Skip to main content

Radiation-Like Modification of DNA and H2O2 Formation by Activated Human Polymorphonuclear Leukocytes (PMNs)

  • Chapter

Abstract

Active oxygen species generated by stimulated PMNs were found to be mutagenic and carcinogenic (1,2). We (3–5) and others (6,7) have shown that oxygen species produced by phagocytic cells are capable of modifying bases in DNA exposed to them. Those identified to date are 5-hydroxymethyl uracil (HMU) (3–5), thymine glycol (TG) (4–6) and 8-hydroxyguanine (BOHG) (7). All of them are known to be formed by the action of ionizing radiation (8–11). HMU and TG are excreted in the urine by humans and rats which points to these thymine derivatives as products of the normal biological processes (12), That these oxidized DNA base derivatives are potentially harmful to the well-being of humans and animals is shown by the existence of the repair enzymes HMU- and TG-glycosylases in mammalian cells (13–16). There is also evidence that 80HG might be repaired as well (11). However, when removal of abnormal bases from DNA is not complete or timely, they have the potential to exert their deleterious effects. For example, TG is thought to provide a replication block (17,18), whereas, HMU and particularly its deoxyribonucleoside HMdU are mutagenic (19). HMdU, which is known to be incorporated into cellular DNA, is also cytotoxic and cytostatic to a number of mammalian cells, and acts as a radiomimetic agent as it causes diarrhea and leukopenia, symptoms of acute radiation sickness (20–23). Thus PMNs, whose role is to protect against invading bacteria or other opsonized particles, are capable of imparting a radiation-like damage, certain types of which might be heritable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Barak, S. Ulitzur and D. Merzbach, Phagocytosis-induced mutagenesis in bacteria. Mutat. Res. 121, 7–16 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. S. A. Weitzman, A. B. Weitberg, E. P. Clark and T. P. Stossel, Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science, 227, 1231–1233 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. W. Troll, K. Frenkel and G. W. Teebor, Free oxygen radicals: Necessary contributors to tumor promotion and cocarcinogenesis. In Cellular Interactions by Environmental Tumor Promoters 1984 (H. Fujiki et al. Eds.) pp. 207–218. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  4. K. Frenkel, K. Chrzan, W. Troll, G. W. Teebor and J. J. Steinberg, Radiation-like modification of bases in DNA exposed to tumor promoter-activated polymorphonuclear leukocytes. Cancer Res. 46, 5533–5540 (1986).

    PubMed  CAS  Google Scholar 

  5. K. Frenkel and K. Chrzan, H2O2 formation and DNA base modification by tumor promoter-activated polymorphonuclear leukocytes. Carcinogenesis, 8, 455–460 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. J. G. Lewis and D. O. Adams, Induction of 5,6-ring saturated thymine bases in NIH-3T3 cells by phorbol ester-stimulated macrophages: role of reactive oxygen intermediates. Cancer Res. 45, 1270–1275 (1985).

    PubMed  CAS  Google Scholar 

  7. R. A. Floyd, J. J. Watson, J. Harris, M. West and P. K. Wong, Formation of 8-hydroxydeoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to the tumor promoter, tetradecanoyl-phorbolacetate. Biochem. Biophys. Res. Comm. 37, 841–846 (1986).

    Article  Google Scholar 

  8. P. A. Cerutti, Base damage induced by ionizing radiation. Photochem. Photobiol. Nucleic Acids, 2, 375–401 (1976).

    CAS  Google Scholar 

  9. K. Frenkel, M. S. Goldstein and G. W. Teebor, Identification of the cis-thymine glycol moiety in chemically oxidized and y-irradiated deoxyribinucleic acid by high-pressure liquid chromatography. Biochemistry, 20, 7566–7571 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. G. K. Frenkel, A. Cummings, J. Solomon, J. Cadet, J. J. Steinberg and W. Teebor, Quantitative determination of the 5-(hydroxymethyl)- uracil moiety in the DNA of γ-irradiated cells. Biochemistry, 24, 4527–4533 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. H. Kasai, P. F. Grain, Y. Kochino, S. Nishimura, A. Ootsuyama, and H. Tanooka, Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis, 7, 1849–1851 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. R. Cathcart, E. Schwiers, R. L. Saul and B. Ames, Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc. Natl. Acad. Sci. USA, 81, 5633–5637 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. M. C. Hollstein, P. Brooks, S. Linn and B. Ames, Hydroxymethyluracil DNA glycosylase in mammalian cells. Proc. Natl. Acad. Sci. USA, 81, 4003–4007 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. R. J. Boorstein, D. D. Levy and G. W. Teebor, 5-Hydroxymethyluracil-DNA glycosylase activity may be a differentiated mammalian function. Mutat. Res. 183, 257–263 (1987).

    PubMed  CAS  Google Scholar 

  15. P. W. Doetsch, D. E. Helland and W. A. Haseltine, Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry, 25, 2212–2220 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. S. A. Higgins, K. Frenkel, A. Cummings and G. W. Teebor, Definitive characterization of human thymine glycol N-glycosylase activity. Biochemistry. 26, 1683–1688 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. P. Rouet and J. M. Essigman, Possible role for thymine glycol in the selective inhibition of DNA synthesis on oxidized DNA templates. Cancer Res. 45, 6113–6118 (1985).

    PubMed  CAS  Google Scholar 

  18. H. Ide, Y. W. Kow and S. S. Wallace, Thymine glycol and urea residues in M13 template constitute replicative blocks jji vitro. Nucleic Acids Res. 13, 8035–8052 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. L. Shirname-More, T. G. Rossman, W. Troll, G. W. Teebor and K. Frenkel, Genetic effects of 5-hydroxymethyl-2’-deoxyuridine, a product of ionizing radiation. Mutation Res. 178, 177–186 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. S. Waschke, J. Reefschlager, D. Barwolff and P. Langen, 5-Hydroxy-methyl-2’-deoxyuridine, a normal DNA constituent in certain Bacillus subtilis phages is cytostatic for mammalian cells. Nature (London), 225, 629–630 (1975).

    Article  Google Scholar 

  21. J. B. Meldrum, V. S. Gupta, N. R. Lowes and A. R. P. Paterson, Toxicologic and antitumor studies on 5-hydroxymethyldeoxyuridine. Toxicol. Appl. Pharmacol. 79, 423–435 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. L. I. Kahilainen, D. E. Bergstrom and J. A. Vilpo, 5-Hydroxymethyl-2 deoxyuridine, cytotoxicity and DNA incorporation studied by using a novel [2-14C] derivative with normal and leukemic human hematopoietic cells. Acta Chem. Scand. B, 39, 477–484 (1985).

    Article  CAS  Google Scholar 

  23. E. R. Kaufman, Biochemical analysis of toxic effects of 5-hydroxymethyl-2’-deoxyuridine in mammalian cells. Somat. Cell Mol. Genet. 12, 501–512 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. J. C. Fantone and P. A. Word, Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 107, 397–418 (1982).

    CAS  Google Scholar 

  25. T. J. Slaga, S. M. Fisher, C. E. Weeks, K. Nelson, M. Mamrack and A. J. P. Klein-Szanto, Specificity and mechanism(s) of promoter inhibitors in multistage promotion. In Carcinogenesis, Vol. 7 1982 (E. Hecker, W. Kuntz, N. E. Fusenig, F. Marks and H. W. Thielmann, Eds.) pp. 19–34., Raven Press, New York.

    Google Scholar 

  26. K. Frenkel, and K. Chrzan, Correlation between formation of H2O2 by tumor promoter-activated human polymorphonuclear leukocytes (PMNs), modification of bases in DNA exposed to them, and first stage tumor promotion. Proc. Am. Assoc. Cancer Res. 28, 160 (1987).

    Google Scholar 

  27. D. R. Ambruso and R. B. Johnston, Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J. Clin. Invest. 67, 352–360 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. I. Fridovich, Superoxide radical: an endogenous toxicant. Ann. Rev. Pharmacol. Toxicol. 23, 239–257 (1983).

    Article  CAS  Google Scholar 

  29. L. A. Loeb, E. A. James, A. M. Waltersdorph, K. Stokes and S. Klebanoff. Proc. Am. Assoc. Cancer Res. 28, 162 (1987).

    Google Scholar 

  30. A. C. de Mello-Filho and R. Meneghini, Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species. Biochem. Biophys. Acta, 847, 82–89 (1985).

    Article  PubMed  Google Scholar 

  31. K. Frenkel, K. Chrzan, C. A. Ryan, R. Wiesner, and W. Troll, Chymo-trypsin-specific protease inhibitors decrease H2O2 formation by activated human polymorphonuclear leukocytes. Carcinogenesis, in press (1987).

    Google Scholar 

  32. J. Yavelow, M. Caggana and K. A. Beck, Proteases occurring in the cell membrane: a possible cell receptor for the Bowman-Birk type of protease inhibitors. Cancer Res. 47, 1598–1601 (1987).

    PubMed  CAS  Google Scholar 

  33. P. C. Billings, W. St. Clair, C. A. Ryan and A. R. Kennedy, Inhibition of radiation-induced transformation of C3H/10T1/2 cells by chymotrypsin inhibitor 1 from potatoes. Carcinogenesis, in press (1987).

    Google Scholar 

  34. L. J. Dunham, Cancer in man at a site of prior benign lesion of skin or mucous membrane: a review. Cancer Res. 32, 1359–1374 (1972).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Frenkel, K., Chrzan, K. (1987). Radiation-Like Modification of DNA and H2O2 Formation by Activated Human Polymorphonuclear Leukocytes (PMNs). In: Cerutti, P.A., Nygaard, O.F., Simic, M.G. (eds) Anticarcinogenesis and Radiation Protection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6462-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6462-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6464-5

  • Online ISBN: 978-1-4615-6462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics