Skip to main content

Post-bone marrow transplant use of immunotherapy

  • Chapter
Blood Stem Cell Transplantation

Part of the book series: Cancer Treatment and Research ((CTAR,volume 77))

Abstract

A wealth of information demonstrating the graft-vs.-leukemia (GVL) or graftvs.-tumor (GVT) effect following allogeneic bone marrow transplant (BMT) has accumulated over the past few decades and suggests that immune mechanisms are important for eradication of residual disease in the recipient [1–3]. The lack of GVT effect after autologous BMT (ABMT), along with reinfusion of clonogenic tumor cells with the autologous graft, may be responsible for the increased relapse rate seen after ABMT as compared to allogeneic BMT [4]. Due to dose-limiting nonhematological toxicities of current autologous BMT preparative regimens, innovative therapeutic modalities are needed. Posttransplant immunotherapy provides an attractive strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett AJ, Horowitz MM, Gale RP, et al. Marrow transplantation for acute lymphoblastic leukemia: factors affecting relapse and survival. Blood 74:862–871, 1989.

    PubMed  CAS  Google Scholar 

  2. Champlin R. Graft-versus-leukemia without graft-versus-host disease: an elusive goal of bone marrow transplantation. Semin Hematol 29:46–52, 1992.

    PubMed  CAS  Google Scholar 

  3. Porter DL, Roth MS, McGarigle C, Ferrara JL, Antin JH. Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 330:100–106, 1994.

    PubMed  CAS  Google Scholar 

  4. Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341:85–86, 1993.

    PubMed  CAS  Google Scholar 

  5. Quan WD Jr., Mitchell MS. Immunology and immunotherapy of melanoma. Cancer Treat Res 65:257–277, 1993.

    PubMed  Google Scholar 

  6. Morton DL. Active immunotherapy against cancer: present status. Semin Oncol 13:180–185, 1986.

    PubMed  CAS  Google Scholar 

  7. Wang RF, Robbins PF, Kawakami Y, Kang XQ, Rosenberg SA. Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. J Exp Med 181:799–804, 1995.

    PubMed  CAS  Google Scholar 

  8. Bernhard H, Karbach J, Wolfel T, et al. Cellular immune response to human renal-cell carcinomas: definition of a common antigen recognized by HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones. Int J Cancer 59:837–842, 1994.

    PubMed  CAS  Google Scholar 

  9. Van der Bruggen P, Bastin J, Gajewski T, et al. A peptide encoded by human gene mage-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24:3038–3043, 1994.

    PubMed  Google Scholar 

  10. Whittington R, Faulds D. InterIeukin-2: a review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 46:446–514, 1993.

    PubMed  CAS  Google Scholar 

  11. Ghosh AK, Cerny T, Wagstaff J, Thatcher N, Moore M. Effect of in vivo administration of interferon gamma on expression of MHC products and tumor associated antigens in patients with metastatic melanoma. Eur J Cancer Clin Oncol 25:1637–1643, 1989.

    PubMed  CAS  Google Scholar 

  12. Hirte HW, Clark DA, O’Connell G, Rusthoven J, Mazurka J. Reversal of suppression of lymphokine-activated killer cells by transforming growth factor-beta in ovarian carcinoma ascitic fluid requires interleukin-2 combined with anti-CD3 antibody. Cell Immunol 142:207–216, 1992.

    PubMed  CAS  Google Scholar 

  13. Benyunes MC, Massumoto C, York A, et al. Interleukin-2 with or without lymphokineactivated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant 12:159–163, 1993.

    PubMed  CAS  Google Scholar 

  14. Simpson C, Seipp CA, Rosenberg SA. The current status and future applications of interleukin-2 and adoptive immunotherapy in cancer treatment. Scmin Oncol Nurs 4:132–141, 1988.

    CAS  Google Scholar 

  15. Fefer A, Benyunes M, Higuchi C, et al. Interleukin-2 +/− lymphocytes as consolidative immunotherapy after autologous bone marrow transplantation for hematologic malignancies. Acta Haematol 89 (Suppl l):2–7, 1993.

    PubMed  Google Scholar 

  16. Pavletic Z, Benyunes MC, Thompson JA, et al. Induction by interleukin-7 of lymphokine-activated killer activity in lymphocytes from autologous and syngeneic marrow transplant recipients before and after systemic interleukin-2 therapy. Exp Hematol 21:1371–1378, 1993.

    PubMed  CAS  Google Scholar 

  17. Rosenberg SA. Immunotherapy of cancer using interleukin 2: current status and future prospects. Immunol Today 9:58–62, 1988.

    PubMed  CAS  Google Scholar 

  18. Champlin R. T-cell depletion for allogeneic bone marrow transplantation: impact on graftversus-host disease, engraftment, and graft-versus-Ieukemia. J Hematother 2:27–42, 1993.

    PubMed  CAS  Google Scholar 

  19. Bron D. Graft-versus-host disease. Curr Opin Oncol 6:358–364, 1994.

    PubMed  CAS  Google Scholar 

  20. Noga SJ, Hess AD. Lymphocyte depletion in bone marrow transplantation: will modulation of graft-versus-host disease prove to be superior to prevention? Semin Oncol 20:28–33, 1993.

    PubMed  CAS  Google Scholar 

  21. Champlin R. Immunobiology of bone marrow transplantation as treatment for hematologic malignancies. Transplant Proc 23:2123–2127, 1991.

    PubMed  CAS  Google Scholar 

  22. Boiron JM, Cony-Makhoul P, Mahon FX, Pigneux A, Puntous M, Reiffers J. Treatment of hematological malignancies relapsing after allogeneic bone marrow transplantation. Blood Rev 8:234–240, 1994.

    PubMed  CAS  Google Scholar 

  23. Kennedy MJ, Vogelsang GB, Jones RJ, et al. Phase I trial of interferon gamma to potentiate cyclosporine-induced graft-versus-host disease in women undergoing autologous bone marrow transplantation for breast canncer. J Clin Oncol 12:249–257, 1994.

    PubMed  Google Scholar 

  24. Smith KA. Interleukin-2: inception, impact, and implications. Science 240:1169–1176, 1988.

    PubMed  CAS  Google Scholar 

  25. Waldmann TA, Pastan IH, Gansow OA, Junghans RP. The multichain interleukin-2 receptor: a target for immunotherapy. Ann Intern Med 116:148–160, 1992.

    PubMed  CAS  Google Scholar 

  26. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841, 1982.

    PubMed  CAS  Google Scholar 

  27. Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res 41:4420–4425, 1981.

    PubMed  CAS  Google Scholar 

  28. Chadwick BS, Miller RG. Heterogeneity of the lymphokine-activated killer cell phenotype. Cell Immunol 132:168–176, 1991.

    PubMed  CAS  Google Scholar 

  29. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210:474–484, 1989.

    PubMed  CAS  Google Scholar 

  30. Rosenberg SA. Karnofsky memorial lecture. The immunotherapy and gene therapy of cancer. J Clin Oncol 10:180–199, 1992.

    PubMed  CAS  Google Scholar 

  31. Charak BS, Brynes RK, Groshen S, Chen SC, Mazumder A. Bone marrow transplantation with interleukin-2-activated bone marrow followed by interleukin-2 therapy for acute myeloid leukemia in mice. Blood 76:2187–2190, 1990.

    PubMed  CAS  Google Scholar 

  32. Favrot MC, Floret D, Negrier S, et al. Systemic interleukin-2 therapy in children with progressive neuroblastoma after high dose chemotherapy and bone marrow transplantation. Bone Marrow Transplant 4:499–503, 1989.

    PubMed  CAS  Google Scholar 

  33. Gottlieb DJ, Brenner MK, Heslop HE, et al. A phase I clinical trial of recombinant interleukin 2 following high dose chemo-radiotherapy for haematological malignancy: applicability to the elimination of minimal residual disease. Br J Cancer 60:610–615, 1989.

    PubMed  CAS  Google Scholar 

  34. Blaise D, Olive D, Stoppa AM, et al. Hematologic and immunologic effects of the systemic administration of recombinant inlerleukin-2 after autologous bone marrow transplantation. Blood 76:1092–1097, 1990.

    PubMed  CAS  Google Scholar 

  35. Higuchi CM, Thompson JA, Petersen FB, Buckner CD, Fefer A. Toxicity and immunomodulatory effects of interlcukin-2 after autologous bone marrow transplantation for hematologic malignancies. Blood 77:2561–2568, 1991.

    PubMed  CAS  Google Scholar 

  36. Soiffer RJ, Murray C, Cochran K, et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin-2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood 79:517–526, 1992.

    PubMed  CAS  Google Scholar 

  37. Weisdorf DJ, Anderson PM, Blazar BR, Uckun FM, Kersey JH, Ramsay NK. Interleukin 2 immediately after autologous bone marrow transplantation for acute lymphoblastic leukemia — a phase I study. Transplantation 55:61–66, 1993.

    PubMed  CAS  Google Scholar 

  38. Papa MZ, Mule JJ, Rosenberg SA. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: successful immunotherapy of established pulmonary metastases from weakly immunogenic and nonimmunogenic murine tumors of three district histological types. Cancer Res 46:4973–4978, 1986.

    PubMed  CAS  Google Scholar 

  39. Peace DJ, Cheever MA. Toxicity and therapeutic efficacy of high-dose interleukin 2. In vivo infusion of antibody to NK-1.1 attenuates toxicity without compromising efficacy against murine leukemia. J Exp Med 169:161–173, 1989.

    PubMed  CAS  Google Scholar 

  40. Gottlieb DJ, Prentice HG, Heslop HE, et al. Effects of recombinant interleukin-2 administration on cytotoxic function following high-dose chemo-radiotherapy for hematological malignancy. Blood 74:2335–2342, 1989.

    PubMed  CAS  Google Scholar 

  41. Hamon MD, Prentice HG, Gottlieb DJ, et al. Immunotherapy with interleukin 2 after ABMT in AML. Bone Marrow Transplant 11:399–401, 1993.

    PubMed  CAS  Google Scholar 

  42. Sprent J, Schaefer M, Gao EK, Korngold R. Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class II H-2 differences. I. L3T4+ cells can either augment or retard GVHD elicited by Lyt-2+ cells in class I different hosts. J Exp Med 167:556–569, 1988.

    PubMed  CAS  Google Scholar 

  43. Malkovsky M, Brenner MK, Hunt R, et al. T-cell depletion of allogeneic bone marrow prevents acceleration of graft-versus-host disease induced by exogenous interleukin 2. Cell Immunol 103:476–480, 1986.

    PubMed  CAS  Google Scholar 

  44. Sykes M, Abraham BS, Harty MW, Pearson DA. IL-2 reduces graft-versus-host disease and preserves a graft-versus-leukemia effect by selectively inhibiting CD4+ T cell activity. J Immunol 150:197–205, 1993.

    PubMed  CAS  Google Scholar 

  45. Sykes M, Harty MW, Szot GL, Pearson DA. Interleukin-2 inhibits graft versus host disease promoting activity of CD44+ cells while preserving CD4 and CD8 mediated graft versus leukemia effects. Blood 83:2560–2569, 1994.

    PubMed  CAS  Google Scholar 

  46. Azuma E, Kaplan J. Role of lymphokine-activated killer cells as mediators of veto and natural suppression. J Immunol 141:2601–2606, 1988.

    PubMed  CAS  Google Scholar 

  47. Nakamura H, Gress RE. Interlcukin-2 enhancement of veto suppressor cell function in T-cell-depleted bone marrow in vitro and in vivo. Transplantation 49:931–937, 1990.

    PubMed  CAS  Google Scholar 

  48. Sykes M, Romick ML, Sachs DH. Interlcukin-2 prevents graft-versus-host disease while preserving the graft-versus-leukemia effect of allogeneic T cells. Proc Natl Acad Sci USA 87:5633–5637, 1990.

    PubMed  CAS  Google Scholar 

  49. Soiffer RJ, Murray C, Gonin R, Ritz J. Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood 84:964–971, 1994.

    PubMed  CAS  Google Scholar 

  50. Fujimori Y, Hara H, Nagai K. Effect of lymphokine activated killer cell fraction on the development of human hematopoietic progenitor cells. Cancer Res 48:534–538, 1987.

    Google Scholar 

  51. van den Brink MRM, Voogt PJ, Marijt WAF, van Luxemburg-Heys SAP, Van Rood JJ, Brand AA. Lymphokine activated killer cells selectively kill tumor cells in bone marrow without compromising bone marrow stem cell function in vitro. Blood 74:354–560, 1989.

    PubMed  Google Scholar 

  52. Charak BS, Malloy B, Agah R, Mazumder A. A novel approach to purging of leukemia by activation of bone marrow with interleukin-2. Bone Marrow Transplant 6:193–198, 1990.

    PubMed  CAS  Google Scholar 

  53. Schaafsma MR, Fibbe WE, van der Harst D, et al. Increased numbers of circulating hematopoietic progenitor cells after treatment with high dose interleukin-2 in cancer patients. Br J Haematol 76:180–185, 1990.

    PubMed  CAS  Google Scholar 

  54. Heslop HE, Bello-Fernandez C, Reittie JE, et al. Interleukin 2 infusion after autologous bone marrow transplantation or chemotherapy enhances hematopoietic regeneration (abstract). Blood 76 (Suppl 1):544a, 1990.

    Google Scholar 

  55. Bosly AE, Staquet PJ, Doyen CM, Chatelain BJ, Humblet YP, Symann ML. Recombinant human interleukin-2 restores in vitro T-cell colony formation by peripheral blood mononuclear cells after autologous bone marrow transplantation. Exp Hematol 15:1048–1054, 1987.

    PubMed  CAS  Google Scholar 

  56. Borradori L, Hirt A, Baumgartner C, Morell A. Influence of exogenous interleukin-2 on the proliferation of lymphocytes from normal donors and from patients after autologous bone marrow transplantation. Acta Haematol 77:129–134, 1987.

    PubMed  CAS  Google Scholar 

  57. Reittie JE, Gottlieb D, Heslop HE, et al. Endogenously generated killer cells circulate after autologous and allogeneic bone marrow transplantation but not after chemotherapy. Blood 73:1341–1358, 1989.

    Google Scholar 

  58. Bosly A, Guillame T, Brice P, et al. Effects of escalating doses of recombinant human interleukin-2 in correcting functional T-cell defects following autologous bone marrow transplantation for lymphomas and solid tumors. Exp Hematol 20:962–968, 1992.

    PubMed  CAS  Google Scholar 

  59. Heslop HE, Gottlieb DJ, Bianchi ACM, et al. In vivo induction of y interferon and tumor necrosis factor by interleukin-2 infusion following intensive chemotherapy or autologous bone marrow transplantation. Blood 74:1374–1380, 1989.

    PubMed  CAS  Google Scholar 

  60. Massumoto C, Sale G, Benyunes M, et al. Cutaneous GVHD associated with IL-2 + LAK therapy after autologous bone marrow transplantation (ABMT) for hematologic malignancies (abstract). Proc Am Soc Clin Oncol 11:825a, 1992.

    Google Scholar 

  61. Price G, Brenner MK, Prentice HG, Hoffbrand AV, Newland AC. Cytotoxic effects of tumor necrosis factor and gamma interferon on acute myeloid leukemia blast cells. Br J Cancer 55:287–290, 1987.

    PubMed  CAS  Google Scholar 

  62. Herberman RB, Ortaldo JR, Montovani A, Hobbs DS, Kung HF, Pestka S. Effect of human recombinant interferon on cytotoxic activity of natural killer (NK) cells and monocytes. Cell Immunol 67:160–167, 1982.

    PubMed  CAS  Google Scholar 

  63. Guadagni F, Schlom J, Johnston WW, et al. Selective interferon-induced enhancement of tumor-associated antigens on a spectrum of freshly isolated human adenocarcinoma cells. J Natl Cancer Inst 81:502–512, 1989.

    PubMed  CAS  Google Scholar 

  64. Jabrane-Ferrat N, Faille A, Loiseau P, Poirier O, Charron D, Calvo F. Effect of gamma interferon on HLA class-I and II transcription and protein expression in human breast adenocarcinoma cell lines. Int J Cancer 45:1169–1176, 1990.

    PubMed  CAS  Google Scholar 

  65. Giacomini P, Fisher PB, Duigou G J, Gambari R, Natali PG. Regulation of class II MHC gene expression by interferons: insights into the mechanism of action of interferon (review). Anticancer Res 8:1153–1161, 1988.

    PubMed  CAS  Google Scholar 

  66. Boyer CM, Dawson DV, Neal SE, et al. Differential induction by interferons of major histocompatibility complex-encoded and non-major histocompatibility complex-encoded antigens in human breast and ovarian carcinoma cell lines. Cancer Res 49:2928–2934, 1989.

    PubMed  CAS  Google Scholar 

  67. Nouri AM, Hussain RF, Dos Santos AV, Gillott DJ, Oliver RT. Induction of MHC antigens by tumour cell lines in response to interferons. Eur J Cancer 28A:1110–1115, 1992.

    PubMed  CAS  Google Scholar 

  68. Carlo Stella C, Cazzola M. Interferons as biologic modulators of hematopoietic cell proliferation and differentiation. Haematologica 73:225–237, 1988.

    PubMed  CAS  Google Scholar 

  69. Bilgrami S, Silva M, Cardoso A, Miller KB, Ascensao JL. Immunotherapy with autologous bone-marrow transplantation: rationale and results. Exp Hematol 22:1039–1050, 1994.

    PubMed  CAS  Google Scholar 

  70. Meyers JD, Flournoy N, Sanders JE, et al. Prophylactic use of human leukocyte interferon after allogeneic marrow transplantation. Ann Intern Med 107:809–816, 1987.

    PubMed  CAS  Google Scholar 

  71. Winston DJ, Ho WG, Schroff RW, Champlin RE, Gale RP. Safety and tolerance of recombinant leukocyte a interferon in bone marrow transplant recipients. Anlimicrob Agents Chemother 23:846–851, 1983.

    CAS  Google Scholar 

  72. McGlave PB, Arthur D, Miller WJ, Lasky L, Kersey J. Autologous transplantation for CML using marrow treated ex vivo with recombinant human interferon gamma. Bone Marrow Transplant 6:115–120, 1990.

    PubMed  CAS  Google Scholar 

  73. Lo Coco F, Mandelli F, Diverio D, et al. Therapy-induced Ph1 suppression in chronic myeloid leukemia: molecular and cytogenetic studies in patients treated with alpha-2b IFN, high-dose chemotherapy and autologous stem cell infusion. Bone Marrow Transplant 6:253–258, 1990.

    PubMed  Google Scholar 

  74. Higuchi W, Moriyama Y, Kishi K, et al. Hematopoietic recovery in a patient with acute lymphoblastic leukemia after an autologous marrow graft purged by combined hyperthermia and interferon in vitro. Bone Marrow Transplant 7:163–166, 1991.

    PubMed  CAS  Google Scholar 

  75. Kantarjian HM, Talpaz M, Le Maistre CF, et al. Intensive combination chemotherapy and autologous bone marrow transplantation leads to the reappearance of Philadelphia chromosome-negative cells in chronic myelogenous leukemia. Cancer 67:2959–2965, 1991.

    PubMed  CAS  Google Scholar 

  76. Klingemann HG, Grigg AP, Wilkie-Boyd K, et al. Treatment with recombinant interferon (alpha-2b) early after bone marrow transplantation in patients at high risk for relapse. Blood 78:3306–3311, 1991.

    PubMed  CAS  Google Scholar 

  77. Attal M, Huguet F, Schlaifer D, et al. Intensive combined therapy for previously untreated aggressive myeloma. Blood 79:1130–1136, 1992.

    PubMed  CAS  Google Scholar 

  78. Neloni G, De Fabritiis P, Alimena G, et al. Autologous bone marrow or peripheral blood stem cell transplantation for patients with chronic myeloid leukemia in chronic phase. Bone Marrow Transplant 4 (Suppl 4):92, 1989.

    Google Scholar 

  79. Ascensao JL, Miller KB, Tuck D, et al. Immunotherapy with interferon-alpha-2b (IFN) following autologous bone marrow transplantation (ABMT) for lymphomas: an update (abstract). Proc Am Soc Clin Oncol 12:380, 1993.

    Google Scholar 

  80. Graze PR, Gale RP. Chronic graft versus host disease: a syndrome of disordered immunity. Am J Med 66:611–620, 1979.

    PubMed  CAS  Google Scholar 

  81. Deeg HJ, Storb R. Acute and chronic graft versus host disease: clinical manifestations, prophylaxis, and treatment. J Natl Cancer Inst 76:1325–1328, 1986.

    PubMed  CAS  Google Scholar 

  82. Weiden PL, Sullivan KM, Fluornoy N, Storb R, Thomas ED. Antileukemic effect of graftversus-host disease in human recipients of allogeneic-marrow grafts. N Eng J Med 300:1068–1073, 1979.

    CAS  Google Scholar 

  83. Butturini A, Bortin MM, Gale RP. Graft-versus-leukemia following bone marrow transplantation. Bone Marrow Transplant 2:233–242, 1987.

    PubMed  CAS  Google Scholar 

  84. Chopra R, Goldstone AH, Pearce R, et al. Autologous versus allogeneic bone marrow transplantation for non-Hodgkin’s lymphoma: a case controlled analysis of the European Bone Marrow Transplant Group registry data. J Clin Oncol 10:1690–1695, 1992.

    PubMed  CAS  Google Scholar 

  85. Glazier AD, Tutschka PJ, Farmer ER, Santos GW. Graft-versus-host disease in cyclosporine A treated rats following syngeneic and autologous bone marrow reconstitution. J Exp Med 158:1–8, 1983.

    PubMed  CAS  Google Scholar 

  86. Hess AD, Horwitz L, Beschorner WE, Santos GW. Development of graft-versus-host disease-like syndrome in cyclosporine-treated rats after syngeneic bone marrow transplantation. I. Development of cytotoxic T lymphocytes with apparent polyclonal anti-Ia specificity, including autoreactivity. J Exp Med 161:718–730, 1985.

    PubMed  CAS  Google Scholar 

  87. Hess AD, Jones RC, Santos GW. Autologous graft-versus-host disease: mechanism and potential therapeutic effect. Bone Marrow Transplant 12 (Suppl 3):S65, 1993.

    PubMed  Google Scholar 

  88. Jones RJ, Vogelsang GB, Hess AD, Farmer ER, Mann R, Geller PB, Piantadosi S, Santos GW. Induction of graft versus host disease after autologous bone marrow transplantation. Lancet 1:754–757, 1989.

    PubMed  CAS  Google Scholar 

  89. Yeager AM, Vogelsang GB, Jones RJ, Farmer ER, Altomonte V, Hess AD, Santos GW. Induction of cutaneous graft-versus-host reaction by administration of cyclosporine to patients undergoing autologous bone marrow transplantation for acute myeloid leukemia. Blood 79:3031–3035, 1992.

    PubMed  CAS  Google Scholar 

  90. Santos GW. Autologous graft vs host disease (abstract). Exp Hematol 19:463, 1991.

    Google Scholar 

  91. Gribben JG, Freedman AS, Neuberg D, et al. Immunological purging of marrow assessed by PCR before autologous bone marrow transplantation for B cell lymphoma. N Engl J Med 325:1525–1533, 1991.

    PubMed  CAS  Google Scholar 

  92. Ringden O, Horowitz MM. Graft-versus-leukemia reactions in humans. The Advisory Committee of the International Bone Marrow Transplant Registry. Transplant Proc 21:2989–2992, 1989.

    PubMed  CAS  Google Scholar 

  93. Rosenfeld C, Shadduck RK, Przepiorka D, Mangan KF, Colvin M. Autologous bone marrow transplantation with 4-hydroperoxycyclophosphamide purged marrows for acute nonlymphocytic leukemia in late remission or early relapse. Blood 74:1159–1164, 1989.

    PubMed  CAS  Google Scholar 

  94. Pole JG, Gee A, Jansen W, Lee C, Gross S. Immunomagnetic purging of bone marrow: a model for negative cell selection. Am J Pediatr Hematol Oncol 12:257–261, 1990.

    PubMed  CAS  Google Scholar 

  95. Vogler WR, Berdel WE, Olson AC, Winton EF, Heffner LT, Gordon DS. Autologous bone marrow transplantation in acute leukemia with marrow purged with alkylysophospholipids. Blood 80:1423–1429, 1992.

    PubMed  CAS  Google Scholar 

  96. Uckun FM, Kersey JH, Vallera DA, et al. Autologous bone marrow transplantation in high risk remission T-lineage acute lymphoblastic leukemia using immunotoxins plus 4-hydroperoxycyclophosphamide for marrow purging. Blood 76:1723–1733, 1990.

    PubMed  CAS  Google Scholar 

  97. Truitt RL, Horowitz MM, Atasoylu AA, Drobyski WR, Johnson BD, LeFever AV. Graftversus-leukemia effect of allogeneic bone marrow transplantation: clinical and experimental aspects of late leukemia relapse. In Stewart THM, Wheelock EF (eds), Cellular Immune Mechanisms and Tumor Dormancy. Boca Raton: CRC Press, 1992, pp. 111–128.

    Google Scholar 

  98. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555–562, 1990.

    PubMed  CAS  Google Scholar 

  99. Chang WC, Hsiao MH, Pattengalc PK. Natural killer cell immunodeficiency in patients with chronic myelogenous leukemia. IV. Interleukin-1 deficiency, gamma-interferon deficiency and the restorative effects of short term culture in the presence of interleukin-2 on natural killer cytotoxicity, natural killer-target binding and production of natural killer cytotoxic factor. Nat Immunol Cell Growth Regul 10:57–70, 1991.

    CAS  Google Scholar 

  100. Mackinnon S, Hows JM, Goldman JM. Induction of in vitro graft-versus-leukemia activity following bone marrow transplantation for chronic myelogenous leukemia. Blood 76:2037–2045, 1990.

    PubMed  CAS  Google Scholar 

  101. Hauch M, Gazzold MV, Small T, et al. Anti-leukemia potential of interleukin-2 activated natural killer cells after bone marrow transplantation for chronic myelogenous leukemia. Blood 75:2250–2262, 1990.

    PubMed  CAS  Google Scholar 

  102. Agah R, Malloy B, Kerner M, Mazumder A. Generation and characterization of IL-2 activated bone marrow cells as a potent graft versus tumor effector in transplantation. J Immunol 143:3039–3099, 1989.

    Google Scholar 

  103. Charak BS, Brynes RK, Katsuda S, Groshen S, Chen S-C, Mazumder A. Induction of graft versus leukemia effect in bone marrow transplantation: dosage and time schedule dependency of interleukin 2 therapy. Cancer Res 51:2015–2020, 1991.

    PubMed  CAS  Google Scholar 

  104. Charak BS, Agah R, Gray D, Mazumder A. Interaction of various cytokines with interleukin-2 in the generation of killer cells from human bone marrow: application in purging of leukemia. Leuk Res 15:801–810, 1991.

    PubMed  CAS  Google Scholar 

  105. Keever CA, Pekle K, Gazzola MV, Collins NH, Gillio A. NK and LAK activities from human bone marrow progenitors. I. The effects of interleukin-2 and interleukin-1. Cell Immunol 126:211–226, 1990.

    PubMed  CAS  Google Scholar 

  106. Agah R, Malloy B, Kerner M, Girgis E, Bean P, Twomey P, Mazumder A. Potent graft antitumor effect in natural killer-resistant disseminated tumors by transplantation of interleukin-2-activated syngeneic bone marrow in mice. Cancer Res 49:5959–5963, 1989.

    PubMed  CAS  Google Scholar 

  107. Lotze MT, Matory YL, Ettinghausen SE, et al. In vivo administration of purified human interleukin-2: half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL-2. J Immunol 135:2865–2875, 1985.

    PubMed  CAS  Google Scholar 

  108. Kedar E, Klein E. Cancer immunotherapy: are the results discouraging? can they be improved? Adv Cancer Res 59:245–322, 1992.

    PubMed  CAS  Google Scholar 

  109. Mitchell MS. Combining chemotherapy with biological response modifiers in the treatment of cancer. J Natl Cancer Inst 80:1445–1450, 1988.

    PubMed  CAS  Google Scholar 

  110. Charak BS, Brynes RK, Chogyoji M, Kortes V, Tefft M, Mazumder A. Graft versus leukemia effect of interleukin-2-activated bone marrow: correlation with eradication of residual disease. Transplantation 56:31–37, 1993.

    PubMed  CAS  Google Scholar 

  111. Charak BS, Agah R, Brynes RK, Chogyoji M, Groshen S, Chen S-C, Mazumder A. Interleukin-2 (IL-2) and IL-2-activatcd bone marrow in transplantation: evaluation from a clinical perspective. Bone Marrow Transplant 9:479–486, 1992.

    PubMed  CAS  Google Scholar 

  112. Coulombel L, Kalousek D, Eaves CJ, Gupta CM, Eaves A. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med 308:1493–1498, 1983.

    PubMed  CAS  Google Scholar 

  113. Hogge DE, Coulombel L, Kalousek DK, Eaves CJ, Eaves AC. Nonclonal hemopoietic progenitors in a G6PD heterozygote with chronic myelogenous leukemia revealed after long-term marrow culture. Am J Hematol 24:389–394, 1987.

    PubMed  CAS  Google Scholar 

  114. Coulombel L, Eaves CJ, Kalousek DK, Gupta C, Eaves Ac. Long term marrow culture of cells from patients with acute myelogenous leukemia. J Clin Invest 75:961–969, 1985.

    PubMed  CAS  Google Scholar 

  115. Firkin FC, Birner R, Farag S. Differential action of diffusible molecules in long term culture on proliferation of leukemic and normal hematopoietic cells. Br J Hematol 84:8–15, 1993.

    CAS  Google Scholar 

  116. Udomsakdi C, Eaves CJ, Swolin B, Reid DS, Barnett MJ, Eaves AC. Rapid decline of chronic myeloid leukemic cells in long term culture due to a defect at the leukemic stem cell level. Proc Natl Acad Sci 89:6192–6196, 1992.

    PubMed  CAS  Google Scholar 

  117. Lotzova E, Savary CA. Generation of NK cell activity from human bone marrow. J Immunol 139:279–284, 1987.

    PubMed  CAS  Google Scholar 

  118. Verma UN, Bagg A, Brown E, Mazumder A. Interleukin-2 activation of human bone marrow in long term cultures: an effective strategy for purging and generation of anti-tumor cytotoxic effectors. Bone Marrow Transplant 13:115–123, 1994.

    PubMed  CAS  Google Scholar 

  119. Klingemann HG, Deal H, Reid D, Eaves CJ. Pre-clinical evaluation of a bone marrow autograft culture procedure for generating lymphokine-activated killer cells in vitro. Can J Infect Dis 3:123B-127B, 1992.

    Google Scholar 

  120. Klingemann HG, Deal H, Reid D, Eaves CJ. Design and validation of a clinically applicable culture procedure for the generation of interleukin-2 activated natural killer cells in human bone marrow autografts. Exp Hematol 21:1263–1270, 1993.

    PubMed  CAS  Google Scholar 

  121. Long GS, Cramer DV, Harnaha JB, Hiserodt JC. Lymphokine-activated killer (LAK) cell purging of leukemic bone marrow: range of activity against different hematopoietic neoplasms. Bone Marrow Transplant 6:169–177, 1990.

    PubMed  CAS  Google Scholar 

  122. Chao N, Schriber J, Grimes K, et al. Granulocyte colony-stimulating factor ‘mobilized’ peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high dose chemotherapy. Blood 81:2031–2035, 1993.

    PubMed  CAS  Google Scholar 

  123. To LB, Roberts MM, Haylock DN, et al. Comparison of hematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 9:277–284, 1992.

    PubMed  CAS  Google Scholar 

  124. Kessinger A, Armitage JO. The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77:211–213, 1991.

    PubMed  CAS  Google Scholar 

  125. Kessinger A, Bierman P, Vose J, Armitage JO. High-dose cyclophosphamide, carmustine, and etopside followed by autologous peripheral stem cell transplantation for patients with relapsed Hodgkin’s disease. Blood 77:2322–2325, 1991.

    PubMed  CAS  Google Scholar 

  126. Liu K-Y, Akashi K, Harada M, Takamatsu Y, Niho Y. Kinetics of circulating hematopoietic progenitors during chemotherapy-induced mobilization with or without granulocyte colony-stimulating factor. Br J Haematol 84:31–38, 1993.

    PubMed  CAS  Google Scholar 

  127. Verma UN, Areman E, Dickerson SA, Kotula PL, Sacher R, Mazumder A. Interleukin-2 activation of chemotherapy and growth factor mobilized peripheral blood stem cells for generation of cytotoxic effectors. Bone Marrow Transplant 15:199–206, 1995.

    PubMed  CAS  Google Scholar 

  128. Kolb KJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050, 1995.

    PubMed  CAS  Google Scholar 

  129. Helg C, Roux E, Beris P, et al. Adoptive immunotherapy for recurrent CML after BMT. Bone Marrow Transplant 12:125–129, 1993.

    PubMed  CAS  Google Scholar 

  130. Drobyski WR, Keevcr CA, Roth MS, et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 82:2310–2318, 1993.

    PubMed  CAS  Google Scholar 

  131. Mitchell MS, Harel W, Kan-Mitchell J, et al. Active specific immunotherapy of melanoma with allogeneic cell lysates. Rationale, results, and possible mechanisms of action. Ann N Y Acad Sci 690:153–166, 1993.

    PubMed  CAS  Google Scholar 

  132. Berd D, Maguire HC Jr., McCue P, Mastrangelo MJ. Treatment of metastatic melanoma with an autologous tumor-cell veccine: clinical and immunologic results in 64 patients. J Clin Oncol 8:1858–1867, 1990.

    PubMed  CAS  Google Scholar 

  133. Hanna MG Jr., Ransom JH, Pomato N, el al. Active specific immunotherapy of human colorectal carcinoma with an autologous tumor cell/Bacillus Calmette-Guerin vaccine. Ann N Y Acad Sci 690:135–146, 1993.

    PubMed  Google Scholar 

  134. Gilboa E, Lyerly HK, Vieweg J, Saito S. Immunotherapy of cancer using cytokine genemodified tumor vaccines. Semin Cancer Biol 5:409–417, 1994.

    PubMed  CAS  Google Scholar 

  135. Barth A, Hoon DS, Foshag LJ, et al. Polyvalent melanoma cell vaccine induces delayedtype hypersensitivity and in vitro cellular immune response. Cancer Res 54:3342–3345, 1994.

    PubMed  CAS  Google Scholar 

  136. Plaksin D, Porgador A, Vadai E, Feldman M, Schirrmacher V, Eisenbach L. Effective antimetastatic melanoma vaccination with tumor cells transfected with MHC genes and/or infected with newcastle disease virus (NDV). Int J Cancer 59:796–801, 1994.

    PubMed  CAS  Google Scholar 

  137. Finn OJ. Tumor-specific immune responses and opportunities for tumor vaccines. Clin Immunol Immunopathol 71:260–262, 1994.

    PubMed  CAS  Google Scholar 

  138. Mastrangelo MJ, Schultz S, Kane M, Berd D. Newer immunologic approaches to the treatment of patients with melanoma. Semin Oncol 15:589–594, 1988.

    PubMed  CAS  Google Scholar 

  139. Pardoll DM. Cancer vaccines. Trends Pharmacol Sci 14:202–208, 1993.

    PubMed  CAS  Google Scholar 

  140. Golumbek P, Levitsky H, Jaffee L, Pardoll DM. The antitumor immune response as a problem of self-nonself discrimination: implications for immunotherapy. Immunol Res 12:183–192, 1993.

    PubMed  CAS  Google Scholar 

  141. Houghton AN. Cancer antigens: immune recognition of self and altered self. J Exp Med 180:1–4, 1994.

    PubMed  CAS  Google Scholar 

  142. Johnston D, Bystryn JC. Immunogenicity and tumor protective activity of B16 melanoma vaccines. Mol Biother 1:218–222, 1989.

    PubMed  CAS  Google Scholar 

  143. Sainouchi R, Terata N, Kodama M. The induction of enhanced antitumor effect against a nonimmunogenic tumor by highly immunogenic variants obtained by mutagen treatment. Jpn J Cancer Res 79:1247–1253, 1988.

    PubMed  CAS  Google Scholar 

  144. Guadagni F, Roselli M, Schlom J, Greiner JW. In vitro and in vivo regulation of human tumor antigen expression by human recombinant interferons: a review. Int J Biol Markers 9:53–60, 1994.

    PubMed  CAS  Google Scholar 

  145. Pardoll DM. New strategies for enhancing the immunogenicity of tumors. Curr Opin Immunol 5:719–725, 1993.

    PubMed  CAS  Google Scholar 

  146. Vanky F, Stuber G, Rotstein S, Klein E. Auto-tumor recognition following in vitro induction of MHC antigen expression on solid human tumors: stimulation of lymphocytes and generation of cytotoxicity against the original MHC-antigen-negative tumor cells. Cancer Immunol Immunother 28:17–21, 1989.

    PubMed  CAS  Google Scholar 

  147. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258:1795–1798, 1992.

    PubMed  CAS  Google Scholar 

  148. Sulitzeanu D. Immunosuppressive factors in human cancer. Ady Cancer Res 60:247–267, 1993.

    CAS  Google Scholar 

  149. Deckers PJ, Davis RC, Parker GA, Mannick JA. The effect of tumor size on concomitant immunity. Cancer Response 33:33–39, 1973.

    CAS  Google Scholar 

  150. Verma UN, Mazumder A. Immune reconstitution following bone marrow transplantation. Cancer Immunol Immunother 37:351–360, 1993.

    PubMed  CAS  Google Scholar 

  151. Roberts MM, To LB, Gillis D, et al. Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 12:469–475, 1993.

    PubMed  CAS  Google Scholar 

  152. Ilan Y, Nagler A, Shouval D, et al. Development of antibodies to hepatitis B virus surface antigen in bone marrow transplant recipient following treatment with peripheral blood lymphocytes from immunized donors. Clin Exp Immunol 97:299–302, 1994.

    PubMed  CAS  Google Scholar 

  153. Ljungman P, Lewensohn-Fuchs I, Hammarstrom V, et al. Long-term immunity to measles, mumps, and rubella after allogeneic bone marrow transplantation. Blood 84:657–663, 1994.

    PubMed  CAS  Google Scholar 

  154. Hammarstrom V, Pauksen K, Azinge J, Oberg G, Ljungman P. Pneumococcal immunity and response to immunization with pneumococcal vaccine in bone marrow transplant patients: the influence of graft versus host reaction. Support Care Cancer 1:195–199, 1993.

    PubMed  CAS  Google Scholar 

  155. Kwak LW, Grand LC, Williams RM. Radiation-induced augmentation of host resistance to histocompatible tumor in mice. Detection of a graft antitumor effect of syngeneic bone marrow transplantation. Transplantation 51:1244–1248, 1991.

    PubMed  CAS  Google Scholar 

  156. Kwak LW, Campbell M, Levy R. Idiotype vaccination post-bone marrow transplantation for B-cell lymphoma: initial studies in a murine model. Cancer Detect Prev 15:323–325, 1991.

    PubMed  CAS  Google Scholar 

  157. Verma UN, Hodgson J, Brown E, Mazumder A. Anti-tumor immunity to B16 murine melanoma: induction, transfer, and generation of a graft versus tumor effect by syngeneic bone marrow transplantation with an immune graft. (Submitted.)

    Google Scholar 

  158. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 327:1209–1215, 1992.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verma, U.N., Meehan, K.R., Mazumder, A. (1997). Post-bone marrow transplant use of immunotherapy. In: Winter, J.N. (eds) Blood Stem Cell Transplantation. Cancer Treatment and Research, vol 77. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6349-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6349-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7916-4

  • Online ISBN: 978-1-4615-6349-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics