Skip to main content

The use of confocal microscopy in the investigation of cell structure and function in the heart, vascular endothelium and smooth muscle cells

  • Chapter
Novel Methods in Molecular and Cellular Biochemistry of Muscle

Abstract

In recent years, fluorescence microscopy imaging has become an important tool for studying cell structure and function. This non invasive technique permits characterization, localisation and qualitative quantification of free ions, messengers, pH, voltage and a pleiad of other molecules constituting living cells. In this paper, we present results using various commercially available fluorescent probes as well as some developed in our laboratory and discuss the advantages and limitations of these probes in confocal microscopy studies of the cardiovascular system. (MolCell Biochem 172: 171–194, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Mohanna FA, Caddy KWT, Bolsover SR: The nucleus is insulated from large cytosolic calcium ion changes. Nature 367: 745–750, 1994

    Article  PubMed  CAS  Google Scholar 

  2. Bkaily G: Single heart cells as models for studying cardiac toxicology. In: G Jolles and A Cordier (eds). In Vitro Methods in Toxicology. Academic Press, London 1992, pp 289–334

    Google Scholar 

  3. Bkaily G: Regulation of R-type Ca2+ channels by insulin and ET-1 in VSM. In: G Bkaily (ed). Ionic Channels in Vascular Smooth Muscle. Mol Biol Intelligence Unit, Austin, 1994, pp 41–52

    Google Scholar 

  4. Bkaily G: Regulation of Ca2+ channels in VSM by monocyte-released factors. In: G Bkaily (ed). Ionic Channels in Vascular Smooth Muscle. Mol Biol Intelligence Unit, R.G. Landes Co, Austin, 1994, pp 53–64

    Google Scholar 

  5. Bkaily G: The possible role of Ca2+ and K+ channels in vascular smooth muscle pathophysiology. In: G Bkaily (ed). Ionic Channels in Vascular Smooth Muscle. Mol Biol Intelligence Unit, R.G. Landes Co, Austin, 1994, pp 103–113

    Google Scholar 

  6. Bkaily G, Chahine M, Sperelakis N, Yamamoto T: Taurine increases one type of slow Na+ and Ca2+ currents in embryonic heart. J Physiol (Lond.) 406: 91, 1988

    Google Scholar 

  7. Bkaily G, D’Orléans-Juste P, Naik R, Perodin J, Stankova E, Abdulnour E, Rola-Pleszczynski M: PAF activation of a voltage-gated R-type Ca2+ channel in human and canine aortic endothelial cells. Br J Pharmacol 110:519–520, 1993

    Article  PubMed  CAS  Google Scholar 

  8. Bkaily G, Economos D, Potvin L, Ardilouze J-L, Mariott C, Corcos J, Bonneau D, Fong CN: Blockade of insulin steady-state R-type Ca2+ channel by PN200-110 in heart and vascular smooth muscle. Mol Cell Biochem 117:93–106, 1992

    Article  PubMed  CAS  Google Scholar 

  9. Bkaily G, Gros-Louis N, Naik R, Jaalouk D, Pothier P: Implication of the nucleus in excitation contraction coupling of heart cells. Mol Cell Biochem. 154: 113–121, 1996

    Article  PubMed  CAS  Google Scholar 

  10. Bkaily G, Jaalouk D, Haddad, G, Gros-Louis N, Simaan M, Naik R, Pothier P: Modulation of cytosolic and nuclear Ca2+ and Na+ transport by taurine in heart cells. Mol Cell Biochem 1997 (In press)

    Google Scholar 

  11. Bkaily G, Naik R, D’Orléans-Juste P, Wang S, Fong CN: Endothelin-1 activates the R-type Ca2+ channel in vascular smooth muscle cells. J Cardiovasc Pharmacol 26: 303–306, 1995

    Google Scholar 

  12. Bkaily G, Payet MD, Benabderrazik M, Renaud J-F, Sauvé R, Bacaner, M. Sperelakis N: Bethanidine increased Na+ and Ca2+ currents and caused a positive inotropic effect in heart cells. Can J Physiol Pharmacol 66: 190–196, 1988

    Article  PubMed  CAS  Google Scholar 

  13. Bkaily G, Perron N Wang S, Sculptoreanu A, Jacques D, Ménard D: Atrial natriuretic factor blocks the high-threshold Ca+ current and increased K+ current in fetal single ventricular cells. J Mol Cell Cardiol 25: 1305–1316, 1993

    Article  PubMed  CAS  Google Scholar 

  14. Bkaily G, Peyrow M, Yamamoto T, Sculptoreanu A, Jacques D, Sperelakis N: Macroscopic Ca2+-Na+ and K+ currents in single heart and rabbit aortic cells. Mol Cell Biochem 80: 59–72, 1988

    PubMed  CAS  Google Scholar 

  15. Bkaily G, Sculptoreanu A, Jacques D, Economos D, Menard D: Apamin, a highly potent fetal L-type Ca2+ current blocker in single heart cells. Am J Physiol 262: H463–H471, 1992

    PubMed  CAS  Google Scholar 

  16. Bkaily G, Wang S, Economos D, D’Orléans-Juste P: Role of Ca2+ channels on the repsonse of vascular smooth muscle to endothelin-1: In: N Sperelakis and H Kuriyama (eds). Ionic Channels of Vascular Smooth Muscle Cells and Endothelial Cells. Elsevier Press, New York, 1991, pp 199–207

    Google Scholar 

  17. Baumann O, Kitazawa T, Somlyo AP: Laser confocal scanning microscopy of the surface membrane/T-tubular system and the sarcoplasmic reticulum in insect striated muscle stained with DilC18(3). J Struct Biol 105: 154–161, 1990

    Article  PubMed  CAS  Google Scholar 

  18. Cannell MB, Cheng H, Lederer WJ: Spatial non-uniformities in [Ca]i during excitation contraction coupling in cardiac myocytes. Biophys J 67: 1942–1958, 1994

    Article  PubMed  CAS  Google Scholar 

  19. Chacon E, Reece JM, Nieminen AL, Zahrebelski G, Herman B, Lemasters JJ: Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: A multiparameter digitized confocal microscopy study. Biophys J 66: 942–952, 1994

    Article  PubMed  CAS  Google Scholar 

  20. Chang, H: In situ transcription with Tth DNA polymerase and fluorescent nucleotides. J Immunol Meth 176: 235–243, 1994

    Article  CAS  Google Scholar 

  21. Claing A, Bkaily G, Berthiaume N, Sirois P, Rola-Pleszczynski M, D’Orléans-Juste P: Role of R-type calcium channels in the repsonse of the perfused arterial and venous mesenteric vasculature of the rat to platelet-activating factor. Br J Pharmacol 112: 1202–1208, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Dunn KW, Mayor S, Myers JN, Maxfield FR: Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J 8: 573–582, 1994

    PubMed  CAS  Google Scholar 

  23. Eberhard M, Erne P: Calcium binding to fluorescent calcium indicators:-Calcium Green, Calcium Orange and Calcium Crimson. Biochem Biophys Res Comm 180: 209–215, 1991

    Article  PubMed  CAS  Google Scholar 

  24. Grynkiewicz G, Poenie M, Tsien TY: a New generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450, 1985

    PubMed  CAS  Google Scholar 

  25. Haugland R: Intracellular ion indicators. In: WT Mason (ed). Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-time Analysis. Academic Press, San Diego, 1993, pp 34–43

    Google Scholar 

  26. Hille B: Na+ and K+ channels of axons. In: B Hille (ed). Ionic Channels of Excitable Membranes. Sinauer Associates Inc. Massachussetts, 1984, pp 58–75

    Google Scholar 

  27. Himpsen B, De Smedt H, Casteels R: Relationship between [Ca2+]. changes in nucleus and cytosol. Cell Calcium 16: 239–246, 1994

    Article  Google Scholar 

  28. Jones DP, Miller LA, Budreau A, Chesney RW: Characteristics of taurine transport incultured renal epithelial cell lines: a symmetric polarity of proximal and distal cell lines. Adv Exp Med Biol 315: 405–411, 1992

    Article  PubMed  CAS  Google Scholar 

  29. Kremer SG, Zeng W, Skorecki KL: Simultaneous fluorescence measurement of calcium and membrane potential responses to endothelium. Am J Physiol 263: C1302–C1309, 1992

    PubMed  CAS  Google Scholar 

  30. Lemasters JJ, Chacon E, Zahrebelski G, Reece JM, Nieminen AL: Laser scanning confocal microscopy of living cells. In: B Herman and JJ Lemasters (eds). Optical microscopy: Emerging Methods and Applications. Academic Press, New York, 1993, pp 339–354

    Google Scholar 

  31. Lipp P, Niggli E: Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy. Circ Res 74: 979–990, 1994

    Article  PubMed  CAS  Google Scholar 

  32. Mikhailov AV, Gundersen GG: Centripetal transport of microtubules in motile cells. Cell Motility Cytoskel 32: 173–186, 1995

    Article  PubMed  CAS  Google Scholar 

  33. Minta A, Kao PY, Tsien RY: Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264: 8171–8178, 1989

    PubMed  CAS  Google Scholar 

  34. O’Malley DM: Calcium permeability of the neuronal nuclear envelope: evaluation using confocal volumes and intracellular perfusion. J Neurosci 14: 5741–5758, 1994

    PubMed  Google Scholar 

  35. Opitz N, Merten E, Acker H: Evidence for redistribution-associated intracellular pK shifts of the pH-sensitive fluoroprobe carboxy-SNARF-1. Pflugers Arch 427: 332–342, 1994

    Article  PubMed  CAS  Google Scholar 

  36. Pawley JB: Handbook of Biological Confocal Microscopy, 2nd edition. Plenum Press, New York, 1995

    Book  Google Scholar 

  37. Pion PD, Kittleson MD, Skiles ML, Rogers QR, Morris JG: Dilated cardiomyopathy associated with taurine deficiency in the domestic cat: relationship to diet and myocardial taurine content. Adv Exp Med Biol 315: 63–73, 1992

    Article  PubMed  CAS  Google Scholar 

  38. Reers M, Smith TW, Chen LB: J-aggregate formation of carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochem 30:4480–4486, 1991

    Article  CAS  Google Scholar 

  39. Roe MW, Lemasters JJ, Herman B: Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11: 63–73, 1990

    Article  PubMed  CAS  Google Scholar 

  40. Rohr S, Salzberg BM: Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys J 67: 1301–1315, 1994

    Article  PubMed  CAS  Google Scholar 

  41. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB: Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Nat Acad Sci USA 88: 3671–3675, 1991

    Article  PubMed  CAS  Google Scholar 

  42. Smith JC: Potential-sensitive molecular probes in membranes of bioenergetic relevance. Biochem Biophys Acta 1016: 1–28, 1990

    Article  PubMed  CAS  Google Scholar 

  43. Stewart AG: Biological properties of platelet-activating factor. In: FM Cunningham (ed). Lipid Mediators. The Handbook of Immunopharma-cology. Academic Press, London, 1994, pp 221–295

    Google Scholar 

  44. Sureau F, Moreau F, Millot JM, Manfait M, Allard B, Aubard J, Schwaller MA: Microspectrofluorometry of the protonation state of ellipticine, an antitumor alkaloid, in single cells. Biophys J 65: 1767–1774, 1993

    Article  PubMed  CAS  Google Scholar 

  45. Taoudi Benchekroun M, Gros-Louis N, Bkaily G, D’Orleans-Juste P: R-type calcium channels involved in endothelin-1 induced contraction of rabbit aorta. J Cardiovasc Pharmacol 26: 300–302, 1995

    Google Scholar 

  46. Terasaki M, Chen LB, Fujiwara K: Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103: 1557–1568, 1986

    Article  PubMed  CAS  Google Scholar 

  47. Terasaki M, Song J, Wong JR, Weiss MJ, Chen LB: Localization of endoplasmic reticulum in living and glutaraldehyde-fíxed cells with fluorescent dyes. Cell 38: 101–108, 1984

    Article  PubMed  CAS  Google Scholar 

  48. Tsien RY, Peini M: Fluorescence ratio imaging a new window into intracellular ionic signalling. Trends Biochem Sci 11: 450–455, 1986

    Article  CAS  Google Scholar 

  49. Wadkins RM, Houghton PJ: Kinetics of transport of dialkyloxa-carbocyanines in multidrug-resistant cell lines overexpressing P-glyco-protein: Interrelationship of dye alkyl chain length, cellular flux, and drug resistance. Biochem 34: 3858–3872, 1995

    Article  CAS  Google Scholar 

  50. Zhou Y, Marcus EM, Haugland RP, Opas M: Use of a new fluorescent probe, seminaphthofluorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaginglaser scanning confocal microscopy. J Cell Physiol 164: 9–16, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bkaily, G. et al. (1997). The use of confocal microscopy in the investigation of cell structure and function in the heart, vascular endothelium and smooth muscle cells. In: Pierce, G.N., Claycomb, W.C. (eds) Novel Methods in Molecular and Cellular Biochemistry of Muscle. Developments in Molecular and Cellular Biochemistry, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6353-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6353-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7918-8

  • Online ISBN: 978-1-4615-6353-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics