Skip to main content

Abstract

Various nomenclatures are in use to describe SFF processes that create metal and ceramic objects. At the University of Texas and in this book, the three major processing methods are called transfer methods, indirect methods, and direct methods. In simple terms, transfer methods use patterns, either castings or spray metal patterns. Indirect methods1 (which could also be called low-density matrix methods) involve making relatively low-density objects and then infiltrating or post-sintering these objects to high density. Direct methods (which could also be called high-density methods) create high density structures without a secondary processing step. There is already commercial application of the indirect methods; the direct methods are all still in the research stage. Transfer and indirect methods are the subject of this chapter. A discussion of direct methods is deferred until Chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwala, M.K., R. van Weeren, R. Vaidyanathan, J. Burlew, R. Donaldson, P. Whalen, C. Ballard: “Structural Ceramics by Fused Deposition of Ceramics”, Solid Freeform Fabrication Proceedings, Austin, Texas, 1995. The University of Texas, Austin, Texas, pp. 1–8.

    Google Scholar 

  • Apelskog-Killander, L., “Rapid Mould: Epoxy-Infiltrated, Laser Sintered Inserts”, Rapid Prototyping J., 1996, 2, pp. 34–40.

    Article  Google Scholar 

  • ASM Handbook Committee, Metals Handbook 10th Edition, Volume 2 Properties and Selection: Nonferrous Alloys and Pure Metals, ASM International, 1990, pp. 45–49.

    Google Scholar 

  • Badrinarayan, B. “Study of the Selective Laser Sintering of Metal-Polymer Powders,” PhD. Dissertation, The University of Texas at Austin, Dec. 1995.

    Google Scholar 

  • Badrinarayan, B., and Barlow, J. W., “Selective Laser Sintering of a Copper-PMMA System,” Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1991, pp. 245–250.

    Google Scholar 

  • Badrinarayan, B., and Barlow, J. W., “Manufacture of Injection Molds using SLS,” Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1994, 371–378.

    Google Scholar 

  • Barlow, J. W., et al, U. S. Patent Appl., 1994, “Mold Useful for Injection Molding of Plastics and Methods of Production and Uses Thereof.”

    Google Scholar 

  • Barlow, J. W., Beaman, J. J., and Badrinarayan, B., “A Rapid Mould Making System: Material Properties and Design Considerations,” Rapid Prototyping Journal, 1996, 2, pp. 4–15.

    Article  Google Scholar 

  • Bernhardt, E. C., Processing of Thermoplastic Materials, Van Nostrand Reinhold Company: New York, 1959, pp. 359–378.

    Google Scholar 

  • Biddle, K., et al.: “The Chemistry of Ethyl Silicate Binders in Refractory Technology”, Journal of Applied Chemistry and Biotechnology 27, 1977, pp. 565–573.

    Article  Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, J. Wiley: New York, 1960, p.748.

    Google Scholar 

  • Bowman, L., “CAD to Product — the LOM Route”, Proceedings of the 2nd European Conference on Rapid Prototyping and Manufacturing, University of Nottingham, 1993.

    Google Scholar 

  • Bunnell, D. E., Das, S., Bourell, D. L., Beaman, J. J., and Marcus, H. L., “Fundamentals of Liquid Phase Sintering During Selective Laser Sintering,” Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1995, pp. 440–447.

    Google Scholar 

  • Bunnell, D.E., “Fundamentals of Selective Laser Sintering of Metals”, PhD Dissertation, The University of Texas at Austin, Austin, Texas, 1995.

    Google Scholar 

  • Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, 2nd Ed., Oxford University Press: New York, 1959.

    Google Scholar 

  • Carter, W.T. and M.G. Jones, “Direct Laser Sintering of Metals”, Solid Freeform Fabrication Proceedings, The University of Texas at Austin, Austin, TX, 1993, pp. 51–59.

    Google Scholar 

  • Cima, M.J., E.M. Sachs, L.G. Cima, J. Yoo, S. Khanuja, S.W. Borland, B. Wu, R.A. Giordano: “Computer-Derived Microstructures by 3D Printing: Bio-and Structural Materials”, Solid Freeform Fabrication Proceedings, The University of Texas at Austin, Austin, Texas, 1994, pp. 181–190.

    Google Scholar 

  • Cima, M.J., J. Yoo, S. Khanuja, M. Rynerson, D. Nammour, B. Giritlioglu, J. Grau, E.M. Sachs: “Structural Ceramic Components by 3D Printing”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1995. pp. 479–488.

    Google Scholar 

  • Comb, J.W. and W.R. Priedeman: “Control Parameters and Material Selection Criteria for Rapid Prototyping Systems”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1993, pp. 86–91.

    Google Scholar 

  • Comb, J.W., W.R. Priedeman, and P.W. Turley, “FDM Technology Process Improvements”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1994, pp. 42–49.

    Google Scholar 

  • Crockett, R.S., J. O’Kelly, P.D. Calvert, B.D. Fabes, K. Stuffle, P. Creegan, R. Hoffman: “Predicting and Controlling Resolution and Surface Finish of Ceramic Objects Produced by Stereodeposition Processes”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1995, pp. 17–24.

    Google Scholar 

  • Deckard, L., and Claar, T. D., “Fabrication of Ceramic and Metal Matrix Composites from Selective Laser Sintered Ceramic Preforms,” Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1993, 215–222.

    Google Scholar 

  • DTM Corporation, Guidelines for Using RapidCasting Polycarbonate Patterns in the Investment Casting Process, DTM Corporation, Austin, TX, 1995.

    Google Scholar 

  • Emblem, H.G., “Ethyl Silicate Bonded Refractories”, Materials Chemistry and Physics, 8 (1983) pp. 265–277.

    Article  Google Scholar 

  • Ferguson, B.L. and O.D. Smith: “Ceracon Process”, in Metals Handbook 9th Edition, Volume 7 Powder Metallurgy, ASM International, 1984, pp. 537–541.

    Google Scholar 

  • German, R.M., Powder Metallurgy Science, Second Edition, Metal Powder Industries Federation, Princeton, NJ, 1994.

    Google Scholar 

  • German, R.M., Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, NJ, 1989.

    Google Scholar 

  • German, R.M., Liquid Phase Sintering, Plenum Press, New York, NY, 1985.

    Book  Google Scholar 

  • Griffin, Curtis, JoDee Daufenbach, Scott McMillin: “Solid Freeform Fabrication of Functional Ceramic Components Using a Laminated Object Manufacturing Technique”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1994, pp. 17–24.

    Google Scholar 

  • Griffith, Michelle L., John W. Halloran: “Ultraviolet Curing of Highly Loaded Ceramic Suspensions for Stereolithography of Ceramics”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1994, pp. 396–403.

    Google Scholar 

  • Griffith, Michelle L., Tien-Min Chu, Warren Wagner, John W. Halloran: “Ceramic Stereolithography For Investment Casting and Biomedical Applications”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1995, pp. 31–38.

    Google Scholar 

  • Hausner, H.H. and M.K. Mal, Handbook of Powder Metallurgy, Second Edition, Chemical Publishing Company, New York, NY, 1982.

    Google Scholar 

  • Janney M.A., “Method for Molding Ceramic Powders”, U.S. Patent No. 4, 894, 194, Jan. 16, 1990.

    Google Scholar 

  • Jones, W.D., Fundamental Principles of Powder Metallurgy, Edward Arnold Publishers, London, UK, 1960.

    Google Scholar 

  • Jurand, R., ed., Modern Plastics Encyclopedia, McGraw-Hill: New York, 1989, pp 576–619.

    Google Scholar 

  • Kashigawi, T., Hirata, T., and Brown, J. E., “Thermal and Oxidative Degradation of Poly(methyl methacrylate): Molecular Weight,” Macromolecules, 18[2], (1985), pp. 131–138.

    Article  Google Scholar 

  • Kine, B. B. and Novak, R. W., “Acrylic and Methacrylic Ester Polymers,” Encyclopedia of Polymer Science and Engineering, 2nd Ed., Vol. 1, J. Wiley & Sons: New York, 1985, p. 241.

    Google Scholar 

  • Krantz, T., “Effect of density and composition on dimensional stability and strength of iron-copper alloys”, International Journal of Powder Metallurgy, Volume 5, Number 3, 1969, pp. 35–43.

    Google Scholar 

  • Lee, G.-H., Barlow, J. W., “Selective Laser Sintering of Calcium Phosphate Powders,” Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1994, 191–197.

    Google Scholar 

  • Lenel, F.V., Powder Metallurgy Principles and Applications, Metal Powder Industries Federation, Princeton, NJ, 1980.

    Google Scholar 

  • Marin, J. and Sauer, J. A. Strength of Materials, MacMillan Company: New York, 1954, pp 76–85, p. 508.

    Google Scholar 

  • Masters, K., Spray Drying Handbook, J. Wiley & Sons: New York, 1985.

    Google Scholar 

  • McAdams, W. H., Heat Transmission, 3rd Ed., McGraw-Hill: New York, 1954, p. 224.

    Google Scholar 

  • Menges, G. and P. Mohren, How to Make Injection Molds, Hanser Publishers, New York, 1986, p. 35.

    Google Scholar 

  • Michaels, S., E.M. Sachs, M.J. Cima: “Metal Parts Generation by Three Dimensional Printing”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1992, pp. 244–250.

    Google Scholar 

  • Pang, T.H. and P.F. Jacobs, “Stereolithography Epoxy Resin Development: Accuracy and Dimensional Stability”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1993, pp. 11–26.

    Google Scholar 

  • Pitts, D. R., and Sisson, L. E., Heat Transfer, McGraw-Hill: New York, 1977, chapt. 11 & Appendix B.

    Google Scholar 

  • Progelhof, R. C. and Throne, J. L., Polymer Engineering Principles. Properties, Processes, Tests for Design, Hanser/Gardner Publications: Cincinnati, Ohio, 1993, chapt. 5.

    Google Scholar 

  • Rohsenow, W. M., Hartnett, J. P., and Ganic, E. N., Eds., Handbook of Heat Transfer Fundamentals, 2nd Ed., McGraw-Hill: New York, 1985, pp. 3–113.

    Google Scholar 

  • Sachs, E.M., S. Allen, M.J. Cima, E. Wylonis, H. Guo: “Production of Injection Molding Tooling with Conformal Cooling Channels using the Three Dimensional Printing Process”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1995., pp. 448–467.

    Google Scholar 

  • Sih, S. S. and Barlow, J. W., “Emissivity of Powder Beds,” Marcus, H. L., et al, Eds., Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1995, 402–408.

    Google Scholar 

  • Stuffle, K., A. Mulligan, J. Lombardi, P. Calvert: “Solid Freebody Forming of Ceramics from Polymerizable Slurry”, Materials Research Society Symposium Proceedings, 286 (1993a) pp. 309–314.

    Google Scholar 

  • Stuffle, Kevin, Anthony Mulligan, Paul Calvert, John Lombardi: “Solid Freebody Forming from Polymerizable Slurry”, i Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1993.b, pp. 60–63.

    Google Scholar 

  • Tadmor, Z. and Gogos, C. G., Principles of Polymer Processing, John Wiley & Sons: New York, 1979, chapt. 14.

    Google Scholar 

  • Tobin, J. R., Badrinarayan, B., Barlow, J. W., Beaman, J. J., and Bourell, D. L., “Indirect Metal Composite Part Manufacture Using the SLS Process,” Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1993, pp. 303–307.

    Google Scholar 

  • Vail, N. K., Barlow, J. W., and Marcus, H. L., “Silicon Carbide Preforms for Metal Infiltration by Selective Laser Sintering of Polymer Encapsulated Powders,” Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1993, 204–214.

    Google Scholar 

  • Vail, N. K., and Barlow, J. W., “Effect of Polymer Coatings as Intermediate Binders on Sintering of Ceramic Parts,” Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1991, 195–204.

    Google Scholar 

  • Vail, N. K., and Barlow, J. W., “A Method for Producing High Temperature Parts by Low Temperature Sintering,” U. S. Patent No. 5, 284, 695, Feb. 8, 1994.

    Google Scholar 

  • Vail, N. K., “Preparation and Characterization of Microencapsulated, Finely Divided Ceramic Materials for Selective Laser Sintering,” Ph.D. Dissertation, The University of Texas at Austin, 1994.

    Google Scholar 

  • Venus, A.D., “Improving Product Development for Automotive Cast Components”, Proceedings for the Dedicated Conference on Rapid Prototyping in the Automotive Industries, Automotive Automation Limited, Croydon, England, 1995, pp. 307–319.

    Google Scholar 

  • Walters, W., “Rapid Prototyping Using FDM: A Fast, Precise, Safe Technology”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1992, pp. 301–308.

    Google Scholar 

  • Warner, C., “New Trends in Pattern Making Using LOM”, Proceedings for the Dedicated Conference on Rapid Prototyping in the Automotive Industries, Automotive Automation Limited, Croydon, England, 1995, pp. 59–70.

    Google Scholar 

  • Yoo, J., M.J. Cima, S. Khanuja, E.M. Sachs: “Structural Ceramic Components by 3D Printing”, Solid Freeform Fabrication Proceedings, The University of Texas, Austin, Texas, 1993, pp. 40–50.

    Google Scholar 

  • Young, A.C., O.O. Omatete, M.A. Janney, P.A. Menchofer: “Gel Casting — A New Ceramic Forming Process”, Journal of the American Ceramic Society 74#3 (1991) pp. 612–618.

    Article  Google Scholar 

  • Young, A.G., “Linking Prototyping and Production”, IMS International Conference on Rapid Product Development, Stuttgart, Germany, 1994.

    Google Scholar 

  • Zong, G., Wu, Y., Tran, N., Lee, I., Bourell, D. L., and Marcus, H. L., “Direct Selective Laser Sintering of High Temperature Materials,” Solid Freeform Fabrication Proceedings, The University of Texas: Austin, Texas, 1992, 72–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beaman, J.J., Barlow, J.W., Bourell, D.L., Crawford, R.H., Marcus, H.L., McAlea, K.P. (1997). Indirect Fabrication of Metals and Ceramics. In: Solid Freeform Fabrication: A New Direction in Manufacturing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6327-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6327-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9834-9

  • Online ISBN: 978-1-4615-6327-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics