A five lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crops, Verh.-Int. Ver. Theor.Limnol. Angew. 21:346–352.

    CAS  Google Scholar 

  • Lovley, D. R., Dwyer, D. F., and Klug, M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl. Environ. Microbiol. 43:1373–1379.

    PubMed  CAS  Google Scholar 

  • Lupton, F. S., and Marshall, K. C., 1981, Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance, Appl. Environ. Microbiol. 42:1085–1092.

    PubMed  CAS  Google Scholar 

  • Mack, W. N., Mack, J. P., and Ackerson, A. O., 1975, Microbial film development in a trickling filter, Microb.Ecol. 2:215–221.

    Article  Google Scholar 

  • McCoy, W. F., Bryers, J. D., Robbins, J., and Costerton, J. W., 1981, Observations of fouling biofilm formation, Can. J. Microbiol. 27:910.

    Article  PubMed  CAS  Google Scholar 

  • MacRitchie, F., and Alexander, A. E., 1963, Kinetics of adsorption of proteins at interfaces. III. The role of electrical barriers in adsorption, J. Colloid Sci. 18:464–469.

    Article  Google Scholar 

  • Madsen, B. L., 1972, Detritus on stones in small streams, Mem. Ist. Ital. Idrobiol. Suppl. 29:385–403.

    Google Scholar 

  • Mankaeva, K. A., 1966, Studies of lysis in culture of Chlorella, Microbiology 35:724–728.

    Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Marshall, K. C., 1979, Growth at interfaces, in: Proceedings of the Dahlem Workshop on Strategy of Life inExtreme Environments (M. Shilo, ed.), Dahlem Konferenzen-Chemie Verlag, Berlin, pp. 281–290.

    Google Scholar 

  • Marshall, K. C., 1980, Adsorption of microorganisms to soils and sediments, in: Adsorption of Microorganisms toSurfaces (G. Bitton and K. C. Marshall, eds.), Wiley, New York, pp. 317–330.

    Google Scholar 

  • Marshall, K. C., Stout, R., and Mitchell, R., 1971a, Mechanism of the initial events in the sorption of marine bacteria to surfaces,J. Gen. Microbiol. 68:337–348.

    CAS  Google Scholar 

  • Marshall, K. C., Stout, R., and Mitchell, R., 1971b, Selective sorption of bacteria from seawater, Can. J.Microbiol. 17:1413–1416.

    Article  PubMed  CAS  Google Scholar 

  • Marszalek, D. S., Gerchako, S. M., and Utey, L. R., 1979, Influence of substrate composition on marine microfouling, Appl. Environ. Microbiol. 38:987–995.

    PubMed  CAS  Google Scholar 

  • Massalski, A., and Leppard, G. G., 1979, Morphological examination of fibrillar colloids associated with algae and bacteria in lakes, J. Fish. Res. Board Can. 36:922–938.

    Article  Google Scholar 

  • Matjevic, E., 1977, The role of chemical complexing in the formation and stability of colloidal dispersions, J.Colloid Interface Sci. 58:374–389.

    Article  Google Scholar 

  • Matson, J. V., and Characklis, W. G., 1976, Diffusion into microbial aggregates, Water Res. 10:877–885.

    Article  CAS  Google Scholar 

  • Meadows, P. S., 1966, Microorganisms attached to marine and freshwater sand grains, Nature (London) 212:1059.

    Article  Google Scholar 

  • Meadows, P. S., and Anderson, J. G., 1968, Microorganisms attached to marine sand grains, J. Mar. Biol. Assoc.U.K. 48:161.

    Article  Google Scholar 

  • Melchiorri-Santolini, U., and Hopton, J. W. (eds.), 1972, Detritus and Its Role in Aquatic Ecosystems, Mem. Ist.Ital. Idrobiol. Suppl. 29.

    Google Scholar 

  • Menge, B. A., 1976, Organization of the New England rocky intertidal community: Role of predation, competition and environmental heterogeneity, Ecol. Monogr. 46:355–381.

    Article  Google Scholar 

  • Monty, L. V., 1967, Distribution and structure of recent stromatolitic algal mats, eastern Andros Islands, Bahamas, Ann. Soc. Geol. Belg. 90:55–68.

    Google Scholar 

  • Mortimer, C. H., 1971, Chemical exchanges between sediments and water in the Great Lakes—Speculations on probable regulatory mechanisms, Limnol. Oceanogr. 16:387–404.

    Article  CAS  Google Scholar 

  • Nalewajko, C., Dunstall, T. G., and Shear, H., 1976, Kinetics of extracellular release in axenic algae and in mixed algal bacterial cultures: Significance in estimation of total (gross) phytoplankton excretion rates, J. Phycol. 12:1–5.

    Google Scholar 

  • Nealson, K. M., and Ford, J., 1980, Surface enhancement of bacterial manganese oxidation: Implications for aquatic environments, Geomicrobiol. J. 2:21–38.

    Article  CAS  Google Scholar 

  • Neihof, R. A., and Loeb, G., 1972, The surface charge of particulate matter in seawater, Limnol. Oceanogr. 17:7–16.

    Article  CAS  Google Scholar 

  • Neumann, A. C., Gebelein, C., and Scoffin, T. P., 1970, The composition, structure and erodibility of subtidal mats, Abaco, Bahamas, J. Sediment, Petrol. 40:274–297.

    Google Scholar 

  • Nicotri, M. E., 1977, Grazing effects of four marine littoral herbivores on the microflora, Ecology 58:1020–1028.

    Article  Google Scholar 

  • Nikitin, D. I., 1973, Electron microscopic studies of attached microorganisms, in: Modern Methods in the Study ofMicrobial Ecology (T. Rosswall, ed.), Bull. Swed. Natl. Sci. Res. Counc. 17:85–91.

    Google Scholar 

  • Paerl, H. W. 1973a, Detritus in Lake Tahoe: Structural Modification by attached microflora, Science 180:496–498.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W., 1973b, The regulation of heterotrophic activity by environmental factors at Lake Tahoe, California-Nevada, Ph.D. thesis, University of California, Davis.

    Google Scholar 

  • Paerl, H. W., 1975, Microbial attachment to particles in marine and freshwater ecosystems, Microb. Ecol. 2:73–83.

    Article  Google Scholar 

  • Paerl, H. W., 1978, Microbial organic carbon recovery in aquatic ecosystems, Limnol. Oceanogr. 23:927–935.

    Article  CAS  Google Scholar 

  • Paerl, H. W., 1979, Study of the importance of nitrogen fixation to the growth of Myriophyllum spicatum (Eurasian Millfoil), Report: National Water Research Institute, Burlington, Ontario, Canada.

    Google Scholar 

  • Paerl, H. W., 1980, Attachment of micro-organisms to living and detrital surfaces in freshwater systems, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley-Interscience, New York, pp. 375–402.

    Google Scholar 

  • Paerl, H. W., 1983, Partitioning of CO2 fixation in the colonial cyanobacterium Microcystis aeruginosa: Mechanism promoting formation of surface scums, Appl. Environ. Microbiol. 46:252–259.

    PubMed  CAS  Google Scholar 

  • Paerl, H. W., and Bland, P. T., 1982, Localized tetrazolium reduction in relation to N2 fixation, CO2 fixation and H2 uptake in aquatic filamentous cyanobacteria, Appl. Environ. Microbiol. 43:218–226.

    PubMed  CAS  Google Scholar 

  • Paerl, H. W., and Goldman, C. R., 1972, Stimulation of heterotrophic and autotrophic activities of a planktonic microbial community by siltation at Lake Tahoe, California, Mem. Ist. Ital. Idrobiol. Suppl. 29:129–147.

    CAS  Google Scholar 

  • Paerl, H. W., and Kellar, P. E., 1978, Significance of bacterial Anabaena (Cyanophyceae) associations with respect to N2 fixation in aquatic habitats, J. Phycol. 14:254–260.

    Article  Google Scholar 

  • Paerl, H. W., and Merkel, S., 1982, The effects of particles on phosphorus assimilation in attached vs. free floating microorganisms, Arch. Hydrobiol. 93:125–134.

    Google Scholar 

  • Paerl, H. W., Richards, R. C., Leonard, R. C., and Goldman, C. R., 1975, Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada, Limnol. Oceanogr. 20:1–8.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Webb, K. L., Baker, J., and Wiebe, W. J., 1981, Nitrogen fixation in waters, in: Nitrogen Fixation, Volume I (W. J. Broughton, ed.), Oxford Science, Oxford, pp. 193–241.

    Google Scholar 

  • Parsons, T. R., and Takahashi, K., 1973, Biological Oceanographic Processes, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Polimeni, C., 1976, Seasonality and life history of a blue-green algal mat on Shackleford Banks, North Carolina, M.Sc. thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Potts, M., 1980, Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula: Distribution, zonation, stratification and taxonomic diversity, Phycologia 19:60–73.

    Article  Google Scholar 

  • Potts, M., and Whitton, B. A., 1979, pH and Eh on Aldabra Atoll. II. Intertidal photosynthetic microbial communities showing zonation, Hydrobiologia 67:99–105.

    Article  Google Scholar 

  • Raymont, J. E. G., 1980, Plankton and Productivity in the Oceans, Volume 1, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Reeburgh, W. S., and Heggie, D. T., 1977, Microbial methane consumption reactions and their effect on methane distributions on freshwater and marine environments, Limnol. Oceanogr. 22:1–9.

    Article  CAS  Google Scholar 

  • Reuter, J. E., Loeb, S. L., and Goldman, C. R., 1985, Nitrogen fixation in oligotrophic Lake Tahoe, in: Periphytonin Freshwater Ecosystems (R. G. Wetzel, ed.), in press.

    Google Scholar 

  • Revsbech, N. P., and Jorgensen, B. B., 1981, Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 -fixation, and oxygen exchange methods, Limnol. Oceanogr. 26:717–730.

    Article  CAS  Google Scholar 

  • Richerson, P. J., Armstrong, R., and Goldman, C. R., 1970, Contemporaneous disequilibrium, a new hypothesis to explain the “paradox of the plankton,” Proc. Natl. Acad. Sci. USA 67:1710–1714.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. D., Mann, K. H., and Novitsky, J. A., 1982, Conversion of the particulate fraction of seaweed detritus to bacterial biomass, Limnol. Oceanogr. 27:1072–1079.

    Article  CAS  Google Scholar 

  • Rogers, H. J., 1979, Adhesion of microorganisms to surfaces: Some general considerations of the role of the envelope, in: Adhesion of Microorganisms to Surfaces (D. C. Ellwood, J. Melling, and P. Rutter, eds.), Academic Press, New York, pp. 30–55.

    Google Scholar 

  • Round, F. E., 1964, The ecology of benthic algae, in: Algae and Man (D. F. Jackson, ed.), Plenum Press, New York, pp. 138–184.

    Chapter  Google Scholar 

  • Round, F. E., 1972, Patterns of seasonal succession of freshwater epipelic algae, Br. Phycol. J. 7:213–221.

    Article  Google Scholar 

  • Ryther, J. H., 1963, Geographic variations in productivity, in: The Sea, Volume 2 (M. N. Hill, ed.), Wiley-Interscience, New York, pp. 347–380.

    Google Scholar 

  • Shanks, A. L., and Trent, J. D., 1979, Marine snow: Microscale nutrient patches, Limnol. Oceanogr. 24:850–854.

    Article  CAS  Google Scholar 

  • Sieburth, J. M., 1975, Microbial Seascapes, University Park Press, Baltimore.

    Google Scholar 

  • Smith, J. E., and Oliver, J. D., 1981, The significance of bacterial attachment in the metabolic activity of bacteria in the deep sea, Abstr. Annu. Meet. Am. Soc. Microbiol.

    Google Scholar 

  • Stark, W. H., Stadler, J., and McCoy, E., 1938, Some factors affecting the bacterial population of freshwater lakes, J. Bacteriol. 36:653–654.

    Google Scholar 

  • Steinberg, C., 1978, Bacteria and their activity in the surfaces of profundal sediments of Lake Walchensea, Upper Bavaria, West Germany, Arch. Hydrobiol. 84:29–41.

    Google Scholar 

  • Stevenson, L. M., 1978, A case for bacterial dormancy in aquatic ecosystems, Microb. Ecol. 4:127–132.

    Article  Google Scholar 

  • Stotzky, G., 1972, Activity, ecology, and population dynamics of microbes in soil, Crit. Rev. Microbiol. 2:59–137.

    Article  CAS  Google Scholar 

  • Strohl, W. R., and Larkin, J. M., 1978, Enumeration, isolation and characterization of Beggiatoa from freshwater sediments, Appl. Environ. Microbiol. 36:755–770.

    PubMed  CAS  Google Scholar 

  • Stull, E. A., 1972, Autoradiographic measurement of the primary productivity of individual species of algae from Castle Lake, California, Ph.D. thesis, University of California, Davis.

    Google Scholar 

  • Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, 2nd ed., Wiley, New York.

    Google Scholar 

  • Sugahara, I., Sugiyama, M., and Kawai, J., 1972, Distribution and activity of nitrogen-cycle bacteria in water-sediments with different concentrations of oxygen, in: Effect of the Open Ocean Environment on MicrobialActivities (R. R. Colwell and R. Y. Morita, eds.), University Park Press, Baltimore, pp. 327–340.

    Google Scholar 

  • Trulear, M. G., and Characklis, W. G., 1979, Dynamics of biofilm processes, in: 34th Annual Purdue IndustrialWastewater Conference, Ann Arbor Science, Ann Arbor, Mich., pp. 838–853.

    Google Scholar 

  • Turner, J. T., 1979, Microbial attachment to copepod fecal pellets and its possible ecological significance, Trans.Am. Microsc. Soc. 98:131–137.

    Article  Google Scholar 

  • Verwey, E. J. W., and Overbeck, J. T. G., 1948, Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam.

    Google Scholar 

  • Wallace, G. T., 1982, The association of copper, mercury and lead with surface-active organic matter in coastal seawater, Mar. Chem. 11:379–385.

    Article  CAS  Google Scholar 

  • Wangersky, P. J., 1977, The role of particulate matter in the productivity of surface waters, Helgol. Wiss.Meeresunters. 30:546–564.

    Article  CAS  Google Scholar 

  • Watt, W. D., 1971, Measuring the primary production rates of individual phytoplankton species in natural mixed populations, Deep-Sea Res. 18:329–339.

    Google Scholar 

  • Wellman, A. M., 1973, Oil floating in the North Atlantic, Mar. Pollut. Bull. 4:190–191.

    Article  Google Scholar 

  • Wellman, A., and Paerl, H. W., 1980, Rapid chemotaxis assay using radioactively labeled bacterial cells, Appl.Environ. Microbiol. 42:216–221.

    Google Scholar 

  • Wetzel, R. G., 1979, The role of the littoral zone and detritus in lake metabolism, Arch. Hydrobiol. Beih. Ergebn.Limnol. 13:145–153.

    Google Scholar 

  • Wetzel, R. G., 1983, Limnology, 2nd ed., Saunders, Philadelphia.

    Google Scholar 

  • Whitton, B. A., and Potts, N., 1982, Marine littoral, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), Blackwell, Oxford, pp. 515–542.

    Google Scholar 

  • Wiebe, W. J., and Pomeroy, L. R., 1972, Microorganisms and their association with aggregates and detritus in the sea: A microscopic study, Mem. Ist. Ital. Idrobiol. Suppl. 29:325–351.

    Google Scholar 

  • Young, L. Y., and Mitchell, R., 1973, Negative chemotaxis of marine bacteria to toxic chemicals, Appl. Microbiol. 25:972–975.

    PubMed  CAS  Google Scholar 

  • Zimmerman, R., Iturriaga, R., and Becker-Birk, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, Appl. Environ. Microbiol. 36:926–935.

    Google Scholar 

  • ZoBell, C. E., 1943, The effect of solid surfaces upon bacterial activity, J. Bacteriol. 46:39–56.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., and Anderson, D. Q., 1936, Observations on the multiplication of bacteria in different volumes of sea water and the influence of folid surfaces, Biol. Bull. 71:324–342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Paerl, H.W. (1985). Influence of Attachment on Microbial Metabolism and Growth in Aquatic Ecosystems. In: Savage, D.C., Fletcher, M. (eds) Bacterial Adhesion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6514-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6514-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6516-1

  • Online ISBN: 978-1-4615-6514-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics