Skip to main content

Restriction Modification Systems: Where They Are and What They Do

  • Chapter
Bacterial Genomes

Abstract

This review concentrates on restriction-modification (RM) in the context of bacterial genome evolution and how the systems affect bacterial populations. RM systems regulate the entry of foreign DNA into cells. A model of how the systems work is shown in Figure 8-1. Foreign DNA is restricted by a restriction endonuclease that recognizes a specific sequence and cleaves the DNA unless the sequence is protected. Typically, a modification methyltransferase confers protection, by methylating a particular base within the sequence recognized by the restriction enzyme, thereby rendering it resistant to cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadjieva, A., J. Patel, M. Webb, V. Zinkevich, and K. Firman. 1993. A deletion mutant of the type IC restriction endonuclease EcoR1241 expressing a novel DNA specificity. Nucl. Acids Res. 21:4435–4443.

    Article  PubMed  CAS  Google Scholar 

  • Achtman, M. 1994. Clonal spread of serogroup A meningococci: a paradigm for the analysis of microevolution in bacteria. Mol. Microbiol. 11:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Arber, W., and S. Linn. 1969. DNA modification and restriction. Anna. Rev. Biochem. 38:467–500.

    Article  CAS  Google Scholar 

  • Barcus, V. A., and N. E. Murray. 1995. Barriers to recombination: restriction. Soc. Gen. Microbiol. Symp. 52:31–58.

    Google Scholar 

  • Barcus, V. A., A. J. B. Titheradge, and N. E. Murray. 1995. The diversity of alleles at the hsd locus in natural populations of Escherichia coli. Genetics 140:1187–1197.

    PubMed  CAS  Google Scholar 

  • Bertani, G., and J. J. Weigle. 1953. Host-controlled variation in bacterial viruses. J. Bacteriol. 65:113–121.

    PubMed  CAS  Google Scholar 

  • Bickle, R. A., and D. H. Krüger. 1993. Biology of DNA restriction. Microbiol. Rev. 57:434–450.

    PubMed  CAS  Google Scholar 

  • Butler, C. A., and E. C. Gotschlich. 1991. High-frequency mobilization of broad-host-range plasmids into Neisseria gonorrhoeae requires methylation in the donor. J. Bacteriol. 173:5793–5799.

    PubMed  CAS  Google Scholar 

  • Daniel, A. S., F. V. Fuller-Pace, D. M. Legge, and N. E. Murray. 1988. Distribution and diversity of hsd genes in Escherichia coli and other enteric bacteria. J. Bacteriol. 170:1775–1782.

    PubMed  CAS  Google Scholar 

  • De Feyter, R., and D. W. Gabriel. 1991. Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum. J. Bacteriol. 173:6421–6427.

    PubMed  Google Scholar 

  • Dybvig, K., and H. Yu. 1994. Regulation of a restriction and modification system via DNA inversion in Mycoplasma pulmonis. Mol. Microbiol. 12:547–560.

    Article  PubMed  CAS  Google Scholar 

  • Ferat, J.-L., and F. Michel. 1993. Group II self-splicing introns in bacteria. Nature 364:358–361.

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann, R. E., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton, W. FitzHugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L. Liu, A. Glodek, J. M. Kelley, J. F. Wiedman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagan, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.

    Article  PubMed  CAS  Google Scholar 

  • Fuller-Pace, F. V., L. R. Bullas, H. Delius, and N. E. Murray. 1984. Genetic recombination can generate altered restriction specificity. Proc. Natl. Acad. Sci. USA 81:6095–6099.

    Article  PubMed  CAS  Google Scholar 

  • Gann, A. A. F., A. J. B. Campbell, J. F. Collins, A. F. W. Coulson, and N. E. Murray. 1987. Reassortment of DNA recognition domains and the evolution of new specificities. Mol. Microbiol. 1:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Glover, S. W., K. Firman, G. Watson, C. Price, and S. Donaldson. 1983. The alternate expression of two restriction and modification systems. Mol. Gen. Genet. 190:65–69.

    Article  PubMed  CAS  Google Scholar 

  • Gopal, J., M. J. Yebra, and A. S. Bhagwat. 1994. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in HhaI methyltransferase that is in contact with DNA bases. Nucl. Acids Res. 22:4482–4488.

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya, A. E. 1994. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci. 3:1117–1120.

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya, A. E., and E. V. Koonin. 1991. Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Lett. 291:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, M. L., S. D. Nuttall, and M. L. Dyall-Smith. 1991. Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J. Bacteriol. 173:3807–3813.

    PubMed  CAS  Google Scholar 

  • Ikawa, S., S. Takehiko, T. Ando, and H. Saito. 1980. Genetic studies on site-specific endodeoxyribonucleases in Bacillus subtilis: multiple modification and restriction systems in transformant of Bacillus subtilis 168. Mol. Gen. Genet. 177:359–368.

    Article  PubMed  CAS  Google Scholar 

  • Janulaitis, A., R. Kazlauskiene, L. Lazareviciute, R. Glvonauskaite, D. Steponaviciene, M. Jagelavicius, M. Petrusyte, J. Bitinaite, Z. Veneviciute, E. Kiuduliene, and V. Butkus. 1988. Taxonomic specificity of restriction-modification enzymes. Gene 74:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Janulaitis, A., M. Petrusyte, Z. Maneliene, S. Klimasauskas, and V. Butkus. 1992. Purification and properties of the Eco57I restriction endonuclease and methylase—prototypes of a new class (type IV). Nucl. Acids Res. 20:6043–6049.

    Article  PubMed  CAS  Google Scholar 

  • Janulaitis, A., R. Vaisvila, A. Timinskas, S. Klimasauskas, and V. Butkus. 1992. Cloning and sequence analysis of the genes coding for Eco57I type IV restriction-modification enzymes. Nucl. Acids Res. 20:6051–6056.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, M. E., F. Barany, and H. O. Smith. 1983. Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc. Natl. Acad. Sci. USA 80:6927–6931.

    Article  PubMed  CAS  Google Scholar 

  • Karaolis, D. K., R. Lan, and P. R. Reeves. 1995. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-01 Vibrio cholerae. J. Bacteriol. 177:3191–3198.

    PubMed  CAS  Google Scholar 

  • Kim, Y. G., and S. Chandrasegaran. 1994. Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 9:883–887.

    Article  Google Scholar 

  • Klimasauskas, S., J. L. Nelson, and R. J. Roberts. 1991. The sequence specificity domain of cytosine-C5 methylases. Nucl. Acids Res. 19:6183–6190.

    Article  PubMed  CAS  Google Scholar 

  • Kneale, G. G. 1994. A symmetrical model for the domain structure of type I DNA methyltransferases. J. Mol. Biol. 243:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Kong, H., S. E. Roemer, P. A. Waite-Rees, J. S. Benner, G. G. Wilson, and D. O. Nwankwo. 1994. Characterization of BcgI, a new kind of restriction-modification system. J. Biol. Chem. 269:683–690.

    PubMed  CAS  Google Scholar 

  • Korona, R., and B. R. Levin. 1983. Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47:556–575.

    Article  Google Scholar 

  • Kulakauskas, S., A. Lubys, and S. D. Ehrlich. 1995. DNA restriction-modification systems mediate plasmid maintenance. J. Bacteriol. 177:3451–3454.

    PubMed  CAS  Google Scholar 

  • Kumar, S., X. Cheng, S. Klimasauskas, S. Mi, J. Posfai, R. J. Roberts, and G. G. Wilson. 1994. The DNA (cytosine-5) methyltransferases. Nucl. Acids Res. 22:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Lauster, R., T. A. Trautner, and M. Noyer-Weidner. 1989. Cytosine-specific type II DNA methyltransferases: a conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B. R. 1988. Frequency-dependent selection in bacterial populations. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 319:459–472.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B. R. 1981. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99:1–23.

    PubMed  CAS  Google Scholar 

  • Li, L., and S. Chandrasegaran. 1993. Alteration of the cleavage distance of FokI restriction endonuclease by insertion mutagenesis. Proc. Natl. Acad. Sci. USA 90:2764–2768.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., L. P. Wu, and S. Chandrasegaran. 1992. Functional domains in Fokl restriction endonuclease. Proc. Natl. Acad. Sci. USA 89:4275–4279.

    Article  PubMed  CAS  Google Scholar 

  • Luria, S. E., and M. L. Human. 1952. A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64:557–559.

    PubMed  CAS  Google Scholar 

  • Macaluso, A., and A.-M. Mettus. 1991. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J. Bacteriol. 173:1353–1356.

    PubMed  CAS  Google Scholar 

  • MacNeil, D. J. 1988. Characterization of a unique methy1-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170:5607–5612.

    PubMed  CAS  Google Scholar 

  • Matsushima, P., K. L. Cox, and R. H. Baltz. 1987. Highly transformable mutants of Streptomyces fradiae defective in several restriction systems. Mol. Gen. Genet. 206:393–400.

    Article  PubMed  CAS  Google Scholar 

  • McClelland, M. 1988. Recognition sequences of type II restriction systems are constrained by the G+C content of host genomes. Nucl. Acids Res. 16:2283–2294.

    Article  PubMed  CAS  Google Scholar 

  • McKane, M., and R. Milkman. 1995. Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139:35–43.

    PubMed  CAS  Google Scholar 

  • Meister, J., M. MacWilliams, P. Hubner, H. Jutte, E. Skrzypek, A. Piekarowicz, and T. A. Bickle. 1993. Macroevolution by transposition: drastic modification of DNA recognition by a type I restriction enzyme following Tn5 transposition. EMBO J. 12:4585–4891.

    PubMed  CAS  Google Scholar 

  • Mi, S., and R. J. Roberts. 1992. How M.MspI and M.HpaII decide which base to methylate. Nucl. Acids Res. 20:4811–4816.

    Article  PubMed  CAS  Google Scholar 

  • Milkman, R., and M. M. Bridges. 1993. Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics 133:455–468.

    PubMed  CAS  Google Scholar 

  • Moser, D. P., D. Zarka, and T. Kallas. 1993. Characterization of a restriction barrier and electrotransformation of the cyanobacterium Nostoc PCC 7121. Arch. Microbiol. 160:229–237.

    PubMed  CAS  Google Scholar 

  • Murray, N. E., A. S. Daniel, G. M. Cowan, and P. M. Sharp. 1993. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol. Microbiol. 9:133–143.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R. S., and F. W. Stahl. 1994. Chi and RecBCD enzyme of Escherichia coli. Annu. Rev. Genet. 28:49–70.

    Article  PubMed  CAS  Google Scholar 

  • Naito, T., K. Kusano, and I. Kobayashi. 1995. Selfish behavior of restriction-modification systems. Science 267:897–899.

    Article  PubMed  CAS  Google Scholar 

  • Nolling, J., and W. M. de Vos. 1992. Characterization of the archaeal, plasmid-encoded Type II restriction-modification system MthTI from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPII system from Neisseria gonorrhoeae. J. Bacterial. 174:5719–5726.

    CAS  Google Scholar 

  • Noyer-Weidner, M., and T. A. Trautner. 1993. Methylation of DNA in prokaryotes. EXS 64:39–108.

    PubMed  CAS  Google Scholar 

  • Noyer-Weidner, M., J. Walter, P. A. Terschuren, S. Chai, and T. A. Trautner. 1994. M.phi 3TII: a new monospecific DNA (cytosine-C5) methyltransferase with pronounced amino acid sequence similarity to a family of adenine-N6-DNA-methyltransferases [corrected and republished article originally printed in Nucl. Acids Res. 1994 Oct 11; 22(20):4066-4072]. Nucl. Acids Res. 22:5517–5523.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan, D. J., K. Zagula, and T. R. Klaenhammer. 1995. In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J. Bacteriol. 177:134–143.

    PubMed  Google Scholar 

  • Olsen, G. J., C. R. Woese, and R. Overbeek. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176:1–6.

    PubMed  CAS  Google Scholar 

  • Pósfai, J., A. S. Bhagwat, G. Pósfai, and R. J. Roberts. 1989. Predictive motifs derived from cytosine methyltransferases. Nucl. Acids Res. 17:2421–2435.

    Article  PubMed  Google Scholar 

  • Povilenis, P. I., A. A. Luis, R. I. Vaishvila, S. T. Kulakauskas, and A. A. Ianulaitis. 1989. Methy1-cytosine specific restriction in Escherichia coli K-12. Genetika (USSR) 25:753–755.

    CAS  Google Scholar 

  • Price, C., J. Lingner, T. A. Bickle, K. Firman, and S. W. Glover. 1989. Basis for changes in DNA recognition by the EcoR124 and EcoR124/3 type I DNA restriction and modification enzymes. J. Mol. Biol. 205:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh, E. A. 1992. Organization and function of the mcrBC genes of E. coli K-12. Mol. Microbiol. 6:1079–1086.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. J., and S. E. Halford. 1993. Type II restriction endonucleases. In Nucleuses, S. M. Linn, R. S. Lloyd and R. J. Roberts, eds. pp. 35–88. Cold Spring Harbor, N. Y. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Roberts, R. J., and D. Macelis. 1994. REBASE—restriction enzymes and methylases. Nucl. Acids Res. 22:3628–3639.

    Article  PubMed  CAS  Google Scholar 

  • Roszczyk, E., and S. Goodgal. 1975. Methylase activities from Haemophilus influenzae that protect Haemophilus parainfluenzae transforming deoxyribonucleic acid from inactivation by Haemophilus influenzae endonuclease R. J. Bacteriol. 123:287–293.

    PubMed  CAS  Google Scholar 

  • Seiander, R. K., D. A. Caugant, and T. S. Whittam. 1987. Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, M. Schaechter, and H. E. Umbarger, eds. pp. 1625–1648. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Shub, D. A., H. Goodrich-Blair, and S. R. Eddy. 1994. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem. Sci. 19:402–404.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, R. L., J. A. Nowak, and J. Maniloff. 1986. Mycoplasma restriction: identification of a new type of restriction specificity for DNA containing 5-methylcytosine. J. Bacteriol. 165:219–225.

    PubMed  CAS  Google Scholar 

  • Smith, H., and G. Marley. 1980. Purification and properties of HindII and HindIII endonucleases from Haemophilus influenzae Rd. Methods Enzymol. 65:104–108.

    Article  PubMed  CAS  Google Scholar 

  • Stein, D. C. 1991. Transformation of Neisseria gonorrhoeae: physical requirements of the transforming DNA. Can. J. Microbiol. 37:345–349.

    Article  PubMed  CAS  Google Scholar 

  • Timinskas, A., V. Butkus, and A. Janulaitis. 1995. Sequence motif characteristics for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 157:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Vertès, A. A., M. Inui, M. Kobayashi, Y. Kurusu, and H. Yukawa. 1993. Presence of mrr-and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144:181–185.

    Article  PubMed  Google Scholar 

  • Walter, J., T. A. Trautner, and M. Noyer-Weidner. 1992. High plasticity of multispecific DNA methyltransferases in the region carrying DNA target recognizing enzyme modules. EMBO J. 11:4445–4450.

    PubMed  CAS  Google Scholar 

  • Wilson, G. G., and N. E. Murray. 1991. Restriction and modification systems. Annu. Rev. Genet. 25:585–627.

    Article  PubMed  CAS  Google Scholar 

  • Xu, G., J. Willert, W. Kapfer, and T. A. Trautner. 1995. BsuCI, a type-I restriction-modification system in Bacillus subtilis. Gene 157:59.

    Article  PubMed  CAS  Google Scholar 

  • Zawadzki, P., M. S. Roberts, and F. M. Cohan. 1995. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932.

    PubMed  CAS  Google Scholar 

  • Zotchev, S. B., H. Schrempf, and C. R. Hutchinson. 1995. Identification of a methy1-specific restriction system mediated by a conjugative element from Streptomyces bamb-ergiensis. J. Bacteriol. 177:4809–4812.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raleigh, E.A., Brooks, J.E. (1998). Restriction Modification Systems: Where They Are and What They Do. In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics