Skip to main content

The Mineralization of Organic Materials under Aerobic Conditions

  • Chapter
Bacteria in Nature

Part of the book series: Bacteria in Nature ((BANA,volume 1))

Abstract

Mineralization is the process by which the carbon and associated nitrogen, phosphorus, and sulfur of organic matter are returned to inorganic form. Under aerobic conditions, this means their most oxidized form (CO2, NO3-, and S04-2). Because the origin and general composition of organic carbon and the early stages of decomposition of organic polymers have been discussed recently (Burns, 1982; Krumbein, 1983; Ericksson and Johnsrud, 1982; Bolin, 1973), and because the discussion of cycling the organic forms of nitrogen and sulfur are best treated in other contexts, these will not be discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1965, Biodegradation: problems of molecular recalcitrance and microbial fallibility, Adv. Appl. Microbiol. 7: 35–80.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, M., 1970, Microbial Ecology, John Wiley and Sons, New York.

    Google Scholar 

  • Atlas, R., 1981, Microbial degradation of petroleum hydrocarbons: an environmental perspective, Microbiol Rev. 45: 180–209.

    PubMed  CAS  Google Scholar 

  • Bachman, B., 1983, Linkage map of Escherichia coli K12, Microbiol. Rev. 47: 180–230.

    Google Scholar 

  • Baumann, P., Doudoroff, M., and Stanier, R. Y., 1968, A study of the Moraxella group. II. Oxidase-negative species (genus Acinetobacter), J. Bacteriol. 95: 1520–1541.

    PubMed  CAS  Google Scholar 

  • Beam, H. W., and Perry, J. J., 1973, Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism, J. Gen. Microbiol. 82: 163–169.

    Google Scholar 

  • Bolin, B., 1973, The carbon cycle, in: Chemistry in the Environment: Readings from Scientific American (C. L. Hamilton, ed.), W. H. Freeman and Co., San Francisco, pp. 53–61.

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S., 1967, Methanobacillus omelianski, a symbiotic association of two species of bacteria, Arch. Microbiol. 59: 20–31.

    Article  CAS  Google Scholar 

  • Bull, A. T., 1980, Biodegradation, in: Contemporary Microbial Ecology, (N. C. Ellwood, J. N. Hedges, M.J. Latham, J. M. Lynch, and J. H. Slater, eds.), Academic Press, New York, pp. 107–136.

    Google Scholar 

  • Bull, A. T., and Slater, J. H., (eds.) 1982, Microbial Interactions and Communities, Volume 1. Academic Press, New York.

    Google Scholar 

  • Bulloch, W., 1960, The History of Bacteriology, Oxford University Press, New York.

    Google Scholar 

  • Burns, R. G., 1982, Carbon mineralization by mixed cultures, in: Microbial Interactions and Communities, Volume 1, Academic Press, New York, pp. 475–543.

    Google Scholar 

  • Campbell, A., 1981, Evolutionary significance of accessory DNA elements in bacteria, Annu. Rev. Microbiol. 35: 55–84.

    Article  PubMed  CAS  Google Scholar 

  • Carson, R. L., 1962, Silent Spring, Houghton-Mifflin, New York.

    Google Scholar 

  • Chakrabarty, A. M., and Gunsalus, I. C., 1970, Transduction and genetic homology between Pseudomonas species aeruginosa and putida, J. Bacteriol. 103: 830–832.

    PubMed  CAS  Google Scholar 

  • Clarke, P. H., 1978, Experiments in microbial evolution, in: The Bacteria, Volume VI (L. N. Ornston and J. R. Sokatch; eds.), Academic Press, New York, pp. 137–218.

    Google Scholar 

  • Clarke, P. H., and Ornston, L. N., 1975, Metabolic pathways and regulation, in: Genetics and Biochemistry of Pseudomonas, (P. H. Clarke and M. H. Richmond, eds.), John Wiley, New York, pp. 191–340.

    Google Scholar 

  • Clarke, P. H., and Richmond, M. H. (eds.), 1975, Genetics and Biochemistry of Pseudomonas, John Wiley, New York.

    Google Scholar 

  • Colby, J., Dalton, H., and Whittenbery, R., 1979, Biological and biochemical aspects of growth on C1 compounds, Annu. Rev. Microbiol. 33: 481–518.

    Article  PubMed  CAS  Google Scholar 

  • Collard, P., 1976, The Development of Microbiology, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Conant, J. B. (ed.), 1950, The Overthrow of the Phlogiston Theory, Case 2, Harvard Case Histories in Experimental-Science, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Crawford, R. L., 1981, Lignin Biodegradation and Transformation, John Wiley, New York.

    Google Scholar 

  • Dagley, S., 1971, Catabolism of aromatic compounds by microorganisms, Adv. Microbiol. Physiol. 6: 1–46.

    Article  CAS  Google Scholar 

  • Dagley, S., 1975, A biochemical approach to some problems of environmental pollution, in: Essays in Biochemistry, Volume 11, Academic Press, London, pp. 81–138.

    Google Scholar 

  • Dagley, S., 1978, Pathways for the utilization of organic growth substrates, in: The Bacteria, Volume III, (L. N. Ornston and J. R. Sokatch eds.), Academic Press, New York, pp. 305–388.

    Google Scholar 

  • Dagley, S. and Michelson, D. E., 1970, An Introduction to Metabolic Pathways, John Wiley and Sons, New York.

    Google Scholar 

  • den Dooren de Jong, L. E., 1926, Bijdrag tot de kennis van het mineralsatieproces. Dissert. Rotterdam.

    Google Scholar 

  • Dobell, C., 1932, Antonie van Leeuwenhoek and His “Little Animals” (reprinted as Dover 5594 in 1960, Dover Publications, New York). Staples Press, London.

    Google Scholar 

  • Ericksson, K.-E., and Johnsrud, S. C., 1982, Mineralisation of carbon, in: Experimental Microbial Ecology (R. G. Burns and J. H. Slater, eds.), Blackwell Publications, Oxford, pp. 134–153.

    Google Scholar 

  • Fillingame, R. H., 1980, The proton-translating pumps of oxidative phosphorylation, Annu. Rev. Biochem. 49: 1079–1113.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk, G., 1979, Bacterial Metabolism, Springer-Verlag, New York.

    Book  Google Scholar 

  • Gutnick, D., Calvo, J. M., Klopotowski, T., and Ames, B. N., 1969, Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2, J. Bacteriol. 100: 215–219.

    PubMed  CAS  Google Scholar 

  • Hegeman, G.D., 1966, Synthesis of enzymes of the mandelate pathway by Pseudomonas putida, J. Bacteriol. 91: 1155–1160.

    PubMed  CAS  Google Scholar 

  • Henner, D. J., Hoch, J. A., 1980, The Bacillus subtilis chromosome, Microbiol. Rev. 44: 57–82.

    PubMed  CAS  Google Scholar 

  • Holloway, B. W., 1975, Genetic organization of Pseudomonas, in: Genetics and Biochemistry of Pseudomonas (D. H. Clarke and M. H. Richmond, eds.), John Wiley and Sons, New York, pp. 133–161.

    Google Scholar 

  • Horvath, R. S., 1972, Microbial co-metabolism and the degradation of organic compounds in nature, Bacteriol. Rev. 36: 146–155.

    PubMed  CAS  Google Scholar 

  • Horvath, R. S., and Alexander, M., 1970, Cometabolism: a technique for the accumulation of biochemical products, Can. J. Microbiol. 16: 1131–1132.

    Article  PubMed  CAS  Google Scholar 

  • Hulbert, M. H., and Krawiec, S., 1977, Cometabolism: a critique. J. Theor. Biol. 69: 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318–356.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, A. F., La Riviere, J. W. M., and Verhoeven, W. (eds.), 1959, Albert Jan Kluyver: His Life and Work, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Karstrom, H., 1930, Über die Enzymbildung in Bactérien. Thesis, Helsingfors.

    Google Scholar 

  • Kellog, S. T., Charterjee, D. K., and Chakrabarty, A. M., 1981, Plasmid-assisted molecular breeding: a new technique for enhanced biodégradation of persistent toxic chemicals, Science 214: 1133–1135.

    Article  Google Scholar 

  • Kibane, J. J., Charterjee, D. K., Kans, J. S., Kellog, S. T., and Chakrabarty, A. M., 1982, Biodegradation of 2,4,5-T by a pure culture of Pseudomonas cepacia, Appl. Environ. Microbiol. 44: 72–78.

    Google Scholar 

  • Kluyver, A. M., 1924, Eenheid en Verscheidenheid in de stifwisseling der microben, Chem. Weekbl. 21:no. 22.

    Google Scholar 

  • Krulwich, T. A., and Pelliccione, N.J., 1979, Catabolic pathways of coryneforms, nocardias, and mycobacteria, Annu. Rev. Microbiol. 33: 95–112.

    Article  PubMed  CAS  Google Scholar 

  • Krumbein, W. E., 1983, Microbial Geochemistry, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Kuznetsov, S. I., Dubinia, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Annu. Rev. Microbiol. 33: 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Lal, R., Saxena, D. M., 1982, Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms, Microbiol. Rev. 46: 95–127.

    PubMed  CAS  Google Scholar 

  • Leadbetter, E. R., and Foster, J. W., 1968, Bacterial oxidation of gaseous alkanes, Arch. Mikrobiol. 35: 92–104.

    Article  Google Scholar 

  • Leidigh, B. J., and Wheelis, M. L., 1973, The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory function, J. Mol. Evol. 2: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chem-iosmotic pump, Nature (London) 191: 144–148.

    Article  CAS  Google Scholar 

  • Mortlock, R. P., 1982, Metabolic acquisition through laboratory selection, Annu. Rev. Microbiol. 36: 259–284.

    Article  PubMed  CAS  Google Scholar 

  • Mortlock, R. P., 1983, Experiments in evolution using microorganisms, Bioscience 33: 308–313.

    Article  CAS  Google Scholar 

  • Ornston, L. N., 1966, The conversion of catechol and protocatechuate to ß-ketoadipate by Pseudomonas putida. IV. Regulation. J. Biol. Chem. 241: 3800–3810.

    PubMed  CAS  Google Scholar 

  • Ornston, L. N., 1971, Regulation of catabolic pathways in Pseudomonas, Bacteriol. Rev. 35: 87–116.

    PubMed  CAS  Google Scholar 

  • Parkes, R. J., 1982, Methods for enriching, isolating and analysing microbial communities in laboratory systems, in: Microbial Interactions and Communities (A. T. Bull and J. H. Slater, eds.), Academic Press, New York, pp. 45–102.

    Google Scholar 

  • Pasteur, L., 1861, Memoire on spontaneous generation. in: Pasteur, L.: Oeuvres Reunies, 7 Volumes, Pasteur Vallery-Radot (ed.), Masson et Cie, Paris, pp. 1922–1939.

    Google Scholar 

  • Perry, J. J., 1979, Microbial co-oxidations involving hydrocarbons, Microbiol. Rev. 43: 59–72.

    PubMed  CAS  Google Scholar 

  • Pritchard, P. H., Bourquin, A. W., Fredrickson, H. L., and Maziarz, T., 1979, System design factors affecting environmental fate studies in microcosms, in: Microbial Degradation of Pollutants in the Marine Environment U.S. Environmental Protection Agency, Gulf Breeze, Florida, pp. 251–272.

    Google Scholar 

  • Reanny, D. C., Roberts, W. P., Kelly, W. J., 1982, Genetic interactions among microbial communities, in: Microbial Interactions and Communities (T. A. Bull and J. H. Slater, eds.), Academic Press, New York, pp. 287–322.

    Google Scholar 

  • Rosenberg, S. L., and Hegeman, G. D., 1969, Clustering of functionally related genes in Pseudomonas aeruginosa, J. Bacteriol. 99: 353–355.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E., 1976, Genetic relatedness in the family Enterobacteriaceae, Annu. Rev. Microbiol. 30: 303–326.

    Article  Google Scholar 

  • Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium, Microbiol. Rev. 47: 410–553.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., and Jannasch, H. W., 1967, Enrichment cultures, Annu. Rev. Microbiol. 21: 49–70.

    Article  PubMed  CAS  Google Scholar 

  • Schloesing, T., and Muntz, A., 1877, Sur la nitrification par les ferments organisés, C. R. Acad. Sci. 84: 301–303.

    Google Scholar 

  • Senior, E., 1977, Characterization of a microbial association growing on the herbicide Dalapon, Ph.D. Thesis, University of Kent.

    Google Scholar 

  • Senior, E., Bull, A. T., and Slater, J. H., 1976, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature (London) 263: 476–470.

    Article  PubMed  CAS  Google Scholar 

  • Slater, J. H., and Godwin, D., 1980, Microbial adaptation and selection, in: Contemporary Microbial Ecology (N. C. Ellwood, J. N. Hedges, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), Academic Press, New York, pp. 137–160.

    Google Scholar 

  • Stanier, R. Y., 1947, Simultaneous adaptation: a new technique for study of metabolic pathways, J. Bacteriol. 54: 339–348.

    CAS  Google Scholar 

  • Stanier, R. Y., Palleroni, N.J., and Doudoroff, M., 1967, The aerobic pseudomonads: a taxonomic study, J. Gen. Microbiol. 43: 159–271.

    Google Scholar 

  • Stephenson, M. J., 1949, Bacterial Metabolism, Longmans, Green, London.

    Google Scholar 

  • van Iterson, Jr., G., den Dooren de Jong, L. E., and Kluyver, A. J., 1940, Martinus Willem Beijerinck, His Life and Work, M. Nijhoff, The Hague.

    Google Scholar 

  • van Niel, C. B., 1949, The “Delft School” and the rise of general microbiology, Bacteriol. Rev. 13: 161–174.

    PubMed  Google Scholar 

  • Veldkamp, H., and Kuenen, J. G., 1973, The chemostat as a model system for ecological studies, Bull. Ecol. Res. Commun. (Stockholm) 17: 347–355.

    Google Scholar 

  • Watanabe, T., 1963, Infective heredity of multiple drug resistance in bacteria, Bacteriol. Rev. 27: 87–115.

    PubMed  CAS  Google Scholar 

  • Wheelis, M. L., and Stanier, R. Y., 1970, The genetic control of dissimilatory pathways in Pseudomonas putida, Genetics 66: 245–266.

    PubMed  CAS  Google Scholar 

  • Winogradsky, S., 1949, Microbiologie due sol, problems et méthodes, Masson et cie, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Hegeman, G. (1985). The Mineralization of Organic Materials under Aerobic Conditions. In: Leadbetter, E.R., Poindexter, J.S. (eds) Bacteria in Nature. Bacteria in Nature, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6511-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6511-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6513-0

  • Online ISBN: 978-1-4615-6511-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics