Skip to main content

Skeletal Myoblast Therapy in Cardiovascular Disease

  • Chapter
Book cover Gene Transfer in the Cardiovascular System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 189))

Abstract

Congestive heart failure (CHF) is now the leading discharge diagnosis for patients hospitalized in the United States and is a major human health problem. Although advances in medical therapy have improved survival rates and the quality of life for patients with CHF, definitive treatment is presently very limited, in large part due to an inability of the heart to repair itself through proliferation of reserve cells. Currently definitive therapeutic regimens for CHF include cardiac transplantation, which is limited by a shortage of donor subjects and a necessity for high-dose immunosuppression; and treatments such as cardiomyoplasty and extraventricular assist devices, which are limited by a lack of effectiveness in many patients. With the advent of gene transfer technology, new therapies for treating cardiovascular disease may become feasible. Our laboratory is developing two promising approaches to treat cardiovascular disease. The first involves introducing autologous, biopsy-derived skeletal muscle reserve cells (myoblasts) into the myocardium to augment contractile function (myoblast transfer therapy). The second utilizes myoblasts as a vector to deliver potentially therapeutic genes locally to the damaged myocardium (myoblast-mediated gene therapy). We will discuss the advantages that these approaches offer over current treatments for cardiovascular disease and other gene therapy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascadi G, Jiao S, Jani A, et al.: Direct gene transfer and expression into rat heart in vivo.New Biol 1991;3(1):71–81.

    Google Scholar 

  2. Banai S, Jaklitsch MT, Shou M, et al.: Angiogenic-Induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1993;89:2183–2189.

    Article  Google Scholar 

  3. Barr E, Leiden JM: Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 1991;254:1507–1509.

    Article  PubMed  CAS  Google Scholar 

  4. Bischoff R: Regeneration of single skeletal muscle fibers in vitro.Anat Rec 1975; 182:215–236.

    Article  PubMed  CAS  Google Scholar 

  5. Carpentier A, Chachques JC, Acar C, et al.: Dynamic cardiomyoplasty at seven years. J Thorac Cardiovasc Surg 1993;106(1):42–52.

    PubMed  CAS  Google Scholar 

  6. Chamey R, Cohen M: The role of the coronary collateral circulation in limiting myocardial ischemia and infarct size. Am Heart J 1993;126:937–945.

    Article  Google Scholar 

  7. Cristiano RJ, Smith LC, Kay MA, Brinkley BR, Woo S: Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc Natl Acad Sci USA 1993;90(24):11548–11552.

    Article  PubMed  CAS  Google Scholar 

  8. Cserjesi P, Olson EN: Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol 1991;11(10):4854–4862.

    PubMed  CAS  Google Scholar 

  9. Dai Y, Roman RK, Verma IM: Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo.Proc Natl Acad Sci USA 1992;89:10892–10895.

    Article  PubMed  CAS  Google Scholar 

  10. Delcarpio JB, Barbee RW, Perry BD, Claycomb WC: Cardiomyocyte transfer into the rat and mouse heart. J Cell Biochem 1993;17D:210.

    Google Scholar 

  11. Engel AG, Franzini-Armstrong C: Myology (Second ed.). New York: McGraw-Hill, Inc., 1994: 1938.

    Google Scholar 

  12. Engelhardt JF, Ye X, Doranz B, Wilson JM: Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response. Proc Natl Acad Sci USA 1994;91(13):61196–61200.

    Article  Google Scholar 

  13. Feghali R, Karsch-Mizrachi I, Leinwand L, Kohtz DS: Four myosin heavy chain genes are expressed by human fetal skeletal myoblasts differentiating in culture. GeneExpr 1990;2((1)):49–58.

    Google Scholar 

  14. Fire A: Histochemical techniques for locating escherichia coli β-galactosidase activity in transgenic organisms. Gen Anal: Tech & Appl 1992;9:151–158.

    CAS  Google Scholar 

  15. Gosset LA, Kelvin DJ, Stemberg EA, Olson EN: A new myocyte-specific enhancer-binding factor that recognozes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 1989;9(11):5022–5033.

    Google Scholar 

  16. Gussoni E, Pavlath GK, Lanctot AM, et al.: Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992;356:435–438.

    Article  PubMed  CAS  Google Scholar 

  17. Harada K, Grossman W, Friedman M, et al.: Basic fibroblast growth factor improves myocardial function in chronically ischemie porcine hearts. J Clin Invest 1994;94:623–630.

    Article  PubMed  CAS  Google Scholar 

  18. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993;92:883–893.

    Article  PubMed  CAS  Google Scholar 

  19. Jugdutt BJ, Becker LC, Hutchins GM, Buckley BH, Reid PR, Kallman CH: Effects of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation 1981;63:17–28.

    Article  PubMed  CAS  Google Scholar 

  20. Kass-Eisler A, Flack-Pederson E, Alvira M, et al.: Quantitative determination of adenovirusmediated gene delivery to rat cardiac myocytes in vitro and in vivo.Proc Natl Acad Sci USA 1993;90:11498–11502.

    Article  PubMed  CAS  Google Scholar 

  21. Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA: Hormonal modulation of a gene injected into rat heart in vivo.Proc Natl Acad Sci USA 1991;88:4138–4142.

    Article  PubMed  CAS  Google Scholar 

  22. Koh GY, Soonpa MH, Klug MG, Field LJ: Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. Am J Physiol 1993;264 (Heart Circ Physiol 33):H1727-H1733.

    Google Scholar 

  23. Kohtz DS, Cole F, Wong M-L, Hsu MT: Infection and inhibition of differentiation of human skeletal myoblasts by adenovirus. Virol 1991;184:569–579.

    Article  CAS  Google Scholar 

  24. Kozarsky KF, McKinley DR, Austin LL, Raper SE, Stratford-Perricaudet LD, Wilson JM: In vivo correction of low density lipoprotein recpetor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 1994;269(18): 13695–13702.

    PubMed  CAS  Google Scholar 

  25. Kozarsky KF, Wilson JM: Gene therapy: adenovirus vectors. Curr Opin Gen Dev 1993;3:499–503.

    Article  CAS  Google Scholar 

  26. Law PK, Bertorini TE, Goodwin TG, et al.: Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Nature 1990;336(July 14):114–115.

    CAS  Google Scholar 

  27. Magovern JA, Magovern GJJ, Magovern GJ, Palumbi MA, Orie JE: Surgical therapy for congestive heart failure: indications for transplantation versus cardiomyoplasty. J Heart Lung Transplant 1992;11(3 Pt 1):538–544.

    PubMed  CAS  Google Scholar 

  28. Mauro A: Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9:493–495.

    Article  PubMed  CAS  Google Scholar 

  29. Michels VV, Moll PP, et al.: The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 1992;326:77–82.

    Article  PubMed  CAS  Google Scholar 

  30. Milano CA, Allen LF, Rockman HA, et al.: Enhanced Myocyte Function in Transgenic Mice Overexpressing β 2-Adrenergic Receptor. Science 1994;266:507–508.

    Google Scholar 

  31. Morgan JE Moore, SE, Walsh, FS, Partridge, TA: Formation of skeletal muscle in vivo from the mouse C2 cell line. J Neurolog Sci 1992;115:191–200.

    Article  Google Scholar 

  32. Prentice H, Kloner RA, Sartorelli V, Bellows SD, Alker K, Kedes L: Transformation of cardiac fibroblasts into the skeletal muscle phenotype by injection of a MyoD-expressing retrovirus into ischémie heart. Circulation 1993;88(4):I–476.

    Google Scholar 

  33. Ravid K, Doi T, Beeler DL, Kuter DJ, Rosenberg RD: Transcriptional regulation of the rat platelet factor 4 gene: Interaction between and enhancer/silencer domain and the GATA site. Mol Cell Biol 1991;11(12):6116–6127.

    PubMed  CAS  Google Scholar 

  34. Robinson S, Cho PW, Levitsky HI, Hruban RH, Acker MA, Kessler PD: Vascular delivery of recombinant skeletal myoblasts to the myocardium. Circulation 1993;88(4):I–476.

    Google Scholar 

  35. Robinson SW, Cho PC, Acker MA, Kessler PD: Arterial delivery of skeletal myoblasts to the heart. J Cell Biochem 1994;18D:531.

    Google Scholar 

  36. Russell DW, Miller AD, Alexander IE: Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci USA 1994;91(19):8915–8919.

    Article  PubMed  CAS  Google Scholar 

  37. Samulski RJ: Adeno-associated virus: integration at a specific chromosomal locus. Curr Opin Genet Dev 1993;3(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  38. Schaper W, De Brabander M., Lewi P: DNA synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 1971;28:671–679.

    Article  PubMed  CAS  Google Scholar 

  39. Schaper W, Flameng W, Winkler B, et al.: Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 1976;39:371–377.

    Article  PubMed  CAS  Google Scholar 

  40. Schiaffino S, Bormioli SP, Aloisi M: The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch [B] 1976;21:113–118.

    CAS  Google Scholar 

  41. Soonpaa MH, Koh GY, Klug MG, Field LG: Formation of nascent intercalated disks between grafted cardiomyocytes and host myocardium. Science 1994;264:98–101.

    Article  PubMed  CAS  Google Scholar 

  42. Taylor DA, Kraus WE: Primary rabbit skeletal myoblasts as a tool for gene therapy. In Vitro Cell Dev Biol 1994;30A (Part II Hot Topics).

    Google Scholar 

  43. Towbin JA, Hejtmancik F: X-linked dilated cardiomyopathy: molecular genetic evidence of linkage to the Duchenne Muscular Dystrophy (dystrophin) gene at the Xp2 locus. Circulation 1993;87:1854–1865.

    Article  PubMed  CAS  Google Scholar 

  44. Tremblay JP, Malouin F, Roy R, Huard J, Bouchard JP, Satoh A, Richards CL: Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 1993;2(2):99–112.

    PubMed  CAS  Google Scholar 

  45. Unger EF, Banai S, Shou M, et al.: Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994;266:H1588–H1595.

    PubMed  CAS  Google Scholar 

  46. Webster C, Pavlath GK, Parks DR, Walsh FS, Blau HM: Isolation of human myoblasts with the fluorescence-activated cell sorter. Exper Cell Res 1988; 174:252–265.

    Article  CAS  Google Scholar 

  47. Wernig A, Irintchev A, Hartling A, Stephan G, Zimmerman K, Starzinski-Powitz A: Formation of new muscle fibers and tumours after injection of cultured myogenic cells. J Neurocytol 1991;20:982–997.

    Article  PubMed  CAS  Google Scholar 

  48. Wolff JA, Malone RW, Williams P, et al.: Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–1468.

    Article  PubMed  CAS  Google Scholar 

  49. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al.: Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992;257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, D.A., Annex, B.H., Kraus, W.E., Bishop, S.P., Silvestry, S.C. (1997). Skeletal Myoblast Therapy in Cardiovascular Disease. In: March, K.L. (eds) Gene Transfer in the Cardiovascular System. Developments in Cardiovascular Medicine, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6277-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6277-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7881-5

  • Online ISBN: 978-1-4615-6277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics