Skip to main content

Abstract

Size enlargement by agglomeration is a unit operation of mechanical process technology1 (Fig. 6.1). This field deals with the transport phenomena and changes of state of particulate matter which in most cases is solid but can also be liquid (droplets) and, in a few special cases, gaseous (microencapsulated). The unit operations of mechanical process technology can be differentiated by the processes of separation and combination with and without change of particle size.

References are listed at the end of sections 6.1 through 6.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Pietsch, Size Enlargement by Agglomeration. John Wiley & Sons/Salle + Sauerländer, Chichester, UK/Aarau, Switzerland (1991).

    Google Scholar 

  2. H. Rumpf, “Mechanische Verfahrenstechnik,” in Chemische Technology, Vol. 7, 3rd ed., edited by Winnacker-Küchler, Carl Hanser Verlag, München, Germany, and Wien, Austria (1975). English translation by F. A. Bull. “Particle Technology,” Chapman and Hall, London, UK (1990).

    Google Scholar 

  3. W. Pietsch, “Das Agglomerationverhalten feiner Teilchen,” Staub-Reinhalt. Luft, 27 (1967) 1, 20–33; English edition: “The Agglomerative Behavior of Fine Particles” 27 (1), 24-41 (1967).

    CAS  Google Scholar 

  4. W. Pietsch, “Kornvergrösserung (Agglomeration),” in Fortschritte der Verfahrenstechnik, Vol. 9, VDI-Verlag GmbH, Düsseldorf, Germany, pp. 831–872 (1971).

    Google Scholar 

  5. H. Rumpf, “The strength of Granules and Agglomerates,” Agglomeration, edited by W. A. Knepper, John Wiley, New York, pp. 379–418 (1962).

    Google Scholar 

  6. W. Pietsch, “Granulieren durch Kornver-grösserung,” CZ-Chemie-Technik 1(3):116–119 (1972).

    Google Scholar 

  7. H. Rumpf und E. Turba, “Über die Zugfestigkeit von Agglomeraten bei verschiedenen Bindemechanismen,” Ber. dtsch, keram. Ges. 41(2):78–84 (1964).

    Google Scholar 

  8. W. Pietsch, “Die Festigkeit von Agglomeraten,” Chem. Techn. 19(5):259–266 (1967).

    CAS  Google Scholar 

  9. H. Rumpf, “Zur Theorie der Zugfestigkeit von Agglomeraten bei Zraftübertragung an Kontaktpunkten,” Chem-Ing. Techn. 42(8):538–540 (1970).

    Google Scholar 

  10. W. Pietsch and H. Rumpf, “Haftkraft, Kapillardruck, Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugeln,” Chemie-Ing. Techn. 39(15):885–893 (1967).

    CAS  Google Scholar 

  11. W. Pietsch, E. Hoffman, and H. Rumpf, “Tensile Strength of Moist Agglomerates,” I + EC Product, Research & Development 8(3):58–62 (1969).

    CAS  Google Scholar 

  12. W. O. Smith, P. D. Foote, and P. F. Busang, Phys. Rev. 34:1271–1274 (1929).

    Google Scholar 

  13. H. C. Hamaker, “The London-van der Waals Attraction between Spherical Particles,” Physica 4:1058–1072 (1937).

    CAS  Google Scholar 

  14. H. Krupp, “Particle Adhesion, Theory and Experiment,” Advances Colloid Interface Sci. 1(2) (1967).

    Google Scholar 

  15. J. M. Conway-Jones, “An Investigation into the Mechanism of the Unit Operation of Granulation,” Ph.D. thesis, University of London, 1957.

    Google Scholar 

  16. H. Rumpf, “Das Granulieren von Stäuben und die Festigkeit der Granulate,” Staub 5(5):150–160 (1959).

    Google Scholar 

  17. H. Schubert, “Tensile Strength of Agglomerates,” Powder Technology 11:107–119 (1975).

    Google Scholar 

  18. W. Pietsch, “The Strength of Agglomerates Bound by Salt Bridges,” Can. J. Chemical Engng. 47:403–409 (1969).

    CAS  Google Scholar 

  19. H. Schubert, “Untersuchungen zur Ermittlung von Kapillardruck und Zugfestigkeit von feuchten Haufwerken aus körnigen Stoffen,” Ph.D. thesis, University of Karlsruhe, 1972.

    Google Scholar 

  20. H. Schubert, “Kapillardruck und Zugfestigkeit von feuchten Haufwerken aus körnigen Stoffen,” Chemie-Ing. Technik, 45(6):396–401 (1973); and VDI-Bericht Nr. 190, pp. 190-194 (1973).

    CAS  Google Scholar 

  21. H. Rumpf, “Die Wissenschaft des Agglomerierens,” Chemie-Ing. Technik, 46(1):1–11 (1974).

    Google Scholar 

  22. N. R. Morrow, “Physics and Thermodynamics of Capillary Action in Porous Media,” Ind. Eng. Chem. 62(6):32–65 (1970).

    CAS  Google Scholar 

  23. W. Pietsch, “Festigkeit und Trockungsverhalten von Agglomeraten, deren Festigkeit durch bei der Trockung auskristallisierende Salze bewirkt wird,” Ph.D. thesis, Unversität (TH) Karlsruhe, 1965.

    Google Scholar 

  24. I. Charé, “Trocking von Agglomeraten bei Anwesenheit auskristallisierender Stoffe. Festigkeit und Struktur der durch die auskristallisierten Stoffe verfestigten Granulate,” Ph.D. thesis, Universität (TH) Karlsruhe, 1976/1977.

    Google Scholar 

  25. H. Rumpf, “Particle Adhesion,” in “Agglomeration 77,” edited by K. V. S. Sastry, Proc. 2nd Int. Symp. Agglomeration, Atlanta, March 6–10, 1977, 1:97–129 (1989)

    Google Scholar 

  26. E. Turba, “Die Festigkeit von Briketts aufgrund von van der Waals Kräften und der Einfluf von Adsorptionsschichten,” Ph.D. thesis, Universität (TH) Karlsruhe, 1963.

    Google Scholar 

  27. W. Herrmann, “Die Adsorption von Wasserdampf in Schweispat-Preßlingen und ihr Einfluß auf deren Festifkeit,” Ph.D. thesis, Universität (TH) Karlsruhe, 1971/72.

    Google Scholar 

  28. H. Rumpf, “The strength of granules and agglomerates,” in Agglomeration, edited by W. A. Knepper, Proc. 1st International Symp. Agglomeration, Philadelphia, PA, John Wiley & Sons, New York, pp. 379–418 (1962).

    Google Scholar 

  29. W. Pietsch, “Das Agglomerationsverhalten feiner Teilchen,” Staub-Reinhalt. Luft, 271, pp. 20–33 (1967), English edition: “The agglomerative behavior of fine particles,” 27 1, pp. 24-41 (1967).

    CAS  Google Scholar 

  30. D. Ocepek, Proceedings of the 2nd European Symposium on “Comminution” (1966).

    Google Scholar 

  31. B. Beke and L. Opoczky, Proceedings of the 2nd European Symposium on “Comminution” (1966).

    Google Scholar 

  32. B. C. Bradshaw, J. Chem. Phys. 19:1057–1059 (1951).

    Google Scholar 

  33. G. F. Hüttig, Dechema Monogr. Nos. 245-268, pp. 96–115 (1952).

    Google Scholar 

  34. G. F. Hüttig, W. Ebersold, and H. Sales, Radex Rdsch. pp. 489-493 (1953).

    Google Scholar 

  35. B. Beke, Rev. Matér de Construct. No. 558, pp. 73–82; No. 559: 115-121 (1962).

    Google Scholar 

  36. M. Papadakis, Rev. Matér. Construct. No. 542: pp. 295–308 (1960).

    Google Scholar 

  37. H. E. Rose and R. M. Sullivan, “The Role of Additives in Milling,” in Ball, Tube and Rod Mills, Constable, p. 236 (1958).

    Google Scholar 

  38. E. R. Dawley, Pit and Quarry, p. 7 (1939).

    Google Scholar 

  39. C. W. Schweitzer and A. E. Craig, Ind. Eng. Chem. 32(6):751–756 (1940).

    Google Scholar 

  40. E. R. Dawley, Cement Lime Manufact. 17:1–4 (1944).

    Google Scholar 

  41. E. von Szantho, Erzbergbau Metallhüttenwes 2(12):353–360 (1949).

    Google Scholar 

  42. G. Ghigi and L. Rabottino, Proceedings of the 2nd European Symposium on “Comminution” (1966).

    Google Scholar 

  43. J. A. Hedvall, Z. Anorg. Allg. Chem., 283:165–171 (1956).

    CAS  Google Scholar 

  44. A. Götte and E. Ziegler, Aachener Bl., 5th year of publ., p. 123. (1955). Extract from: E. Zlegler, Dissertation, Aachen Technical College (1955).

    Google Scholar 

  45. A. Götte and E. Scherrer, Aachen Bl., 8th year of publ., No. 3, pp. 77–110 (1958). Extract from: E. Scherrer, Dissertation, Aachen Technical College (1958).

    Google Scholar 

  46. A. Götte, and W. Wagener, Achener Bl., 11th year of publ., No. 1-2, pp. 53–87 (1961). Extract from: W. Wagener, Dissertation, Aachen Technical College (1960).

    Google Scholar 

  47. M. Deckers, Diss. TH Aachen (1963).

    Google Scholar 

  48. A. Götte, Freiberger Forschungsh. A281:5–29 (1963).

    Google Scholar 

  49. W. Batel, Chemie Ing. Techn., 30th year of publ., No. 9, p. 567 and No. 10, p. 651 (1958).

    Google Scholar 

  50. H. Börner, Zerment Kalk Gips, 14th year of publ., No. 6, pp. 237–253 (1961).

    Google Scholar 

  51. W. v.d. Ohe, Ph.D. Thesis, University (TH) Karlsruhe, Germany.

    Google Scholar 

  52. K. Schönert, “Method of fine and very fine comminution of materials having brittle behavior,” US Patent 4,357,287 (Nov. 2, 1982).

    Google Scholar 

  53. J. Priemer, Progress Reports, VDI Journal, Series 3, No. 8, pp. 1–104 (1965). Diss. TH Karlsruhe (1964).

    Google Scholar 

  54. P. Kunze, Master Thesis at the Institute of Mechanical Process Engineering, TH Karlsruhe (1966).

    Google Scholar 

  55. H. Schubert, Contribution to discussion in (43) Freiberger Forschungsh. A281:27 (1963).

    Google Scholar 

  56. P. Schmidt, Aufbereitungs Techn. 7th year of publ., No. 5, pp. 265–273 (1966).

    Google Scholar 

  57. O. Lauer, Measuring the Fineness of Technical Dusts. Alpine AG, Augsbert, pp. 26–27 (1963).

    Google Scholar 

  58. P. Brüninghaus, Aufbereitungs Techn. 1st year of publ., No. 1, pp. 53–57 (1960).

    Google Scholar 

  59. J. Steinbusch, Aufbereitungs Techn. 4th year of publ., No. 11, pp. 502–506 (1963).

    Google Scholar 

  60. O. Lauer, Staub, 18(10):306–309 (1958).

    Google Scholar 

  61. L. Schlebusch, Aufbereitungs Techn. 4th year of publ., No. 11, pp. 476–481 (1963).

    Google Scholar 

  62. E. Burstlein, Aufbereitungs Techn., 4th year of publ., No. 11, pp. 486–488 (1963).

    Google Scholar 

  63. T. W. Hannon and R. Sybrandy, Aufbereitungs Techn., 4th year of publ., No. 11, pp. 482–485 (1963).

    Google Scholar 

  64. W. Batel, Research Report of the Ministry of Economics and Transport, North Rhine/Westphalia, No. 262 (1956).

    Google Scholar 

  65. E. Muschelknautz, Private communication (1966).

    Google Scholar 

  66. W. Kayser, Proceedings of the 1st European Symposium on “Comminution,” pp. 563-586 (1962). Zement Kalk Gips 15(11):469-478 (1962).

    Google Scholar 

  67. H. Schuber and J. Schmidt, Bergakademie (Freiberg), 15th year of publ., No. 12, pp. 850–855 (1963).

    Google Scholar 

  68. A. H. M. Andreasen, Staub No. 43, pp. 5–9 (1956).

    Google Scholar 

  69. W. Batel, Techniques of Particle-Size Measurement, Springer-Verlag, New York (1960).

    Google Scholar 

  70. G. D. Joglekar and B. R. Marathe, J. Sci. Ind. Res. 17A(5):197–203 (1958).

    CAS  Google Scholar 

  71. VDI 2031. Determining the Fineness of Technical Dusts.

    Google Scholar 

  72. B. A. Haines, Jr. and A. N. Martin, J. Pharmacol. Sci. 50:228–232 (1961).

    Google Scholar 

  73. J. J. Fischer, Chem. Eng. pp. 107-128 (1960).

    Google Scholar 

  74. H. Rumpf, Chemie Ing. Techn. No. 6, pp. 317–327 (1953).

    Google Scholar 

  75. J. J. Fischer, Chem. Eng. Progr. 58(1):66–69 (1962).

    Google Scholar 

  76. W. Pietsch, “Adhesion and Agglomeration of Solids During Storage, Flow, and Handling—A Survey,” Trans. ASME J. Eng. Indust. Ser. B 9(2):435–449 (1969).

    Google Scholar 

  77. H. Möller, Ph.D. Thesis, University (TH) Karlsruhe (1964).

    Google Scholar 

  78. R. Kvapil, Aufbereitungs Techn., 5th year of publ. No. 3, pp. 138–144 and No. 4, pp. 183-189 (1964).

    Google Scholar 

  79. P. Dubach, Aufbereitungs Techn., 3rd year of publ., No. 10, pp. 455–458 (1962).

    Google Scholar 

  80. P. Dubach, Aufbereitungs Techn., 6th year of publ., No. 2, pp. 50–56 (1965).

    Google Scholar 

  81. J. Higuti and H. Utsugi, Sci. Rep. (Tôhoku Univ.), 36(1):27–36 (1952).

    Google Scholar 

  82. L. V. Radushkevich, Izv. Akad. Nauk. SSR. Otdel. Khim. Hank., p. 1008 (1952); p. 285 (1958); p. 403 (1958).

    Google Scholar 

  83. J. R. Adams and W. H. Ross, (a) I & E.C. 33(1):121–127 (1941), (b) Am. Fertil. 95(2):5-8, 22-24 (1941).

    CAS  Google Scholar 

  84. A. L. Whynes and T. P. Dee, J. Sci. Food Agric. No. 10, pp. 577–591 (1957).

    Google Scholar 

  85. J. Silverberg, J. R. Lehr, and G. Hoffmeister, Jr., Agric. Food Chem. 6(6):442–448 (1958).

    Google Scholar 

  86. J. O. Hardesty and R. Kumagi, Agric. Chem. 7(2):38–39, 115, 117, 119 (1952); ibid., (3):55, 125, 127, 129.

    Google Scholar 

  87. J. R. Wilson, J. C. Hillyer, V. C. Vives, and R. E. Reusser, Agric. Chem. pp. 42, 44, 45, 116, 117 (Sept. 1962).

    Google Scholar 

  88. C. R. Moebus, Proceedings 14th Annual Meeting Fertilizer Industry Round Table (1964).

    Google Scholar 

  89. R. Kumagi and J. O. Hardesty, Agric. Food Chem. 3(1):34–38 (1955).

    Google Scholar 

  90. R. E. Baarson, M. R. McCorkle, and D. T. Ohlsen, Anticaking of Commercial Pelletized Fertilizers and Various Fertilizer Components with Fatty Chemicals, unpublished manuscript (1956).

    Google Scholar 

  91. R. E. Baarson, M. R. McCorkle, and J. R. Parks, Anticaking of Hygroscopic Salts and Multicomponent Fertilizers with Fatty Conditioning Agents, unpublished manuscript.

    Google Scholar 

  92. S. S. Chandler, R. E. Baarson, and J. R. Parks, Conditioning Granular Fertilizers and Fertilizer Salts with Fatty Amine Type Chemicals, unpublished manuscript (1961).

    Google Scholar 

  93. W. G. Sykes, S. Myers, J. R. Parks, and S. S. Chandler, Proceedings 48th National Meeting AIChE, Denver (1962).

    Google Scholar 

  94. S. S. Chandler, J. R. Parks, and M. R. McCorkle, Paper presented at the 145th National Meeting ASE, New York (1963).

    Google Scholar 

  95. J. R. Parks and J. Granok, Farm Chem. pp. 51, 54, 55, 57, 58, 60, 62 (Oct. 1967).

    Google Scholar 

  96. E. U. Griffith, Cake Formation in Particulate Systems. VCH, New York (1991).

    Google Scholar 

  97. W. Pietsch, Size Enlargement by Agglomeration. John Wiley & Sons/Salle + Sauerlander, Chichester, UK/Aarau, Switzerland (1991).

    Google Scholar 

  98. P. D. Chamberlin, “Agglomeration: Cheap Insurance for Good Recovery When Heap-Leaching Gold and Silver,” Mining Eng. 12:1105–1109 (1986).

    Google Scholar 

  99. W. Pietsch, Size Enlargement by Agglomeration. John Wiley & Sons/Salle + Sauerländer, Chichester, UK/Aarau, Switzerland (1991).

    Google Scholar 

  100. P. T. Cardew and R. Oliver, “Kinetics and Mechanics in Multi-phase Agglomeration Systems,” in Notes of the Waterloo Intensive Course on Agglomeration Fundamentals, University of Waterloo, Ont., Canada (1985).

    Google Scholar 

  101. K. V. S. Sastry and D. W. Fuerstenau, “Kinetic and Process Analysis of the Agglomeration of Particulate Materials by Green Pelletization,” in Agglomeration 77 Vols. 1 and 2, edited by K. V. S. Sastry, Proc. 2nd International Symp. Agglomeration, Atlanta, GA, AIME, New York, pp. 381–402 (1977).

    Google Scholar 

  102. W. Pietsch, “Die Beeinflussungsmöglichkeiten des Granuliertellerbetriebes und ihre Auswirkungen auf die Granulateigenschaften.” Aufbereitungs Technik 7:177–191 (1966).

    Google Scholar 

  103. C. R. Harbison, “Pelletizer,” US Patent 3 802 822 (1974).

    Google Scholar 

  104. K. Meyer, Pelletizing of Iron Ores. Springer-Verlag, Berlin, and Verlag Stahleisen GmbH, Düsseldorf, Germany (1980).

    Google Scholar 

  105. W. Pietsch, “Wet Grinding Experiments in Torque Ball Mill,” in Zerkleinern, Proc. International Symp. Cannes, France (1971). Dechema Monographien, Vol. 69, Verlag Chemie GmbH, Weinheim, Germany, pp. 751-779 (1972).

    Google Scholar 

  106. K. Sommer and W. Herrman, “Auslegung von Granulierteller und Granuliertrommel.” Chemie Ingenieur Technik 50:518–524 (1978).

    Google Scholar 

  107. R. Manz, “Beitrag zur Berechnung der Antriebsleistung von Rohrmühlen.” Zement Kalk Gips 23:407–412 (1970).

    Google Scholar 

  108. H. E. Rose and R. M. E. Sullivan, Ball, Tube, and Rod Mills. Constable, London (1957).

    Google Scholar 

  109. H. T. Sterling, “Advances in Balling and Pelletizing,” in Agglomeration, edited by W. A. Knepper, Proc. 1st International Symp. Agglomeration, Philadelphia, PA, John Wiley & Sons, New York, pp. 177–206 (1962).

    Google Scholar 

  110. G. Heinze, “Novel Rotary Drum for (the Agglomeration of) Finely Divided Dispersed Material.” Aufbereitungs Technik 25:404–409 (1987).

    Google Scholar 

  111. D. F. Ball, J. Dartnell, J. Davison, A. Grieve, and R. Wild, Agglomeration of Iron Ores. American Elsevier, New York (1973).

    Google Scholar 

  112. F. P. Morawski, Mining Eng. 15(5):48–52 (1963).

    Google Scholar 

  113. M. Papadakis and J. P. Bombled, “La Granulation des Matières Premières de Cimenterie.” Rev. Matér. Construct. 549 289–299 (1961).

    Google Scholar 

  114. H. Klatt, “Die betriebliche Einstellung von Granuliertellern.” Zement Kalk Gips 11(4):144–154 (1958).

    Google Scholar 

  115. U. N. Bhrany, “Entwurf und Betrieb von Pelletiertellern.” Aufbereitungs Technik 18(12):641–647 (1977).

    Google Scholar 

  116. J. D. Corney, “Disc Granulation in the Chemical Industry.” Br. Chem. Eng. 10(9):405–407 (1965).

    Google Scholar 

  117. R. B. Ries, “Granulaterzeugung in Mischgranulatoren und Granuliertellern.” Aufbereitungs Technik 16(12):639–646 (1975).

    Google Scholar 

  118. F. D. Ball, “Pelletizing before Sintering: Some Experiments with a Disc.” J. Iron Steel Inst. pp. 40-55 (1959).

    Google Scholar 

  119. C. E. Capes and A. E. Fouda, “Agitation Methods,” in Handbook of Powder Science and Technology, edited by M. E. Fayed and L. Otten, Van Nostrand Reinhold, New York, pp. 194–286 (1983).

    Google Scholar 

  120. T. P. Hignett, “Manufacture of Granular Mixed Fertilizers,” in Chemistry and Technology of Fertilizers, edited by V. Sanchells, Reinhold, New York (1960).

    Google Scholar 

  121. P. J. Sherrington, The Granulation of Sand as an Aid to Understanding Fertilizer Granulation. Chemie. Eng. (London) No. 220, CE201–CE215 (1968).

    Google Scholar 

  122. J. O. Hardesty, “Granulation.” In Superphosphate: Its History, Chemistry and Manufacture, U.S. Dept. of Agriculture, Washington, 1964.

    Google Scholar 

  123. R. E. Brociner, “The Peg Granulator,” Chem. Eng. (London) No. 220, CE227–CE231 (1968).

    Google Scholar 

  124. J. A. Frye, W. C. Newton, and W. C. Engelleitner, The Pinmixer—a Novel Agglomeration Device. Proc. Inst. Briquet. Agglom. Bien. Conf. 14, pp. 207–217 (1975).

    CAS  Google Scholar 

  125. L. Lachman, H. A. Lieberman, and J. L. Kanig (eds), The Theory and Practice of Industrial Pharmacy, Lea and Febiger, Philadelphia (1970).

    Google Scholar 

  126. C. A. Sumner, “Agglomeration of Dishwater Detergents,” Soap Chem. Spec. (July, 1975).

    Google Scholar 

  127. C. A. Sumner and E. O’Brien, “Constant Density Falling Curtain Agglomeration of Detergents and Other Materials,” in Agglomeration 77, edited by K. V. S. Sastry, AIME, New York (1977).

    Google Scholar 

  128. J. D. Jensen, “Some Recent Advances in Agglomerating, Instantizing and Spray Drying.” Food Technol., Chicago, pp. 60-71 (June, 1975).

    Google Scholar 

  129. R. Wood, “Getting to Grips with Granulation.” Mfg. Chem. Aerosol News, pp. 23-27 (June, 1975).

    Google Scholar 

  130. K. Masters and A. Stoltze, “Agglomeration Advances.” Food Eng., pp. 64-67 (February, 1973).

    Google Scholar 

  131. J. G. Moore, W. E. Hesler, M. W. Vincent, and E. C. Dubbels, “Agglomeration of Dried Materials.” Chem. Eng. Prog, 60(5):63–66 (1964).

    CAS  Google Scholar 

  132. C. E. Capes and A. E. Fouda, “Prilling and Other Spray Methods,” in Handbook of Powder Science and Technology, edited by M. E. Fayed and L. Otten, Van Nostrand Reinhold, New York, pp. 294–307 (1983).

    Google Scholar 

  133. K. Masters, Spray Drying Handbook, 3d ed., George Godwin London; Halsted Press, New York (1979).

    Google Scholar 

  134. K. Masters and A. Stoltze, “Agglomeration Advances.” Food Eng., pp. 64-67 (February, 1973).

    Google Scholar 

  135. J. W. Pictor, “Solids from Solutions in One Step.” Process Eng., pp. 66-67 (June, 1974).

    Google Scholar 

  136. M. W. Scott, H. A. Lieberman, A. D. Rankell, and J. V. Battista, “Continuous Production of Tablet Granulations in a Fluidized Bed.” J. Pharm. Sci. 53(3):314–320 (1964).

    CAS  Google Scholar 

  137. N. A. Shakhova, B. G. Yevdokimov, and N. M. Ragozina, “An Investigation of a Multi-Compartment Fluid-Bed Granuator.” Process Technol. Int. 17:946–947(1972).

    Google Scholar 

  138. W. L. Davies and W. L. Goor, Batch Production of Pharmaceutical Granulations in a Fluidized Bed. J. Pharm. Sci. 60(12):1869–1874 (1971); ibid. 61:618-622 (1972).

    CAS  Google Scholar 

  139. S. Mortensen and S. Hovmand, “Particle Formation and Agglomeration in a Spray Granulator,” in Fluidization Technology, edited by D. L. Keairns, Hemisphere Pub. Corp., Washington (1976).

    Google Scholar 

  140. C. J. Wall, J. T. Graves, and E. J. Roberts, “How to Burn Salty Sludges.” Chem. Eng. 82(8):77–82 (1975).

    CAS  Google Scholar 

  141. K. B. Mathur and N. Epstein, Spouted Beds, Academic Press, New York (1974).

    Google Scholar 

  142. Y. F. Berquin, Method and Apparatus for Granulating Melted Solid and Hardenable Fluid Products. U.S. Patent 3, 231, 413 (January 25, 1966).

    Google Scholar 

  143. C. E. Capes and A. E. Fouda, “Agglomeration in Liquid Systems,” in Handbook of Powder Science and Technology, edited by M. E. Fayed and L. Otten, Van Nostand Reinhold Co., New York, pp. 331–344 (1983).

    Google Scholar 

  144. C. E. Capes, A. E. McIlhinney, and A. F. Sirianni, “Agglomeration from Liquid Suspension—Research and Applications,” in Agglomeration 77, edited by K. V. S. Sastry, AIME, New York (1977).

    Google Scholar 

  145. R. Akers, Flocculation, Inst. Chem. Engrs., London (1975).

    Google Scholar 

  146. J. A. Kitchener, “Principles of Action of Polymeric Flocculants.” Br. Polym. J. 4:217–229 (1972).

    CAS  Google Scholar 

  147. M. Yusa, H. Suzuki, and S. Tanaka, “Separating Liquids from Solids by Pellet Flocculation.” J. Am. Water Works Assoc. 67:397–402 (1975).

    Google Scholar 

  148. R. H. Perry and C. H. Chilton, (eds.), Chemical Engineers’ Handbook, 5th ed., section 8, McGraw-Hill, New York (1973).

    Google Scholar 

  149. J. R. Farnand, H. M. Smith, and I. E. Puddington, “Spherical Agglomeration of Solids in Liquid Suspension.” Can. J. Chem. Eng. 39:94–97 (1961).

    CAS  Google Scholar 

  150. A. F. Sirianni and I. E. Puddington, “Forming Balls from Powder.” U.S. Patent 3,368,004 (Feb. 6, 1968).

    Google Scholar 

  151. C. E. Capes and J. P. Sutherland, “Formation of Spheres from Finely Divided Solids in Liquid Suspension.” Ind. Eng. Chem. Process Design Develop. 6:146–154 (1967).

    CAS  Google Scholar 

  152. C. E. Capes, R. D. Coleman, and W. L. Thayer, “The Production of Uniformly Sized Spherical Agglomerates in Balling Drums and Discs.” Int. Conf. Compact. and Consolid. of Part. Matter, Proc., 1st, London (1972).

    Google Scholar 

  153. P. A. Haas and S. D. Clinton, “Preparation of Thoria and Mixed Oxide Microspheres,” Ind. Eng. Chem. Product Res. Dev. 5(3):236–246 (1966).

    CAS  Google Scholar 

  154. M. E. A. Hermans, “Sol-gel Processes—A Curiosity or a Technique?” Powder Met. Int. 5(3):137–140 (1973).

    CAS  Google Scholar 

  155. J. R. Farnand and A. F. Sirianni, Hollow Article Production. U.S. Patent 3,528,809 (Sept. 15, 1970).

    Google Scholar 

  156. C. E. Capes, A. E. McIlhinney, R. E. McKeever, and L. Messer, “Application of Spherical Agglomeration to Coal Preparation.” Int. Coal Prep. Conf. Proc., 7th, Sydney, Australia (1976).

    Google Scholar 

  157. C. E. Capes and R. L. Germain, “Selective Oil Agglomeration in Fine Coal Beneficiation, in Physical Cleaning of Coal, edited by Y. A. Liu, Markel Dekker, New York (1982).

    Google Scholar 

  158. C. E. Capes, A. E. Mcllhinney, A. F. Sirianni, and I. E. Puddington, “Agglomeration in Coal Preparation.” Proc. Inst. Briquet. Agglom. 12:53–65 (1971).

    CAS  Google Scholar 

  159. Flocpress, Bull. DB845, Infilco Degremont Inc. (Sept. 1976).

    Google Scholar 

  160. Dehydrum Continuous Pelletizing Dehydrator, Ebara-Infilco Co., Ltd., Tokyo, Japan.

    Google Scholar 

  161. W. Pietsch, Size Enlargement by Agglomeration, John Wiley & Sons/Sail + Sauerländer, Chichester, UK/Aarau, Switzerland (1991).

    Google Scholar 

  162. W. Pietsch, “Pressure Agglomeration-State of the Art,” in Agglomeration ′77, Vols. 1 and 2, edited by K. V. S. Sastry, Proceedings of the Second International Symposium on Agglomeration, Atlanta, GA, AIME, New York, pp. 649–677 (1977).

    Google Scholar 

  163. D. Train, “Transmission of Forces Through a Powder Mass During the Process of Pelleting.” Trans. Inst. Chem. Eng. 35(4):258–266 (1957).

    Google Scholar 

  164. D. C. Hicks, Private Communication, LCI Corp., Charlotte, NC (1993).

    Google Scholar 

  165. G. Schenkel, Schneckenpresse für Kunststoffe, Carl Hanser Verlag, München, Germany (1959).

    Google Scholar 

  166. Anonymous, Schneckenmaschinen, Mitteilungen de Verfahrenstechnischen Versuchsgruppe der BASF, Ludwigshafen/Rh., Germany (1960).

    Google Scholar 

  167. G. Menges, Einführung in die Kunststoffver arbeitung, Carl Hanser Verlag, München, Germany (1975).

    Google Scholar 

  168. K. F. Mauch, “Compounding and Pelletizing of Plastic Materials with Twin-Screw Extruders,” Unpublished report, Werner and Pfleiderer, Stuttgart, Germany (1986).

    Google Scholar 

  169. J. C. Steele, Jr. and K. A. Hanafey, “Agglomeration via Auger Extrusion,” in Proceedings of Sixteenth Biennial Conference, IBA, pp. 287-95 (1979).

    Google Scholar 

  170. D. C. Hicks, “Extrusion, Spheronizing, and High-Speed Mixing/Granulation Equipment,” Unpublished manuscript, LCI Corp., Charlotte, NC (1988).

    Google Scholar 

  171. G. Frank, “Pelletizing with Horizontal Dies,” Unpublished manuscript, Amandus Kahl Nachf., Reinbek/Hamberg, Germany (1984).

    Google Scholar 

  172. R. H. Leaver, “The pelleting process,” Unpublished manuscript, Koppers Co., Inc. (1982) (Currently Sprout-Bauer, Inc., Muncy, PA).

    Google Scholar 

  173. Anonymous, “Matrize für eine Pelletisier-maschine,” German Patent Application OS 3 342 658 (1985).

    Google Scholar 

  174. Anonymous, “Pelletisiermatrize,” German Patent Application OS 3 342 659 (1985).

    Google Scholar 

  175. Anonymous, “Flachbettpresse,” German Utility Model CM 8 310 601 (1987).

    Google Scholar 

  176. D. C. Hicks, “Extrusion and Spheronizing Equipment,” Unpublished manuscript, Luwa Corp., Charlotte, NC (1988).

    Google Scholar 

  177. N. Nakahara, “Method and Apparatus for Making Spherical Granules,” US. Patent 3 277 520 (1966).

    Google Scholar 

  178. S. Bradbury (ed.), Powder Metallurgy Equipment Manual, 3rd ed., Metal Powder Industries Federation, Princeton, NJ (1986).

    Google Scholar 

  179. R. Voigt, Lehrbuch der Pharmazeutischen Technologie, 6th ed., VEB Verlag Volk und Gesundheit, Berlin, DDR, and VCH, Weinheim, FRG, and Deerfied Beach, FL (1987).

    Google Scholar 

  180. R. Ridgeway-Watt, Tablet Machine Instrumentation in PharmaceuticsPrinciples and Practice, Ellis Horwood Series in Pharmaceutical Technology, John Wiley & Sons, New York (1988).

    Google Scholar 

  181. J. T. Carstensen, “Tabletting and Pelltization in the Pharmaceutical Industry,” in Handbook of Powder Science and Technology, edited by M. E. Fayed and L. Otten, Van Nostrand Reinhold Co., New York, pp. 262–269 (1983).

    Google Scholar 

  182. J. T. Carstensen, Pharmaceuticals of Solids and Solid Dosage Forms, John Wiley & Sons, New York, p. 161 (1977).

    Google Scholar 

  183. J. T. Carstensen, J. B. Johnson, W. Valentine, and J. J. Vance, J. Pharm. Sci. 53:1050 (1964).

    CAS  Google Scholar 

  184. J. T. Carstensen and P. Chan, J. Pharm. Sci. 66:1235 (1977).

    CAS  Google Scholar 

  185. K. Ridgeway and R. Rupp, J. Pharma. Pharmacol. 21:305 (1969).

    Google Scholar 

  186. R. L. Brown and J. C. Richards, Trans. Inst Chem. Ing. 38:243 (1960).

    Google Scholar 

  187. F. Q. Danish and E. L. Parrott, J. Pharm. Sci. 60:550 (1971).

    Google Scholar 

  188. J. T. Fell and J. M. Newton, J. Pharm. Sci. 60:1428, 1868 (1971).

    CAS  Google Scholar 

  189. S. Leigh, J. R. Carless, and B. W. Burt, J. Pharm. Sci. 56:888 (1967).

    CAS  Google Scholar 

  190. T. Higuchi, E. Nelson, and L. W. Busse, J. Am. Pharm. Assoc. 43:345 (1954).

    Google Scholar 

  191. E. Shotton, J. J. Deer, and D. Ganderton, J. Pharm. Pharmacol. 15:106T (1963).

    Google Scholar 

  192. J. M. Newton, P. Stanley, and C. S. Tan, J. Pharm. Pharmacol. 29:40P (1977).

    Google Scholar 

  193. J. T. Fell and J. M. Newton, J. Pharm. Sci. 59:688 (1970).

    CAS  Google Scholar 

  194. J. M. Newton and P. Stanley, J. Pharm. Pharmacol. 26:60P (1974).

    Google Scholar 

  195. J. M. Newton and D. J. W. Grant, Powder Technol 9:295–297 (1974).

    Google Scholar 

  196. P. Popper, “Isostatic Pressing,” in Monographs in Powder Science and Technology, edited by A. S. Goldberg, Heyden & Sons Ltd., London (1976).

    Google Scholar 

  197. E. Rammler, “Über die Theorien der Braunkohlenbrikettentstehung. Sitzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig.” Mathematisch naturwissenschaftliche Klass, Vol. 109(1), Akademie Verlag, Berlin, Germany, 38 pp. (1970).

    Google Scholar 

  198. H. Metzner, “Untersuchung des Pressvorganges in Strangpressen mit Hilfe von Pressdruckmessungen unter besonderer Berücksichtigung schnellaufender Zweigelenk Pressen,” Ph.D. Thesis, Bergakademie Freiberg, Germany (1962).

    Google Scholar 

  199. K. Schenke, “Über die Veränderungen der Briketts beim Durchgang durch den Formkanal der Strangpressen und sich daraus ergebende Erkenntnisse über den Pressvorgang, insbesondere bei der Fein-stkornbrikettierung von Braunkohle,” Ph.D. Thesis, Bergakademie Freiberg, Germany (1968).

    Google Scholar 

  200. W. Horrighs, “Determining the Dimensions of Extrusion Presses with Parallel-Wall Die Channel for the Compaction and Conveying of Bulk Solids. Aufbereitungs Technik, 26(12): 724–732 (1985).

    Google Scholar 

  201. K. Schneider, “Druckausbreitung und Druckverteilung in Schüttgütern.” Chem. Ing. Techn. 41(1/2): 51–55 (1969).

    CAS  Google Scholar 

  202. R. Kurtz, “Important Parameters for Briquetting Soft Lignite in Extrusion Presses.” Aufbereitungs Technik 27(6): 307–316 (1986).

    Google Scholar 

  203. H. Herrmann, Das Verdichten von Pulvern zwischen zwei Walzen, Verlag Chemie GmbH, Weinheim, Germany (1973).

    Google Scholar 

  204. W. Pietsch, “Roll Designs for Briquetting-Compacting Machines,” in Proceedings of Eleventh Biennial Conference, IBA, pp. 145–163 (1969).

    Google Scholar 

  205. G. Franke, Handbuch der Brikettbereitung, Vol. 1, Die Brikettbereitung aus Steinkohlen, Braunkohlen und Sonstigen Brennstoffen, Verlag Ferdinand Enke, Stuttgart, Germany (1909).

    Google Scholar 

  206. W. Pietsch, “Roll Pressing,” in Monographs in Powder Science and Technology, edited by A. S. Goldberg, Heyden and Son, London (1987).

    Google Scholar 

  207. W. John, “Brikettieren,” in Ullmann’s Enzyklopädie der Technischen Chemie, 4th ed., Vol. 2, Allgemeine Grundlagen der Verfahrens und Reaktionstechnik. Brikettieren, Verlag Chemie GmbH, Weinheim/ Bergstr., Germany, pp. 315–320 (1972).

    Google Scholar 

  208. K. Kegel, Aufbereitung und Brikettierung, Vol. 4, Part I: Brikettierung der Braunkohle, Wilhelm Knapp Verlag, Halle/Saale, Germany (1948).

    Google Scholar 

  209. W. Pietsch, “Agglomerieren problemlos—Kom-paktiervorgang in Wälzdruckbrikettier—und Kom-paktiermaschinen.” Maschinenmarkt MM Industriejournal 78(88):2036–2040 (1972).

    Google Scholar 

  210. J. R. Johanson, “A Rolling Theory for Granular Solids.” Trans. ASME J. Appl. Mechanics, Ser. E, 32:842–848 (1965).

    CAS  Google Scholar 

  211. R. Zisselmar, “Kompaktiergranulieren mit Walzenpressen.” Chem. Ing. Techn. 59(10):779–787 (1987).

    CAS  Google Scholar 

  212. W. Pietsch, “Modern Equipment and Plants for Potash Granulation,” in Potash Technology, edited by R. M. McKercher, Proceedings of First International Potash Technology Conference, Saskatoon, Sask., Canada, Pergamon Press Canada, pp. 661–669 (1983).

    Google Scholar 

  213. J. R. Johanson, “Reducing Air Entrainment Problems in Your Roll Press.” Powder Bulk Eng. 2:43–46 (1989).

    Google Scholar 

  214. B. E. Kurtz and A. J. Barduhn, “Compacting Granular Solids.” Chem. Eng. Progr. 56:67 (1960).

    CAS  Google Scholar 

  215. Anonymous, A study of the compression in tangential roll briquetting presses, Sahut, Conraur and Cie., Varrangeville, France (1950).

    Google Scholar 

  216. J. H. Blake, R. G. Minet, and W. P. Steen, “Pressure Developed in a Roll Press,” in Proceedings of Eighth Biennial Conf., IBA, pp. 38–48 (1963).

    Google Scholar 

  217. F. S. Novikov, “Calculating of Roll Briquetting Presses.” Ugol. (Russ.), 38:50 (1963).

    Google Scholar 

  218. B. Atkinson, “Compaction of Powders and Pastes in Double Roll Presses.” NCB/CRE/Solid Products Dept. Report No. 108 (Feb. 1964).

    Google Scholar 

  219. Z. Drzymala, Industrial Briquetting, Fundamentals and Methods, Vol. 13 of Studies in Mechanical Engineering, Elsevier, Amsterdam, NL/PWN Polish Scientific Publishers, Warszawa, PL (1993).

    Google Scholar 

  220. R. A. Limons, “Sintering—Iron Ore,” in Handbook of Powder Science and Technology, edited by M. E. Fayed and L. Otten, Van Nostrand Reinhold, New York, pp. 307–331 (1983).

    Google Scholar 

  221. W. Pietsch, “Stand der Welt-Eisenerzpelletierung (Pelletizing of Iron Ore, Worldwide).” Aufbereitungs Technik 9(5):201–214 (1968).

    Google Scholar 

  222. D. F. Ball, J. Dartnell, J. Davison, A. Grieve, and R. Wild, Agglomeration of Iron Ores, American Elsevier, New York (1973).

    Google Scholar 

  223. K. Meyer, Pelletizing of Iron Ores, Springer-Verlag, Berlin, and Verlag Stahleisen GmbH, Düsseldorf, Germany (1980).

    Google Scholar 

  224. K. Meyer, “Uberblick über neuere Granulierverfahren und ihre Anwendungsmöglichkeiten in der Zementindustrie,” Zement Kalk Gips, 6 (1952).

    Google Scholar 

  225. J. Srb and Z. Růžičková, “Pelletization of Fines,” in Developments in Mineral Processing (advisory editor for D. W. Fuerstenau), Vol. 7, Elsevier Science, Amsterdam (1988).

    Google Scholar 

  226. R. L. Lappin and F. B. Traice, “A Survey of Modern Iron Ore Pelletizing Processes.” British Steel Corp. PB 225 693, GS/OPER/446/1/73C, Distr.: NT1S-US Department of Commerce (1973).

    Google Scholar 

  227. Anonymous, “Pelletizing—a Process for the Agglomeration of Very Fine-Grained Raw Materials.” Lurgi Express Info. C 1187/3.76, Frankfurt/M., Germany (1976).

    Google Scholar 

  228. H. Kortmann and A. Mai, “Untersuchungen über die Eignung verschiedener Bentonite für den Einsatz bei der Eisenerzpelletierung.” Aufbereitungs Technik, 11(5):251–256 (1970).

    CAS  Google Scholar 

  229. F. L. Shusterich, “Production of Peridur Pellets at Minorca.” S killings’ Mining Rev. 74(28):6–10 (1985).

    Google Scholar 

  230. H. A. Kortmann et al., “Peridur: a Way to Improve Acid and Fluxed Taconite Pellets. Skillings’ Mining Rev. 76(1):4–8 (1987).

    Google Scholar 

  231. H. Hausner, Bibliography on the Compaction of Metal Powders, Hoeganeas Corp., USA (1967).

    Google Scholar 

  232. M. B. Waldron and B. L. Daniele, “Sintering,” in Monographs in Powder Science and Technology, edited by A. S. Goldberg, Heyden and Son Ltd., London (1978).

    Google Scholar 

  233. P. J. James, “Powder Metallurgy Review 5: Fundamental Aspects of the Consolidation of Powders.” Powder Metal Int. 4(2)-; (3), pp. 145–149; (4), pp. 193-199 (1979).

    Google Scholar 

  234. S. Pejovnik et al., “Statistical Analysis of the Validity of Sintering Equations.” Powder Metal. Int. 11(1):22–23 (1979).

    Google Scholar 

  235. H. Schreiner and R. Tusche, “Description of Solid State Sintering Processes Based on Changes in Length of Compacts Made from Different Metal Powders.” Powder Metal. Int. 11(2):52–56 (1979).

    CAS  Google Scholar 

  236. C. E. Capes and A. E. Fouda, “Prilling and Other Spray Methods,” in Handbook of Powder Science and Technology, edited by M. E. Fayed and L. Otten, Van Nostrand Reinhold, New York, 294–307 (1983).

    Google Scholar 

  237. M. M. Ball, “Revolutionary New Concept Produces Agglomerated Products While It Spray Dries,” in Proceedings of the 20th Biennial Conference, IBA, pp. 81–96 (1987).

    Google Scholar 

  238. S. Mortensen and S. Hovmand, Chem. Eng. Progr. 4(37) (1983).

    Google Scholar 

  239. R. N. Davies, Dust is Dangerous, Faker and Faker Ltd., London (1953).

    Google Scholar 

  240. G. Reethof, “Acoustic Agglomeration of Power Plant Fly Ash for Environmental Clean-up,” in Proceedings of the 10th Annual Powder and Bulk Solids Conference, Rosemont, IL, pp. 299-312 (1985).

    Google Scholar 

  241. P. D. Chamberlin, “Agglomeration: Cheap Insurance for Good Recovery When Heap Leaching Gold and Silver.” Mining Eng. 22:1105–1109 (1986).

    Google Scholar 

  242. Anonymous, “DRIACOATER,” Prospectus DRIAM Metallprodukt GmbH and Co.KG., Eriskirch, Germany.

    Google Scholar 

  243. D. M. Jones, “Factors to Consider Fluid-Bed Processing.” Pharmacut. Technol 4 (1985).

    Google Scholar 

  244. K. W. Olsen, “Batch Fluid-Bed Processing Equipment. A Design Overview: Part II. Pharmaceutical Technol 6:39–50 (1989).

    Google Scholar 

  245. W. Pietsch, “Das Agglomerationsverhalten feiner Teilchen,” Staub-Reinhalt. Luft. 27(1):20–33 (1967); English edition (The Agglomerative Behavior of Fine Particles), 27(1):24-41 (1967).

    CAS  Google Scholar 

  246. J. Lyklema, “The Colloidal Background of Agglomeration,” in Agglomeration ′85, edited by C. E. Capes, Proceedings of the 4th International Symposium on Agglomeration, Toronto, Canada, The Iron and Steel Society, Inc., Warrendale, PA, pp. 23–36 (1985).

    Google Scholar 

  247. B. M. Moudgil and A. McCombs, “Physical Simulation of the Flocculation Process. Minerals Metal. Proc. 8:151–155 (1987).

    Google Scholar 

  248. H. Burkert and H. Horacek, “Anwendung von Flockungsmitteln bei der mechanischen Flüssigkeitsabtrennung,” Chem. Ing. Tech. 58(4):279–286 (1986).

    CAS  Google Scholar 

  249. R. Hogg, R. C. Klimpel, and D. T. Ray, “Agglomerate Structure in Flocculated suspensions and Its Effect on Sedimentation and Dewatering.” Minerals Metal. Proc. 5:108–114 (1987).

    Google Scholar 

  250. L. A. Glasgow, “Effects of the Physiochemical Environment on Floc Properties,” Chemie. Eng. Proc. 85(8):51–55 (1989).

    CAS  Google Scholar 

  251. B. M. Moudgil and T. V. Vasudevan, “Evaluation of Floc Properties for Dewatering Fine Particle Suspensions.” Mineral Metal. Proc. 8:142–145 (1989).

    Google Scholar 

  252. M. M. Nazarian et al., “Electrocoagulator,” German Patent PS 34 90 677 (1988).

    Google Scholar 

Download references

Authors

Editor information

Muhammad E. Fayed Lambert Otten

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pietsch, W. (1997). Size Enlargement by Agglomeration. In: Fayed, M.E., Otten, L. (eds) Handbook of Powder Science & Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6373-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6373-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-99621-4

  • Online ISBN: 978-1-4615-6373-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics