Skip to main content

Stages in the Recognition of Bacteria Using Light as a Source of Energy

  • Chapter
  • 176 Accesses

Part of the book series: Bacteria in Nature ((BANA,volume 1))

Abstract

In the beginning of the nineteenth century, de Saussure established that, for the formation of organic matter by green plants in the light, the amount of carbon dioxide assimilated was stoichiometrically related to the amount of cell material formed and molecular oxygen liberated. Since cell material was more reduced than carbon dioxide, it was generally believed that the oxygen produced originated from carbon dioxide. It was Ingenhousz who had shown in 1779 that only the green-pigmented parts, and not the colorless parts of the plants nor the animals, were capable of oxygen production in the light (Rabinowitch, 1945). We can understand, therefore, that the three characteristics of green color, carbon dioxide assimilation, and oxygen evolution conceptually became the fundamental properties of photoautotrophic organisms for the following 130 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnon, D. I., Allen, M. B., and Whatley, F. R., 1954, Photosynthesis by isolated chloroplasts, Nature (London) 174: 394–396.

    Article  CAS  Google Scholar 

  • Bassham, J. A., and Calvin, M., 1957, The Path of Carbon in Photosynthesis, Prentice Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Bavendamm, W., 1924, Die farblosen und roten Schwefelbakterien des Süß-und Salzwassers, Gustav Fischer, Jena.

    Google Scholar 

  • Beijerinck, M. W., 1901, Photobacteria as a reactive in the investigation of the chlorophyll function, Proc. Akad. Sci. Amst. 4: 45–49.

    Google Scholar 

  • Beijerinck, M. W., 1904, Ueber die Bakterien welche sich im Dunkeln mit Kohlensäure als Kohlenstoffquelle ernähren können, Centralbl. Bakt., Abt. 2, 11: 592–599.

    Google Scholar 

  • Bergeron, J. A., and Fuller, R. C., 1961, The photosynthetic macromolecules of Chlorobium thiosulfatophilum, in: Biological Structure and Function (T. W. Goodwin, O. Lindberg, eds.), Vol. II, Academic Press, New York, pp. 307–324.

    Google Scholar 

  • Blinks, L. R., 1954, The photosynthetic function of pigments other than chlorophyll, Annu. Rev. Plant Physiol. 5: 93–114.

    Article  CAS  Google Scholar 

  • Boatman, E. S., 1964, Observations on the fine structure of spheroplasts of Rhodospirillum rubrum, J. Cell. Biol. 20: 297–311.

    Article  PubMed  CAS  Google Scholar 

  • Boatman, E. S., and Douglas, H. C., 1961, Fine structure of the photosynthetic bacterium Rho-domicrobium vannielii,]. Cell. Biol. 11: 469–483.

    Article  CAS  Google Scholar 

  • Buder, J., 1915, Zur Kenntnis des Thiospirillum jenense und seiner Reaktionen auf Lichtreize, Jb. Bot. 56: 529–584.

    Google Scholar 

  • Buder, J., 1918, Bakteriospektrogramme von Purpurbakterien, Ber. dtsch. bot. Ges. 36: 103–104.

    Google Scholar 

  • Buder, J., 1919, Zur Biologie des Bacteriopurpurins und der Purpurbakterien, Jb. Bot. 58: 525–628.

    CAS  Google Scholar 

  • Clayton, R. K., 1959, Phototaxis of purple bacteria, in: Handbuch der Pflanzenphysiologie (W. Ruhland, ed.), Band 17, Teil 1, Springer-Verlag, Berlin, pp. 371–387.

    Google Scholar 

  • Cohen-Bazire, G., 1963, Some observations on the organization of the photosynthetic apparatus in purple and green bacteria, in: Bacterial Photosynthesis (H. Gest, A. San Pietro, and L. P. Vernon, eds.), Antioch Press, Yellow Springs, Ohio, pp. 89–114.

    Google Scholar 

  • Cohen-Bazire, G., and Kunisawa, R., 1963, The fine structure of Rhodospirillum rubrum, J. Cell. Biol. 16: 401–419.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire, G., Pfennig, N., and Kunisawa, R., 1964, The fine structure of green bacteria, J. Cell. Biol. 22: 207–225.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire, G., and Sistrom, W. R., 1966, The procaryotic photosynthetic apparatus, in: The Chlorophylls (L. P. Vernon and G. R. Seely, eds.), Academic Press, New York, pp. 313–341.

    Google Scholar 

  • Conti, S. F., and Hirsch, P., 1965, Biology of budding bacteria. III. Fine structure of Rhodomi-crobium and Hyphomicrobium spp., J. Bacteriol. 89: 503–512.

    PubMed  CAS  Google Scholar 

  • Drews, G., 1960, Untersuchungen zur Substruktur der “Chromatophoren” von Rhodospirillum rubrum and Rhodospirillum molischianum, Arch. Mikrobiol. 36: 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Drews, G., and Giesbrecht, P., 1963, Zur Morphogenese der Bakterien-“Chromatophoren” (Thy-lakoide) und zur Synthese des Bakterio-chlorophylls bei Rhodopseudomonas spheroides und Rhodospirillum rubrum. Zentbl. Bakteriol. Parasit. kde. Infektionskr. Hyg., Abt. 1: Orig. Reihe A 190, 508–536.

    CAS  Google Scholar 

  • Duysens, L. N. M., and Amez, J., 1962, Function and identification of two photochemical systems in photosynthesis. Biochim. Biophys. Acta 64: 243–260.

    Article  CAS  Google Scholar 

  • Engelmann, Th. W., 1881, Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und tierischer Organismen, Pflügers Arch. ges. Physiol. 25: 285–292.

    Article  Google Scholar 

  • Engelmann, Th. W., 1882, Zur Biologie der Schizomyceten, Bot. Ztg. 40: 321–325; 337-341.

    Google Scholar 

  • Engelmann, Th. W., 1883a, Farbe und Assimilation, Bot. Ztg. 41: 1–13, 17-29.

    Google Scholar 

  • Engelmann, Th. W., 1883b, Bacterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht-und Farbensinnes, Pflügers Arch. ges. Physiol. 30: 95–124.

    Article  Google Scholar 

  • Engelmann, Th. W., 1884, Untersuchungen über die quantitative Beziehung zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen, Bot. Ztg. 42: 81–93; 97-105.

    Google Scholar 

  • Engelmann, Th. W., 1888, Die Purpurbakterien und ihre Beziehungen zum Licht, Bot. Ztg. 46: 661–669; 677-689; 693-701; 709-720.

    Google Scholar 

  • Ewart, A. J., 1897, On the evolution of oxygen from coloured bacteria, J. Linn. Soc. Bot. 33: 123–155.

    Article  Google Scholar 

  • French, C. S., 1938, The chromoproteins of photosynthetic purple bacteria, Science 88: 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Frenkel, A. W., 1954, Light induced photophosphorylation by cell free preparations of photosynthetic bacteria, J. Am. Chem. Soc. 76: 5568–5569.

    Article  CAS  Google Scholar 

  • Frenkel, A. W., 1959, Light-induced reactions of bacterial chromatophores and their relation to photosynthesis, Annu. Rev. Plant Physiol. 10: 53–70.

    Article  CAS  Google Scholar 

  • Gibbs, S. P., Sistrom, W. R., and Worden, P. B., 1965, The photosynthetic apparatus of Rhodospirillum molischianum, J. Cell. Biol. 26: 395–412.

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht, P., and Drews, G., 1962, Elektronenmikroskopische Untersuchungen über die Entwicklung der “Chromatophoren” von Rhodospirillum molischianum Giesberger, Arch. Mikrobiol. 43: 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Göbel, F., 1976, Der Quantenbedarf des Wachstums phototropher blaugrüner Bakterien, in: Jahresbericht, Gesellschaft für Strahlen-und Umweltforschung, München, pp. 70–71.

    Google Scholar 

  • Göbel, F., 1978, Quantum efficiencies of growth, in: The Photosynthetic Bacteria (R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 907–925.

    Google Scholar 

  • Gorlenko, V. M., and Zhilina, T. N., 1968, Study of the ultrastructure of green sulfur bacteria, strain SK-413, Mikrobiologiya 37: 1052–1056.

    CAS  Google Scholar 

  • Hickman, D. D., and Frenkel, A. W., 1965, Observations on the structure of Rhodospirillum molischianum, J. Cell. Biol. 25: 261–278.

    Article  PubMed  CAS  Google Scholar 

  • Holt, S. C., and Marr, A. G., 1965, Location of chlorophyll in Rhodospirillum rubrum, J. Bacteriol. 89: 1402–1412.

    PubMed  CAS  Google Scholar 

  • Holt, S. C., Conti, S. F., and Fuller, R. C., 1966, Photosynthetic apparatus in the green bacterium Chloropseudomonas ethylicum, J. Bacteriol. 91: 311–322.

    PubMed  CAS  Google Scholar 

  • Keil, F., 1912, Beiträge zur Physiologie der farblosen Sehwefelbacterien, Beitr. Biol. Pflanz. 11: 335–372.

    Google Scholar 

  • Kluyver, A. J., Donker, H. J. L., 1926, Die Einheit in der Biochemie, Chemie der Zelle und Gewebe 13: 134–190.

    CAS  Google Scholar 

  • Kluyver, A. J., and van Niel, C. B., 1956, The Microbes’ Contribution to Biology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Lankester, R., 1876, Further observation on a peach-or red-coloured bacterium— Bacterium rubescens, Quart. J. microc. Sci. N.s. 16: 27–40.

    Google Scholar 

  • Mayer, J. R., 1845, Die organische Bewegung in ihrem Zusammenhang mit dem Stoffwechsel: Ein Beitrag zur Naturkunde, Drechler’sche Buchhandlung, Heilbronn.

    Google Scholar 

  • Molisch, H., 1907, Die Purpurbakterien nach neuen Untersuchungen, Gustav Fischer, Jena.

    Google Scholar 

  • Müller, F. M., 1933, On the metabolism of the purple sulphur bacteria in organic media, Arch. Mikrobiol. 4: 131–166.

    Article  Google Scholar 

  • Nathanson, A., 1904, Über eine neue Gruppe von farblosen Schwefelbakterien und ihren Stoffwechsel, Mitt. zool. Station, Neapel 15: 655–680.

    Google Scholar 

  • Olson, J. M., Prince, R. C., and Brune, D. C., 1977, Reaction-center complexes from green bacteria, Brookhaven Symp. Biol. 28: 238–246.

    Google Scholar 

  • Pfennig, N., 1962, Beobachtungen über das Schwämen von Chromatium okenii, Arch. Mikrobiol. 42: 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., 1967, Photosynthetic bacteria, Annu. Rev. Microbiol. 21: 285–324.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., and Cohen-Bazire, G., 1967, Some properties of the green bacterium Pelodictyon clathratiforme, Arch. Microbiol. 59: 226–236.

    Article  CAS  Google Scholar 

  • Pierson, B. K., and Castenholz, R. W., 1974, A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, Arch. Microbiol. 100: 5–24.

    Article  CAS  Google Scholar 

  • Pierson, B. K., and Castenholz, R. W., 1978, Photosynthetic apparatus and cell membranes of the green bacteria, in: The Photosynthetic Bacteria (R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 179–197.

    Google Scholar 

  • Rabinowitch, E. I., 1945, Photosynthesis and Related Processes, Vol. 1, Interscience Publ. Inc., New York.

    Google Scholar 

  • Remsen, Ch. C., 1978, Comparative subcellular architecture of photosynthetic bacteria, in: The Photosynthetic Bacteria (R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 31–60.

    Google Scholar 

  • Schachman, H. K., Pardee, A. B., and Stanier, R. Y., 1952, Studies on the molecular organization of microbial cells, Arch. Biochem. 38: 213–221.

    Article  Google Scholar 

  • Skene, M., 1914, A contribution to the physiology of the purple sulfur bacteria, New Phytologist 13: 1–17.

    Article  Google Scholar 

  • Staehelin, L. A., Golecki, J. R., Fuller, R. C., and Drews, G., 1978, Visualization of the supra-molecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol. 119: 269–277.

    Article  Google Scholar 

  • Trentini, W. C., and Starr, M. P., 1967, Growth and ultrastructure of Rhodomicrobium vannielii as a function of light intensity, J. Bacteriol. 93: 1699–1704.

    PubMed  CAS  Google Scholar 

  • Tuttle, A. L., and Gest, H., 1959, Subcellular particulate systems and the photochemical apparatus of Rhodospirillum rubrum, Proc. Natl. Acad. Sci. U.S.A. 45: 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Vatter, A. E., and Wolfe, R. S., 1958, The structure of photosynthetic bacteria, J. Bacteriol. 75: 480–488.

    PubMed  CAS  Google Scholar 

  • Van Niel, C. B., 1932, On the morphology and physiology of the purple and green sulphur bacteria, Arch. Mikrobiol. 3: 1–112.

    Article  Google Scholar 

  • Van Niel, C. B., 1944, The culture, general physiology, morphology and classification of the non-sulfur-purple and brown bacteria, Bacteriol. Rev. 8: 1–118.

    PubMed  Google Scholar 

  • Waksman, S. A., and Joffee, J. S., 1922, Microorganisms concerned in the oxidation of sulfur in soil, J. Bacteriol. 7: 239–256.

    PubMed  CAS  Google Scholar 

  • Winogradsky, S. N., 1887, Über Schwefelbakterien, Bot. Ztg. 45: 489–496.

    Google Scholar 

  • Winogradsky, S. N., 1888, Beiträge zur Morphologie und Physiologie der Bakterien, Heft 1, Leipzig, A. Felix.

    Google Scholar 

  • Winogradsky, S. N., 1890, Recherches sur les organismes de la nitrification, Ann. Inst. Pasteur (Paris) 4: 257–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Pfennig, N. (1985). Stages in the Recognition of Bacteria Using Light as a Source of Energy. In: Leadbetter, E.R., Poindexter, J.S. (eds) Bacteria in Nature. Bacteria in Nature, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6511-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6511-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6513-0

  • Online ISBN: 978-1-4615-6511-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics