Skip to main content

The detection of minimal residual disease: implications for bone marrow transplantation

  • Chapter
Blood Stem Cell Transplantation

Part of the book series: Cancer Treatment and Research ((CTAR,volume 77))

Abstract

The source of relapse in patients who achieve complete clinical remission is residual cancer cells that number below the limits of detection using standard diagnostic techniques. Therefore, considerable effort has been made over the past decade to develop new techniques that have greatly increased the sensitivity of detection of small numbers of residual neoplastic cells. In particular, the identification of specific gene rearrangements and chromosomal translocations in neoplastic cells has permitted the development of sensitive molecular techniques that are capable of detecting minimal residual disease. With the development of these more sensitive techniques, especially by the application of PCR technology, the presence of residual neoplastic cells in patients in complete clinical remission, commonly called minimal residual disease (MRD), has been demonstrated clearly. It seems obvious to patients that if residual cancer cells can still be detected, then additional therapy is necessary for cure; nevertheless, the data demonstrating that detection of MRD using PCR-based techniques is associated with increased risk of relapse has been difficult to establish. In certain disease states, such as chronic myelogenous leukemia, there are now sufficient data demonstrating that detection of MRD is associated with a poor enough prognosis to merit experimental treatment approaches on the basis of detection of disease by PCR techniques alone. If this can be established in other malignancies, then molecular biologic techniques will become an essential part of staging and follow-up of patients and will redefine our concept of complete remission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin D, Magrath IT, Douglass EC, Corash LM. Derivation of lymphoma cell lines from microscopically normal bone marrow in patients with undifferentiated lymphoma: evidence of occult bone marrow involvement. Blood 61:1017–1019, 1983.

    PubMed  CAS  Google Scholar 

  2. Favrot MC, Herve P. Detection of minimal malignant cell infiltration in the bone marrow of patients with solid tumors, non-Hodgkin’s lymphomas and leukemias. Bone Marrow Transplant 2:117–122, 1987.

    PubMed  CAS  Google Scholar 

  3. Estrov Z, Grunberger T, Dube ID. Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission. N Engl J Med 315(9):538–542, 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Sharp JG, Joshi SS, Armitage JO, et al. Significance of detection of occult non-Hodgkin’s lymphoma in histologically uninvolved bone marrow by culture technique. Blood 79:1074–1080, 1992.

    PubMed  CAS  Google Scholar 

  5. Cleary ML, Chao J, Wanke R, Sklar J. Immunoglobulin gene rearrangement as a diagnostic criterion of B cell lymphoma. Proc Natl Acad Sci U S A 81:593–597, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Hu E, Trela M, Thompson J, et al. Detection of B cell lymphoma in peripheral blood by DNA hybridization. Lancet ii: 1092–1095, 1985.

    Google Scholar 

  7. Arnold A, Cossman J, Bakhshi A, Jaffe ES, Waldmann TA, Korsmeyer SJ. Immunoglobulin gene rearrangements as unique clonal markers in human lymphoid neoplasms. N Engl J Med 309:1593–1599, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Toyonaga B, Mak TW. Genes of the T-cell antigen receptor in normal and malignant T cells. Annu Rev Immunol 5:585–620, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Griesser H, Tkachuk D, Reis MD, Mak TW. Gene rearrangements and translocations in lymphoproliferative diseases. Blood 73:1402–1415, 1989.

    PubMed  CAS  Google Scholar 

  10. Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Saiki RK, Scharf F, Faloona F, et al. Enzymatic amplification of betaglobin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1352, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Dubrovic A, Trainor KJ, Morley AA. Detection of the molecular abnormality in chronic myeloid leukemia by use of the polymerase chain reaction. Blood 72:2063–2965, 1988.

    Google Scholar 

  13. Lee MS, LeMaistre A, Kantarjian HM, et al. Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73:2165–2170, 1989.

    PubMed  CAS  Google Scholar 

  14. Yunis JJ, Oken MM, Kaplan ME, Theologides RR, Howe A. Distinctive chromosomal abnormalities in histological subtypes of non-Hodgkin’s lymphoma. N Engl J Med 307:1231–1236, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Weiss LM, Warnke RA, Sklar J, Cleary ML. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 317:1185–1189, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Aisenberg AC, Wilkes BM, Jacobson JO. The bcl-2 gene is rearranged in many diffuse B-cell lymphomas. Blood 71(4):969–972, 1988.

    PubMed  CAS  Google Scholar 

  17. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A 82:7439–43, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Tsujimoto Y, Finger LR, Yunis J, Norwell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099, 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Bakshi A, Jensen JP, Goldman P, et al. Cloning the chromosomal breakpoint of t(14;18) human lymophomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906, 1985.

    Article  Google Scholar 

  20. Cleary ML, Calili N, Sklar J. Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med 164:315–320, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Ravetch JV, Sicbenlist U, Korsmeyer S, Waldman T, Leder P. Structure of the human immunoglobulin μ locus: characterization of embryonic and rearranged J and D genes. Cell 27:583–591, 1981.

    CAS  Google Scholar 

  22. Crescenzi M, Seto M, Herzig GP, Weiss PD, Griffith RC, Korsmeyer SJ. Thermostable DNA polymerase chain amplification of t(14;18) chromosome breakpoints and detection of minimal residual disease. Proc Natl Acad Sci U S A 85(13):4869–4873, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Berliner N, Ault K, Martin P, Weisberg DS. Detection of clonal excess in lymphoproliferative disease by kappa/lambda analysis: correlation with immunoglobulin gene DNA arrangements. Blood 67:80–85, 1986.

    PubMed  CAS  Google Scholar 

  24. Aisenberg AC. Utility of gene rearrangements in lymphoid malignancies. Annu Rev Med (44):75–84, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Steward CG, Potter MN, Oakhill A. Third complementarity determining region (CDR III) sequence analysis in childhood B-lineage acute lymphoblastic leukaemia: implications for the design of oligonucleotide probes for use in monitoring minimal residual disease. Leukemia 6(11):1213–1219, 1992.

    PubMed  CAS  Google Scholar 

  26. Yamada M, Hudson S, Tourney O, et al. Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third complementarity-determining region probes. Proc Natl Acad Sci U S A 86:5123–5127, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Yamada M, Wasserman R, Lange B, Reichard BA, Womer RB, Rovera G. Minimal residual disease in childhood B-lineage lymphoblastic leukemia. N Engl J Med 323:448–455, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Bakkus MH, Heirman C, Van RI, Van CB, Thielemans K. Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–2335, 1992.

    PubMed  CAS  Google Scholar 

  29. Billadeau D, Quam L, Thomas W, et al. Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 80(7):1818–1824, 1992.

    PubMed  CAS  Google Scholar 

  30. Tonegawa S. Somatic generation of antibody diversity. Nature 302:575–581, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Billadeau D, Blackstadt M, Greipp P, et al. Analysis of B-lymphoid malignancies using allelespecific polymerase chain reaction: a technique for sequential quantitation of residual disease. Blood 78(11):3021–3029, 1991.

    PubMed  CAS  Google Scholar 

  32. Wasserman R, Yamada M, Ito Y, et al. VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 79(l):223–228, 1992.

    PubMed  CAS  Google Scholar 

  33. Steward CG, Goulden NJ, Potter MN, Oakhill A. The use of the polymerase chain raction to detect minimal residual disease in childhood acute lymphoblastic leukaemia. Eur J Cancer 8:1192–1198, 1993.

    Google Scholar 

  34. Osada H, Seto M, Ueda R, et al. bcl-2 gene rearrangement analysis in Japanese B cell lymphoma; novel bcl-2 recombination with immunoglobulin kappa chain gene. Jpn J Cancer Res 80(8):711–715, 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Kwok S, Higuchi R. Avoiding false positives with PCR. Nature 339:237–238, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Wang AM, Doyle MV, Mark DF. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A 86(24):9717–9721, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Gilliland G, Perrin S, Balnchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A 87:2725–2729, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Limpens J, de Jong D, Voetdijk AMH, et al. Translocation t(14;18) in benign B lymphocytes. Blood 76 (Suppl l):237a, 1990.

    Google Scholar 

  39. Morgan GJ, Janssen JWG, Guo AP, et al. Polymerase chain reaction for detection of residual leukaemia. Lancet i:928–929, 1989.

    Google Scholar 

  40. Gabert J, Lafage M, Maraninchi D, Thuret I, Carcasonne Y, Mannoni P. Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukemia patients after bone marrow transplantation. Lancet ii:1125–1128, 1989.

    Article  Google Scholar 

  41. Martiat P, Maisin D, Philippe M, et al. Detection of residual bcr/abl transcripts in chronic myeloid leukaemia patients in complete remission using the polymerase chain reaction and nested primers. Br J Haematol 75:355–358, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Kohler S, Galili N, Sklar JL, Donlon TA, Blume KG, Cleary ML. Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. Leukemia 4:541–547, 1990.

    PubMed  CAS  Google Scholar 

  43. Sawyers CL, Timson L, Kawasaki ES, Clark SS, Witte ON, Champlin R. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci U S A 87:563–567, 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Delfau MH, Kerckaert JP, Collyn d’Hooghe M, et al. Detection of minimal residual disease in chronic myeloid leukemia patients after bone marrow trasplantation by polymerase chain reaction. Leukemia 4:1–5, 1990.

    PubMed  CAS  Google Scholar 

  45. Delage R, Soiffer RJ, Dear K, Ritz J. Clinical significance of bcr-abl gene rearrangement detected by polymerase chain reaction after allogeneic bone marrow transplantation in chronic myelogenous leukemia. Blood 78(10):2759–2767, 1991.

    PubMed  CAS  Google Scholar 

  46. Hughes TP, Morgan GJ, Martial P, Goldman JM. Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 77:874–878, 1991.

    PubMed  CAS  Google Scholar 

  47. Guerrasio A, Martinelli G, Saglio G, et al. Minimal residual disease status in transplanted chronic myelogenous leukemia patients: low incidence of polymerase chain reaction positive cases among 48 long disease-free subjects who received unmanipulated allogeneic bone marrow transplants. Leukemia 6(6):507–512, 1992.

    PubMed  CAS  Google Scholar 

  48. Roth MS, Antin JH, Ash R, et al. Prognostic significance of Philadelphia chromosome-positive cells detected by the polymerase chain reaction after allogeneic bone marrow transplant for chronic myelogenous leukemia. Blood 79:276–282, 1991.

    Google Scholar 

  49. Thompson JD, Brodsky I, Yunis JJ. Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood 79(6): 1629–1635, 1992.

    PubMed  CAS  Google Scholar 

  50. Lee M, Khouri I, Champlin R, et al. Detection of minimal residual disease by poylmerase chain reaction of bcr/abl transcripts in chronic myelogenous leukaemia following allogeneic bone marrow transplantation. Br J Haematol 82(4):708–714, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Cross NC, Feng L, Bungey J, Goldman JM. Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction. Leuk Lymphoma 1:39–43, 1993.

    Article  Google Scholar 

  52. Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82(6):1929–1936, 1993.

    PubMed  CAS  Google Scholar 

  53. Arnold R, Janssen JW, Heinze B, et al. Influence of graft-versus-host disease on the eradication of minimal residual leukemia detected by polymerase chain reaction in chronic myeloid leukemia patients after bone marrow transplantation. Leukemia 7(5):747–751, 1993.

    PubMed  CAS  Google Scholar 

  54. Miyamura K, Tahara T, Tanimoto M, et al. Long persistent bcr-abl positive transcript detected by polymerase chain reaction after marrow transplant for chronic myelogenous leukemia without clinical relapse: a study of 64 patients. Blood 81:1089–1093, 1993.

    PubMed  CAS  Google Scholar 

  55. Lange W, Snyder DS, Castro R, Rossi JJ, Blume KG. Detection by enzymatic amplification of bcr/abl mRNA in peripheral blood and bone marrow cells of patients with chronic myelogenous leukemia. Blood 73:1735–1741, 1989.

    PubMed  CAS  Google Scholar 

  56. Pignon JM, Henni T, Amselem S, et al. Frequent detection of minimal residual disease by use of polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 4:83–86, 1990.

    PubMed  CAS  Google Scholar 

  57. Radich JP, Gehly G, Gooley T, et al. Polymerase chain reaction detection of the BCR-ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood 85(9):2632–2638, 1995.

    PubMed  CAS  Google Scholar 

  58. Pichert G, Roy DC, Gonin R, et al. Distinct patterns of minimal residual disease associated with graft-versus-host disease after allogeneic bone marrow transplantation for chronic myelogenous leukemia. J Clin Oncol 13(7):1704–1713, 1995.

    PubMed  CAS  Google Scholar 

  59. Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465, 1990.

    PubMed  CAS  Google Scholar 

  60. Drobyski WR, Keever CA, Roth MS, et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 82:2310–2318, 1993.

    PubMed  CAS  Google Scholar 

  61. Porter DL, Roth MS, McGarigle C, Ferrara JLM, Antin JH. Induction of graft-vs-host disease as immunotherapy for relapsed chronic myelogenous leukemia. N Engl J Med 330:100–105, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86(4):1261–1268, 1995.

    PubMed  CAS  Google Scholar 

  63. Gribben JG, Neuberg D, Freedman AS, et al. Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is asociated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 81(12):3449–3457, 1993.

    PubMed  CAS  Google Scholar 

  64. Armitage JO. Bone marrow transplantation in the treatment of patients with lymphoma. Blood 73:1749–1758, 1989.

    PubMed  CAS  Google Scholar 

  65. Ball ED, Mills LE, Cornwell GG, et al. Autologous bone marrow transplantation for acute myeloid leukemia using monoclonal antibody-purged bone marrow. Blood 75:1199–1206, 1990.

    PubMed  CAS  Google Scholar 

  66. Freedman AS, Nadler LM. Developments in purging in autotransplantation. Hematol Oncol Clin North Am 7(3):687–715, 1993.

    PubMed  CAS  Google Scholar 

  67. Freedman AS, Takvorian T, Anderson KC, et al. Autologous bone marrow transplantation in B-cell non-Hodgkin’s lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 8(5):784–791, 1990.

    PubMed  CAS  Google Scholar 

  68. Gribben JG, Goldstone AH, Linch DC, et al. Effectiveness of high-dose combination chemotherapy and autologous bone marrow transplantation for patients with non-Hodgkin’s lymphomas who arc still responsive to conventional dose therapy. J Clin Oncol 7:1621–1629, 1989.

    PubMed  CAS  Google Scholar 

  69. Peters WP, Shpall EJ, Jones RB. High dose combination combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 6:1501–1515, 1988.

    Google Scholar 

  70. Hurd DD, LeBien TW, Lasky LC, et al. Autologous bone marrow transplantation in non-Hodgkin’s lymphoma: monoclonal antibodies plus complement for ex vivo marrow treatment. Am J Med 85:829–834, 1988.

    Article  PubMed  CAS  Google Scholar 

  71. Takvorian T, Candios GP, Ritz J, et al. Prolonged disease-free survival after autologous bone marrow transplantation in patients with non-Hodgkin’s lymphoma with a poor prognosis. N Engl J Med 316:1499–1505, 1987.

    Article  PubMed  CAS  Google Scholar 

  72. Bast RC, De Fabritiis P, Lipton J, et al. Elimination of malignant clonogenic cells from human bone marrows using multiple monoclonal antibodies and complement. Cancer Res 45:499–503, 1985.

    PubMed  Google Scholar 

  73. LeBien TW, Stepan DE, Bartholomew RM, Strong RC, Anderson JM. Utilization of a colony assay to assess the variables influencing elimination of leukemic cells from human bone marrow with monoclonal antibodies and complement. Blood 65:945–950, 1985.

    PubMed  CAS  Google Scholar 

  74. Kvalheim G, Sorensen O, Fodstad O, et al. Immunomagnetic removal of B-lymphoma cells from human bone marrow: a procedure for clinical use. Bone Marrow Transplant 3:31–41, 1988.

    PubMed  CAS  Google Scholar 

  75. Roy DC, Felix M, Cannady WG, Cannistra S, Ritz J. Comparative activities of rabbit complements of different ages using an in-vitro marrow purging model. Leuk Res 14:407–416, 1990.

    Article  PubMed  CAS  Google Scholar 

  76. De Fabritiis P, Bregni M, Lipton J, et al. Elimination of clonogenic Burkitt’s lymphoma cells from human bone marrow using 4-hydroperoxycyclophosphamide in combination with monoclonal antibodies and complement. Blood 65:1064–1070, 1985.

    PubMed  Google Scholar 

  77. Trickett AE, Ford DJ, Lam-Po-Tang PRL, Vowels MR. Immunomagnetic bone marrow purging of common acute lymphoblastic leukemia cells: suitability of BioMag particles. Bone Marrow Transplant 7:199–203, 1991.

    PubMed  CAS  Google Scholar 

  78. Elias AD, Pap SA, Bernal SD. Purging of small cell lung cancer-contaminated bone marrow by monoclonal antibodies and magnetic beads. Prog Clin Biol Res 333(1):263–275, 1990.

    PubMed  CAS  Google Scholar 

  79. Vrendenburgh J, Simpson W, Memoli VA, Ball ED. Reactivity of anti-CD15 monoclonal antibody PM-81 with breast cancer and elimination of breast cancer cell lines from human bone marrow by PM-81 and immunomagnetic beads. Cancer Res 51:2451–2455, 1991.

    Google Scholar 

  80. Vrendenburgh JJ, Ball ED. Elimination of small cell carcinoma of the lung from human bone marrow by monoclonal antibodies and immunomagnetic beads. Cancer Res 50:7216–7120, 1990.

    Google Scholar 

  81. Schpall E J, Bast RC, Joines WT, et al. Immunomagnetic purging of breast cancer from bone marrow for autologous transplantation. Bone Marrow Transplant 7:145–151, 1991.

    Google Scholar 

  82. Montgomery RB, Kurtzberg J, Rhinehardt-Clark A, et al. Elimination of malignant clonogenic T cells from human bone marrow using chemoimmunoseparation with 2′-deoxycoformycin, deoxyadenosine and an immunotoxin. Bone Marrow Transplant 5:395–402, 1990.

    PubMed  CAS  Google Scholar 

  83. Negrin RS, Kiem HP, Schmidt WI, Blume KG, Cleary ML. Use of the polymerase chain reaction to monitor the effectiveness of ex vivo tumor cell purging. Blood 77(3):654–660, 1991.

    PubMed  CAS  Google Scholar 

  84. Gribben JG, Freedman AS, Neuberg D, et al. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 325(22):1525–1533, 1991.

    Article  PubMed  CAS  Google Scholar 

  85. Gribben JG, Saporito L, Barber M, et al. Bone marrows of non-Hodgkin’s lymphoma patients with a bcl-2 translocation can be purged of polmerase chain reaction-detectable lymphoma cells using monoclonal antibodies and immunomagnetic bead depletion. Blood 80(4): 1083–1089, 1992.

    PubMed  CAS  Google Scholar 

  86. Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341:85–86, 1993.

    Article  PubMed  CAS  Google Scholar 

  87. Rill DR, Santana VM, Roberts WM, et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84:380–383, 1994.

    PubMed  CAS  Google Scholar 

  88. Sharp JG, Kessinger A, Mann S, et al. Outcome of high dose therapy and autologous transplantation in non-Hodgkin’s lymphoma based on the presence of tumor in the marrow or infused hematopoietic harvest. J Clin Oncol 14:214–219, 1996.

    PubMed  CAS  Google Scholar 

  89. Gribben JG, Nadler LM. Detection of minimal residual disease in patients with lymphomas using the polymerase chain reaction. Important Adv Oncokl 17–129, 1994.

    Google Scholar 

  90. Berenson RJ, Andrews RG, Bensinger WI. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81:951–955, 1988.

    Article  PubMed  CAS  Google Scholar 

  91. Berenson RJ, Bensinger WI, Hill RS. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77:1717–1722, 1991.

    PubMed  CAS  Google Scholar 

  92. Ault KA. Detection of small numbers of monoclonal B lymphocytes in the blood of patients with B cell lymphoma. N Engl J Med 300:1401–1405, 1979.

    Article  PubMed  CAS  Google Scholar 

  93. Horning SJ, Galila N, Cleary M, Sklar J. Detection of non-Hodgkin’s lymphoma in the peripheral blood by analysis of the antigen receptor gene rearrangements: results of a prospective trial. Blood 75:1139–1145, 1990.

    PubMed  CAS  Google Scholar 

  94. Berinstein NL, Reis MD, Ngan BY, Sawka CA, Jamal HH, Kuzniar B. Detection of occult lymphoma in the peripheral blood and bone marrow of patients with untreated early stage and advanced stage follicular lymphoma. J Clin Oncol 11:1344–1352, 1993.

    PubMed  CAS  Google Scholar 

  95. Yuan R, Dowling P, Zucca E, Diggelmann H, Cavalli F. Detection of bcl-2/JH rearrangement in follicular and diffuse lymphoma: concordant results of peripheral blood and bone marrow analysis at diagnosis. Br J Cancer 67(5):922–925, 1993.

    Article  PubMed  CAS  Google Scholar 

  96. Berinstein NL, Jamal HH, Kuzniar B, Klock RJ, Reis MD. Sensitive and reproducible detection of occult disease in patients with follicular lymphoma by PCR amplification of t(14;18) both pre- and post-treatment. Leukemia 7(1): 13–119, 1993.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gribben, J.G., Schultze, J.L. (1997). The detection of minimal residual disease: implications for bone marrow transplantation. In: Winter, J.N. (eds) Blood Stem Cell Transplantation. Cancer Treatment and Research, vol 77. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6349-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6349-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7916-4

  • Online ISBN: 978-1-4615-6349-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics