Skip to main content

Pitfalls and Practical Approach to the Use of Imaging Techniques in Developing Clinical Strategies

  • Chapter
  • 70 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 190))

Abstract

Coronary angiography remains the standard modality for determining the presence or absence of significant coronary artery disease in 1996. However, in the preceding chapters, angiography has been shown to be limited in predicting the functional significance of a stenosis on coronary blood flow.(1,2) Additionally, visual estimates of percent diameter stenosis are plagued with significant interobserver and intraobserver variability. (3,4) This variability has improved with the development of computer-based quantitative and digital techniques; (5,6) yet, QCA and the physiologic assessment of stenosis severity are weakly correlated, particularly in patients with multivessel disease (7) and intermediate lesions.(8,9) The clinical correlation between functional significance and the best quantitative angiographic techniques in “borderline” coronary artery lesions is poor, secondary to wide 95% confidence intervals.(10)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Maras ML. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? NEJM 1984; 310:819–824.

    Article  PubMed  CAS  Google Scholar 

  2. Marcus ML, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: “a battered gold standard.” J Am Coll Cardiol 1988; 11:882–885.

    Article  PubMed  CAS  Google Scholar 

  3. DeRouen TA, Murphy JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation 1977; 55:324–328.

    Article  PubMed  CAS  Google Scholar 

  4. Beauman GJ, Vogel RA. Accuracy of individual and panel interpretations of coronary arteriograms: Implications for clinical decisions. J Am Coll Cardiol 1990; 16:108–113.

    Article  PubMed  CAS  Google Scholar 

  5. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 1982; 66:930–937.

    Article  PubMed  CAS  Google Scholar 

  6. Reiber JHC, Van der Zwet PMJ, Koning G, et al. Accuracy and precision of quantitative digital coronary arteriography: observer, short-, and medium-term variabilities. CCD 1993; 28:187–19-.

    CAS  Google Scholar 

  7. Harrison DG, White CW, Hiratzka LF, Doty DB, Barnes DH, Eastham CL, Marcus ML. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal LAD coronary arterial stenoses. Circulation 1984; 69:1111–1119.

    Article  PubMed  CAS  Google Scholar 

  8. Donohue TJ, Kern MJ, Aguirre FV, Bach RG, Wolford T, Bell C, Segal J. Assessing the hemodynamic significance of coronary artery stenosis. Analysis of translesional pressure flow velocity relations in patents. J Am Coll Cardiol 1993; 22:449–458.

    Article  PubMed  CAS  Google Scholar 

  9. Tron C, Kern MJ, Donohue TJ, Bach RG, Aguirre FV, Caracciola EA, Moore JA. Comparison of quantitative angiographically derived and measured translesion pressure and flow velocity in coronary artery disease. Am J Cardiol 1995; 75:111–1217.

    Article  PubMed  CAS  Google Scholar 

  10. Zijlstra F, Fioretti P, Reiber JHC, Serruys PW. Which cineangiographically assessed anatomic variable correlates best with functional measurements of stenosis severity? A comparison of quantitative analysis of the coronary cineangiogram with measured coronary flow reserve and exercise/redistribution thallium-201 scintigraphy. J Am Coll Cardiol 1988; 12:686–691.

    Article  PubMed  CAS  Google Scholar 

  11. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995; 92:2333–2342.

    Article  PubMed  CAS  Google Scholar 

  12. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a doppler guidewire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85:1899–1911.

    Article  PubMed  CAS  Google Scholar 

  13. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure and ventricular preload. Circulation 1990:81:1319–1330.

    Article  PubMed  CAS  Google Scholar 

  14. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 1974; 33:87–94.

    Article  PubMed  CAS  Google Scholar 

  15. Gould KL, Lipscomb K, Hamilton GW. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 1975; 51:1085–1094.

    Article  PubMed  CAS  Google Scholar 

  16. Kirkeeide R, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial imaging during coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated measure to stenosis severity accounting for all its geometric dimensions. J Am Coll Cardiol 1986; 7:103–113.

    Article  PubMed  CAS  Google Scholar 

  17. Gould KL, Kirkeeide R, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. Part I. Relative and absolute coronary flow reserve during changing aortic pressure. Part II. Determination from arterographic stenosis dimensions under standardized conditions. J Am Coll Cardiol 1990; 15:459–474.

    Article  PubMed  CAS  Google Scholar 

  18. Demer L, Gould KL, Kirkeeide RL. Assessing stenosis severity: Coronary flow reserve, collateral function, quantitative coronary arteriography, position imaging, and digital subtraction angiography: a review and analysis. Prog Cardiovasc Dis. 1988:30:307–322.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 1987; 75:723–732.

    Article  PubMed  CAS  Google Scholar 

  20. Donohue TJ, Kern MJ, Aguirre FV, Bach RG, Wolford T, Bell C, Segal J. Assessing the hemodynamic significance of coronary artery stenosis. Analysis of translesional pressure flow velocity relations in patients. J Am Coll Cardiol 1993; 22:449–458.

    Article  PubMed  CAS  Google Scholar 

  21. Kern MJ, Deligonul, Tatineni S, Serota H, Aguirre FV, Hilton TC. IV adenosine continuous infusion and low dose bolus administration for determination of coronary vascular reserve in patients with and without coronary artery disease. J Am Coll Cardiol 1991; 18:718–729.

    Article  PubMed  CAS  Google Scholar 

  22. Miller DD, Donohue TJ, Younis LT, Bach RG, Aguirre FV, Wity MD, Goodgold HM, Chaitman BR, Kern MJ. Correlation of pharmacologic technesium 99m-sestamibi myocardial perfusion imaging with post-stenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenosis. Circulation 1994; 89:2150–2160.

    Article  PubMed  CAS  Google Scholar 

  23. Joye JD, Schulman DS, Lesorde D, Farah T, Donohue BC, Reichek N. Intracoronary doppler guide wire versus stress single-photon emission computer tomographic thallium 201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 1994; 24:940–947.

    Article  PubMed  CAS  Google Scholar 

  24. Kern MJ, Donohue TJ, Aguirre FV, Bach RG, Caracole EA, Wolford T, Mechem CT, Flynn MS, Chaitman B. Clinical outcome of deferring angioplasty in patients with normal tranlesional pressure-flow velocity measurements. J Am Coll Cardiol 1995; 25:178–187.

    Article  PubMed  CAS  Google Scholar 

  25. Lesser JT, Wilson RF, White CW. Physiologic assessment of coronary stenosis of intermediate severity can facilitate patient selection for coronary angioplasty. Coronary Art Dis. 1990; 1:697–705.

    Article  Google Scholar 

  26. Joye JD; Lasorda D; Farah T; Donahue BC; Schulman DS. CFR vs. translesional velocity gradient by Doppler guidewire in assessing intermediate coronary stenoses. J Am Coll Cardiol 1995; 25:336A.

    Article  Google Scholar 

  27. White CJ, Ramee SR, Collin TJ, Jain A, Mesa JE. Ambiguous coronary angiography: clinical utility of intravascular ultrasound. Cathet Cardiovasc Diagn 26(3):200–203, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Mintz GS, Bjoher TA, Kent KM, Pichard AD, Satler LF, Popma JJ, Morgan K, Leon MB. Clinical outcomes of patients not undergoing coronary artery revascularization as a result of intravascular ultrasound imaging. J Am Coll Cardiol 1995:25:61A.

    Article  Google Scholar 

  29. Nishimura RA, Higano ST, Holmes DR Jr. Use of intracoronary ultrasound imaging for assessing left main coronary artery disease. Mayo Clin Proc 1993; 68:134–140.

    Article  PubMed  CAS  Google Scholar 

  30. Alderman EL, Bourass MF, Cohen LS, et al. Ten-year follow-up of survival and myocardial infarction in the randomized coronary artery surgery study. Circulation 1990; 82:1629.

    Article  PubMed  CAS  Google Scholar 

  31. Burns WB, Hermiller JB, Kisslo KB, Culp SC, Davidson CJ. Prognostic significance of left main coronary artery disease detected by intravascular ultrasound. J Am Coll Cardiol 1995; 25:143A

    Article  Google Scholar 

  32. Harris WO, Itigano ST, Reeder GS, Lerman A. Assessment of indeterminate left main coronary artery lesions with intravascular ultrasound. Circulation 1994; 90:I–157.

    Google Scholar 

  33. Litvack F, Grundfest WS, Lee ME, et al. Angioscopic visualization of blood vessel interior in animals and humans. Clin Cardiol 1985; 8:65–70.

    Article  PubMed  CAS  Google Scholar 

  34. Grundfest WS, Litvack F, Sherman T, et al. Delineation of peripheral and coronary detail by intraoperative angioscopy. Ann Surg 1985; 202:394–400.

    Article  PubMed  CAS  Google Scholar 

  35. Sanborn TA, Rygaard JA, Westbrook BM, et al. Intraoperative angioscopy of saphenous vein and coronary arteries. J Thorac Cardiovasc Surg 1986; 91:339–343.

    PubMed  CAS  Google Scholar 

  36. White CJ, Ramee SR, Collins TJ, et al. Percutaneous angioscopy of saphenous vein coronary bypass grafts. J Am Coll Cardiol 1993; 21:1181–1185.

    Article  PubMed  CAS  Google Scholar 

  37. Annex BH, Larkin TJ, O’Neill WW, et al. Evaluation of thrombus removal by transluminal extraction coronary atherectomy by percutaneous coronary angioscopy. Am J Cardiol 1994; 74:606–609.

    Article  PubMed  CAS  Google Scholar 

  38. King SB III: Role on new technologies in balloon angioplasty. Circulation 1991; 84:2574–2579.

    Article  PubMed  Google Scholar 

  39. Forrester JS, Eigler N, Litvack F: Interventional Cardiology: the decade ahead. Circulation 1991; 84:942–944.

    Article  PubMed  CAS  Google Scholar 

  40. Waxman S, Mittleman MA, Manxo K, Saaower M, et al. Culprit lesion morphology in subtypes of unstable angina as assessed by angioscopy. Circulation 1995; 92:I–79.

    Google Scholar 

  41. Waxman S, Saaower M, Mittleman MA, Nesto RW, et al. Characterization of the culprit lesion underlying thrombus: insights from angioscopy. Circulation 1995; 92:I–353.

    Google Scholar 

  42. Uchida Y, Nakamura F, Tomaru T, Mortia T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patient with stable angina. Am Heart J 1995; 130:195–203.

    Article  PubMed  CAS  Google Scholar 

  43. Silva JA, Escobar A, Collins TJ, Ramee SR, White CJ. Unstable angina. A comparison of angioscopic findings between diabetic and nondiabetic patients. Circulation 1995; 92:1731.

    Article  PubMed  CAS  Google Scholar 

  44. White CJ, Ramee SR, Collins TJ, et al. Coronary thrombi increase PTCA risk, angioscopy as a clinical tool. Circulation 1996; 93:253–258.

    Article  PubMed  CAS  Google Scholar 

  45. Annex BH, Ajluni SC, Larkin TJ, et al. Angioscopic guided interventions in a saphenous vein bypass graft. Cathet Cardiovasc Diagn 1994; 31:330–333.

    Article  PubMed  CAS  Google Scholar 

  46. Nath FC, Muller DWM, Ellis SG, et al. Thrombosis of a flexible coil coronary stent: frequency, predictors and clinical outcome. J Am Coll Cardiol 1993; 21:622–627.

    Article  PubMed  CAS  Google Scholar 

  47. Kaplan BM, Safian RD, Grines CL, et al. Usefulness of adjunctive and extraction atherectomy before stent implantation in high-risk aorto-coronary saphenous vein grafts. Am J Cardiol 1995; 76:822–824.

    Article  PubMed  CAS  Google Scholar 

  48. Tilli FV, Kaplan BM, Safian RD, Grines CL, O’Neill WW. Angioscopic plaque friability: a new risk factor for procedural complications following saphenous vein graft interventions. J Am Coll Cardiol (in-press)

    Google Scholar 

  49. Mintz GS, Douek P, Pichard AD, et al. Target lesion calcification in coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 1992; 20:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  50. Pichard AD, Mintz GS, Satler LF, Lent KM, Popma JJ, Kovach JA, Leon MA. The influence of pre-intervention intravascular ultrasound imaging on subsequent transcatheter treatment strategies. J Am Coll Cardiol 1993; 21:133A.

    Google Scholar 

  51. Tuzcu EM, Berkalp B, DeFranco AC, Ellis SG, Whitlow PW, Franco I, Raymond RE, Nissen SE. The dilemma of diagnosing coronary calcification: angiography vs. intravascular ultrasound. J Am Coll Cardiol 1995 (in-press).

    Google Scholar 

  52. Fitzgerald PJ, Muhlberger VA, Moes NY, et al. Calcium location within plaque as a predictor of atherectomy tissue retrieval: an intravascular ultrasound study. Circulation 1992; 86:I–516.

    Google Scholar 

  53. Kaplan BM, Stewart RE, Reddy VM, O’Neill WW, Safian RD. A prospective study of large vs. small burrs: Intravascular ultrasound substudy in the coronary angioplasty and rotablator atherectomy trial (CARAT). J Am Coll Cardiol 1996 (in press).

    Google Scholar 

  54. Fitzgerald PJ, Mullen WL, Yock PG, and the GUIDE Trial Investigators. Discrepancies between angiographic and intravascular ultrasound appearance of coronary lesions undergoing intervention. A report of phase I of the GUIDE Trial. J Am Coll Cardiol 1993; 21:118A.

    Google Scholar 

  55. Potkin BN, Bartorelli AL, Gessert JM, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990; 81:1575–1585.

    Article  PubMed  CAS  Google Scholar 

  56. Pandian NG, Kreis A, O’Donnel T. Intravascular ultrasound estimation of arterial stenosis. J Am Soc Echocardiogr 1989; 2:390–397.

    PubMed  CAS  Google Scholar 

  57. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991; 84:1087–1099.

    Article  PubMed  CAS  Google Scholar 

  58. St Goar FG, Pinto FJ, Stadius ML, et al. In vivo coronary intravascular ultrasound imaging: Correlation with angiography. J Am Coll Cardiol 1991; 18:952–958.

    Article  PubMed  CAS  Google Scholar 

  59. Willard JE, Netto D, Demian SE, et al. Intravascular ultrasound imaging of saphenous vein grafts in vitro: comparison with histologic and quantitative angiographic findings. J Am Coll Cardiol 1992; 19:759–764.

    Article  PubMed  CAS  Google Scholar 

  60. Hogdson JM, Graham SP, Sheehan H, et al. Percutaneous intravascular ultrasound imaging: Validation of a real time synthetic aperture array catheter. Am J Card Imaging 1991; 5:65–71.

    Google Scholar 

  61. Tobis JM, Mahon DJ, Moriuchi M, et al. Intravascular ultrasound imaging following balloon angioplasty. Int J Card Imaging 1991:6:191–205.

    Article  PubMed  CAS  Google Scholar 

  62. Wong SC, Chuang Y, Schatz R, etal. Predictors for adverse clinical events are different in stents and PTCA: Results from the Stent Restenosis Study. J Am Coll Cardiol 1995; 25:125

    Google Scholar 

  63. Nissen SE, DeFranco AC, Raymond RD, Franco I, Eaton G, Tuzcu EM. Angiographically unrecognized disease at “normal” reference sites: a risk factor for sub-optimal results after coronary intervention. Circulation 1993; 88(4):41.

    Google Scholar 

  64. Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 1995; 25(7): 1479–1485.

    Article  PubMed  CAS  Google Scholar 

  65. Nissen SE, Tuzcy EM, DeFranco AC, et al. Intravascular ultrasound evidence of atherosclerosis at “normal” reference sites predicts adverse clinical outcomes following percutaneous coronary interventions. J Am Coll Cardiol 1994; 23:271A.

    Google Scholar 

  66. Russo R, Teirstein P for the AVID investigators. Angiography vs. intravascular ultrasound directed stent placement. Circulation 1995; 92:I–546.

    Google Scholar 

  67. Hodgson JMCB, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM. Intracoronary ultrasound imaging: Correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993; 21:35.

    Article  PubMed  CAS  Google Scholar 

  68. Tobis JM, Mallery J, Mahon D, et al. Intravascular ultrasound imaging of human coronary arteries in vivo. Analysis of tissue characterizations with comparison to in vitro histologic specimens. Circulation 1991; 83:913–926.

    Article  PubMed  CAS  Google Scholar 

  69. Richardson PD, Davies JM, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989; 2:941–944.

    Article  PubMed  CAS  Google Scholar 

  70. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12:56–62.

    Article  PubMed  CAS  Google Scholar 

  71. Davies M. A macroscopic and microscopic view of coronary thrombi. Circulation 1990; 82 Suppl III:III–1138–1146.

    Google Scholar 

  72. Keren G, Leon MB. Characterization of atherosclerotic lesions by intravascular ultrasound: possible role in unstable coronary syndromes and in interventional therapeutic procedures. Am J Cardiol 1991; 68:85B–91B.

    Article  PubMed  CAS  Google Scholar 

  73. Castaneda-Zuniga WR, Formanek A, Tadavarthy M, et al. The mechanism of balloon angioplasty. Radiology 1980; 135:565–571.

    PubMed  CAS  Google Scholar 

  74. Block PC, Myler RK, Stertzer S, et al. Morphology after transluminal angioplasty in human beings. N Engl J Med 1981; 305:382–385.

    Article  PubMed  CAS  Google Scholar 

  75. Farb A, Virmani R, Atkinson JB, et al. Plaque morphology and pathologic changes in arteries from patients dying after coronary balloon angioplasty. J Am Coll Cardiol 1990; 16:1421–1429.

    Article  PubMed  CAS  Google Scholar 

  76. The SHK, Gussenhoven EJ, Zhong Y, et al. Effect of balloon angioplastay on femoral artery evaluated with intravascular ultrasound imagining. Circulation 1992; 86:483–493.

    Article  PubMed  CAS  Google Scholar 

  77. Losordo DW, Rosenfeld K, Pieczek A, et al. How does angioplasty work? Serial analysis of human iliac arteries using intravascular ultrasound. Circulation 1992; 86:1845–1848.

    Article  PubMed  CAS  Google Scholar 

  78. Waller BF. “Crackers, breakers, stretchers, drillers, scrapers, shavers, burners, welders, and melters”: the future treatment of atherosclerotic coronary artery disease? A clinical morphologic assessment. J Am Coll Cardiol 1989; 13:969–987.

    Article  PubMed  CAS  Google Scholar 

  79. Leimgruber PP, Roubin GS, Anderson HV, et al. Influence of intimal dissection on restenosis after successful coronary angioplasty. Circulation 1985; 72:530–535.

    Article  PubMed  CAS  Google Scholar 

  80. Holmes DR Jr, Vlietstra RE, Mock MB, et al. Angiographic changes produced by percutaneous transluminal coronary angioplasty. Am J Cardiol 1983; 51:676–683.

    Article  PubMed  Google Scholar 

  81. Waller BF. Morphologic correlates of coronary angiographic patterns at the site of percutaneous transluminal coronary angioplasty. Clin Cardiol 1988; 11:817–822.

    Article  PubMed  CAS  Google Scholar 

  82. Waller BF, Orr CM, Pinkerton CA, et al. Coronary balloon angioplasty dissections: “the good, the bad and the ugly.” J Am Coll Cardiol 1992; 20:701–706.

    Article  PubMed  CAS  Google Scholar 

  83. Kuntz RE, Safian RD, Carozza JP, Fischman RF, Mansour M, Baim DS. The importance of acute luminal diameter in determining restenosis rates after coronary atherectomy and stenting. Circulation 1992; 86:1827–1835.

    Article  PubMed  CAS  Google Scholar 

  84. Garratt KN, Holmes DR JR, Bell Mr, et al. Restenosis after directional coronary atherectomy: differences between primary atheromatous and restenosis lesions and influence of subintimal tissue resection. J Am Coll Cardiol 1990; 16:1665–1671.

    Article  PubMed  CAS  Google Scholar 

  85. Tenaglia AN, Buller CE, Kisslo KB, et al. Mechanisms of balloon angioplasty and directional coronary atherectomy as assessed by intracoronary ultrasound. J Am Coll Cardiol 1992; 20:685–691.

    Article  PubMed  CAS  Google Scholar 

  86. Hinohara T, Rowe MH, Robertson GC, et al. Effect of lesion characteristics on outcome of directional coronary atherectomy. J Am Coll Cardiol 1991; 17:1112–1120.

    Article  PubMed  CAS  Google Scholar 

  87. Fitzgerald PJ, Muhlberger VA, Moes NY, et al. Calcium location within plaque as a predictor of atherectomy tissue retrieval: an intravascular ultrasound study. Circulation 1992; 86(Suppl I):1–516.

    Google Scholar 

  88. Mintz GS, Potkin BN, Keren G, et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation 1992; 86:1383–1393.

    Article  PubMed  CAS  Google Scholar 

  89. Safian RD; Niazi K; Strzelecki M; et al. Detailed angiographic analysis of high-speed rotational atherectomy in human coronary arteries. Circulation 1993; 88:961–968.

    Article  PubMed  CAS  Google Scholar 

  90. Yock PG, Fitzgerald PJ, Mullen WL. Intravascular ultrasound in strategic approaches in coronary intervention. Editors Stephen G Ellis, David R Holmes, Jr. Williams and Wilkens Company, 1996; 121–130.

    Google Scholar 

  91. Goldberg S, Columbo A, Almager Y, et al. Has the introduction of intravascular ultrasound guidance led to different clinical results in the deployment of intracoronary stents? Circulation 1994; 90:I–612.

    Google Scholar 

  92. Segal J, Kern MJ, Scott NA, King III SB, Doucette JW, Heuser RR, Ofili E, Siegel R. Alterations of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol 1992; 20:276–286.

    Article  PubMed  CAS  Google Scholar 

  93. Segal J. Applications of coronary flow velocity during angioplasty and other coronary interventional procedures. Am J Cardiol 1993; 71:17D–25D.

    Article  PubMed  CAS  Google Scholar 

  94. Bowers TR, Stewart RE, O’Neill WW, Reddy VM, Khurana S, Safian RD. Plaque pulverization during Rotablator atherectomy: does it impair coronary flow dynamics? J Am Coll Cardiol 1995; 25:96A.

    Article  Google Scholar 

  95. Bach R, Kern MJ, Bell C, et al. Clinical application of coronary flow velocity for stent placement during coronary angioplasty. Am J Heart 1993; 125:873–880.

    Article  CAS  Google Scholar 

  96. Bowers TR, Safian RD, Stewart RE, Benzuly KH, Shoukfeh MM, O’Neill WW. Normalization of CFR after stenting, but not after PTCA. J Am Coll Cardiol 1996 (in press).

    Google Scholar 

  97. Kern MJ, Aguirre FV, Donohue TJ, Bach RG, Caracole EA, Wolford TL, Khoury A, Mechem C. Impact of residual lumen narrowing on coronary flow after angioplasty and stent: intravascular ultrasound Doppler and imaging data in support of physiologically-guided coronary angioplasty. Circulation 1995; 92:I–263.

    Google Scholar 

  98. Verna E, Gil R, DiMario C, Sunamura M, Gurne O, Porenta G. Does coronary stenting flowing balloon angioplasty improve distal coronary flow reserve? Circulation 1995; 92:I–536.

    Google Scholar 

  99. Haude M, Baungart DM Casoaru G, Erbel R. Does adjunct coronary stenting in comparison to balloon angioplasty has an impact on Doppler flow velocity parameters? Circulation 1995; 92:I–547.

    Google Scholar 

  100. Tobis JM, Mallery J, Mahon D, et al. Intravascular ultrasound imaging of human coronary arteries in vivo: analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation 1991; 83:913–926.

    Article  PubMed  CAS  Google Scholar 

  101. Bowers TR, Stewart RE, O’Neill WW, Reddy VM, Safian RS. The effect of Rotablator atherectomy and adjunctive balloon angioplasty on coronary blood flow. Circulation (in submission)

    Google Scholar 

  102. The D.E.B.A.T.E. Study Group. Are flow velocity measurements after PTCA predictive of recurrence of angina or of a positive exercise stress early after balloon angioplasty? Circulation 1995; 92:I–264.

    Google Scholar 

  103. Nemoto T, Kimure K, Shimizu T, Mochida Y, et al. Coronary artery flow velocity waveform in acute myocardial infarction with angiographic no-reflow. Circulation 1995; 92:I–325.

    Google Scholar 

  104. Eichhorn E, Grayburn PA, Willard JE, Anderson HV, Bedotto JB, Carry M, Kahn JK, Willerson JT. Spontaneous alterations in coronary blood flow velocity before and after coronary angioplasty in patient with severe angina. J Am Coll Cardiol 1991; 17:43–52.

    Article  PubMed  CAS  Google Scholar 

  105. Anderson HV, Kirkeeide RL, Stuart Y, Smalling RW, Heibig J, Willerson JT. Coronary artery flow monitoring following coronary interventions. Am J Cardiol 1993; 71:62D–69D.

    Article  PubMed  CAS  Google Scholar 

  106. Kern MJ, Aguirre FV, Donohue TJ, Bach RG, Caracole EA, Flynn MS, Wolford T, Moore JA. Continuous coronary flow velocity monitoring during coronary interventions: velocity trend patterns associated with adverse events. Am Heart J 1994; 128:426–434.

    Article  PubMed  CAS  Google Scholar 

  107. The D.E.B.A.T.E. Study Group. Cyclic flow variations after PTCA are predictive of immediate complications. Circulation 1995; 92:I–725.

    Google Scholar 

  108. Anderson HV, Revana M, Rosales O, Brannigan L, Stuart YH, Weisman H, Willerson JT. Intravenous administration of monoclonal antibody to the platelet GP Ilb/IIIa receptor to treat abrupt closure during coronary angioplasty. Am J Cardiol 1992; 69:1373–1376.

    Article  PubMed  CAS  Google Scholar 

  109. White CJ, Ramee SR, Collins TJ, et al. Percutaneous coronary angioscopy: applications in interventional cardiology. J Interven Cardiol 1993; 6:61–67.

    Article  CAS  Google Scholar 

  110. Sassower MA, Abela GS, Koch JM, et al. Angioscopic evaluation of periprocedural and postprocedural abrupt closure after percutaneous coronary angioplasty. Am Heart J 1993; 126:444–450.

    Article  PubMed  CAS  Google Scholar 

  111. Feld S, Ganim M, Vaughn WK, Kelly R, et al. Utility of angioscopy and intravascular ultrasound in predicting outcome following coronary intervention. Circulation 1995; 92:I–785.

    Google Scholar 

  112. Bauters C, Lablanche JM, McFadden E, Hamon M, Bertrand ME. Angioscopic thrombus is associated with a high risk of angiographic restenosis. Circulation 1995; 92:I–401.

    Google Scholar 

  113. Teirstein PS, Schatz RA, Rocha-Singh KJ, et al. Coronary stenting with angioscopic guidance. J Am Coll Cardiol 1992; 19:223A.

    Article  Google Scholar 

  114. Kern MJ, Donohue TJ. Stenosis severity assessment with intracoronary Doppler in Coronary Revascularization and Imaging. Williams and Wilkens 1996; 159–170.

    Google Scholar 

  115. Erbel RM, Ge J, Gerber T, et al. Safety and limitations of intravascular ultrasounds experience with 325 consecutive procedures. Circulation 1992; 86:I–779.

    Google Scholar 

  116. Waxman S, Mittleman MA, Manxo K, Saaower M, et al. Culprit lesion morphology in subtypes of unstable angina as assessed by angioscopy. Circulation 1995; 92:I–353.

    Google Scholar 

  117. Wolff MR, Resar JR, Stuart RS, et al. Coronary artery rupture and pseudoaneurysm formation resulting from percutaneous coronary angioscopy. Cathet Cardiovasc Diagn 1993; 28:47–50.

    Article  PubMed  CAS  Google Scholar 

  118. Alfonso F, Hernandez R, Goicolea J, et al. Angiographic deterioration of the previously dilated coronary segment induced by angioscopic examination. Am J Cardiol 1994; 74:604–606.

    Article  PubMed  CAS  Google Scholar 

  119. Kaplan BM, Safian RD, Grines CL, et al. Usefulness of adjunctive angioscopy and extraction atherectomy before stent implantation in high-risk aorto-coronary saphenous vein grafts. Am J Cardiol 1995; 76:822–824.

    Article  PubMed  CAS  Google Scholar 

  120. Lablanche JM, Gerschwind H, Cribier A, et al. Coronary angioscopy safety survey: European multicenter experience. J Am Coll Cardiol 1995; 25:154A.

    Article  Google Scholar 

  121. Rosenfield K, Losordo DW, Ramaswamy K, et al. Three dimensional reconstruction of human coronary and peripheral arteries from images recorded during two dimensional intravascular ultrasound examination. Circulation 1991; 84:1938–1956.

    Article  PubMed  CAS  Google Scholar 

  122. Coy KM, Park JC, Fishbein MC, et al. In vitro validation of three dimensional intravascular ultrasound for the evaluation of arterial injury after balloon angioplasty. J Am Coll Cardiol 1992; 20:692–700.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bowers, T.R., Kaplan, B.M., O’Neill, W.W. (1997). Pitfalls and Practical Approach to the Use of Imaging Techniques in Developing Clinical Strategies. In: Klein, L.W. (eds) Coronary Stenosis Morphology: Analysis and Implication. Developments in Cardiovascular Medicine, vol 190. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6287-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6287-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7886-0

  • Online ISBN: 978-1-4615-6287-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics