Skip to main content

Mechanism of Avoidance of 5-methylcytosine to Thymine Mutations in Bacteria

  • Chapter
Bacterial Genomes

Abstract

It has been known for some time that 5-methylcytosine (5meC) in DNA is a mutation hazard, since deamination of 5meC converts it to thymine, a normal base (Lindahl and Nyberg, 1974). Replication of DNA containing such T:G mismatches results in C to T mutations. Sites of cytosine methylation were first recognized to be hotspots for transition mutations in the lacI system of E. coli (Coulondre et al., 1978), and this observation has been confirmed in other E. coli gene systems and has been extended to human cells. Transition mutations in CpG sequences are the largest class of point mutations found in genetic diseases including cancer (Cooper and Youssoufian, 1988; Greenblatt et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandaru, B., et al. 1995. HpaII Methyltransferase Is Mutagenic in Escherichia coli. J. Bacteriol. 177:2950–2952.

    PubMed  CAS  Google Scholar 

  • Bhagwat, A. S., and M. McClelland. 1992. DNA mismatch correction by very short patch repair may have altered the abundance of oligonucleotides in the E. coli genome. Nucl. Acids Res. 20:1663–1668.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D. N., and H. Youssoufian. 1988. The CpG dinucleotide and human genetic disease. Hum. Genet. 78:151–155.

    Article  PubMed  CAS  Google Scholar 

  • Coulondre, C., et al. 1978. Molecular basis of substitution hotspots in Escherichia coli. Nature 274:775–780.

    Article  PubMed  CAS  Google Scholar 

  • Dar, M. E., and A. S. Bhagwat. 1993. Mechanism of expression of DNA repair gene vsr, an Escherichia coli gene that overlaps the DNA cytosine methylase gene, dcm. Mol. Microbiol. 9:823–833.

    Article  PubMed  CAS  Google Scholar 

  • Gabbara, S., et al. 1994. A DNA Repair Process in Escherichia coli Corrects U:G and T:G Mismatches to C:G at Sites of Cytosine Methylation. Molec. Gen. Genet. 243:244–248.

    PubMed  CAS  Google Scholar 

  • Gläsner, W., et al. 1992. Enzymatic Properties and Biological Functions of Vsr DNA Mismatch Endonuclease. In Structural Tools for the Analysis of Protein-Nucleic Acid Complexes, D. M. J. Lilley, H. Heumann, and D. Suck, eds. pp. 165–173. Birkhäuser Verlag Basel.

    Google Scholar 

  • Gläsner, W., et al. 1995. Substrate Preferences of Vsr DNA Mismatch Endonuclease and their Consequences for the Evolution of the Escherichia coli K-12 Genome. J. Mol. Biol. 245:1–7.

    PubMed  Google Scholar 

  • Gomez-Eichelmann, M. C., et al., 1991. Presence of 5-Methylcytosine in CC(A/T)GG Sequences (Dem Methylation) in DNAs from Different Bacteria. J. Bacteriol. 173:7692–7694.

    PubMed  CAS  Google Scholar 

  • Greenblatt, M. S., et al. 1994. Mutations in the p53 Tumor Suppressor Gene: Clues to Cancer Etiology and Molecular Pathogenesis. Cancer Research 54:4855–4878.

    PubMed  CAS  Google Scholar 

  • Hennecke, F., et al. 1991. The vsr gene product of E. coli K-12 is a strand-and sequence-specific DNA mismatch endonuclease. Nature 353:776–778.

    Article  PubMed  CAS  Google Scholar 

  • Lieb, M. 1983. Specific Mismatch Correction in Bacteriophage Lambda Crosses by Very Short Patch Repair. Mol. Gen. Genet. 191:118–125.

    Article  PubMed  CAS  Google Scholar 

  • Lieb, M. 1991. Spontaneous mutation at a 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. Genetics 128:23–27.

    PubMed  CAS  Google Scholar 

  • Lieb, M., et al. 1986. Very Short Patch Repair in Phage Lambda: Repair Sites and Length of Repair Tracts. Genetics 114:1041–1060.

    PubMed  CAS  Google Scholar 

  • Lieb, M., and A. S. Bhagwat. 1996. VSP: Reducing the cost of cytosine methylation. Molec. Microbiol. 20: in press.

    Google Scholar 

  • Lieb, M., and S. Rehmat. 1995. Very short patch repair of T:G mismatches in vivo: Importance of context and accessory proteins. J. Bacteriol. 177:660–666.

    PubMed  CAS  Google Scholar 

  • Lindahl, T., and B. Nyberg. 1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13:3405–3410.

    Article  PubMed  CAS  Google Scholar 

  • Marinus, M. G. 1973. Location of DNA Methylation Genes on the Escherichia coli Genetic Map. Mol. Gen. Genet. 127:47–55.

    Article  PubMed  CAS  Google Scholar 

  • Marinus, M. G., and N. R. Morris. 1973. Isolation of Deoxyribonucleic Acid Methylase Mutants of Escherichia coli K-12. J. Bacteriol. 114:1143–1150.

    PubMed  CAS  Google Scholar 

  • Markl, R., et al. 1992. Statistical evaluation and biological interpretation of nonrandom abundance in the E. coli K-12 genome of tetra-and pentanucleotide sequences related to VSP DNA mismatch repair. Nucl. Acids Res. 20:1657–1662.

    Article  Google Scholar 

  • Nedderman, P., and J. Jiricny. 1993. The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J. Biol. Chem. 268:21218–21224.

    Google Scholar 

  • Ruiz, S. M., et al. 1993. Isolation and characterization of an Escherichia coli strain with a high frequency of C-to-T mutations at 5-methylcytosines. J. Bacteriol. 175:4985–4989.

    PubMed  CAS  Google Scholar 

  • Smith, R. F., and T. F. Smith. 1990. Automatic generation of primary sequence patterns from sets of related protein sequences. Proc. Natl. Acad. Sci. (USA) 87:118–122.

    Article  CAS  Google Scholar 

  • Sohail, A., et al. 1990. A Gene Required for Very Short Patch repair in E. coli is Adjacent to the DNA Cytosine Methylase Gene. J. Bacteriol. 172:4214–4221.

    PubMed  CAS  Google Scholar 

  • Wyszynski, M., et al. 1994. Cytosine Deaminations Catalyzed by DNA Cytosine Methy1-transferases are unlikely to be the Major Cause of Mutational Hot-spots at Sites of Cytosine Methylation in E. coli. Proc. Natl. Acad. Sci. (USA) 91:1574–1578.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhagwat, A.S., Lieb, M. (1998). Mechanism of Avoidance of 5-methylcytosine to Thymine Mutations in Bacteria. In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics