Skip to main content

Abstract

Most, if not all, of the properties of solids can be traced to the behavior of electrons, the “glue” that holds atoms together to form a solid. An important aim of the condensed matter theory is thus calculating the electronic structure (ES) of solids. The theory of ES is not only helpful in understanding and interpreting experiments, but it also becomes a predictive tool of the physics and chemistry of condensed matter and materials science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.A. Harrison, Electronic Structure and the Properties of Solids (Dover Publications, New York, 1989).

    Google Scholar 

  2. A. Sutton, Electronic Structure of Materials (Clarendon Press, Oxford-New York, 1993).

    Google Scholar 

  3. D.G. Pettifor, Bonding and Structure of Molecules and Solids (Clarendon Press, Oxford-New York, 1995).

    Google Scholar 

  4. M. Born and J. Oppenheimer, Ann. Phys. 84, 457 (1927).

    Article  MATH  Google Scholar 

  5. J.M. Ziman Principles of the Theory of Solids (Cambridge Univ. Press, London, 1972).

    Book  Google Scholar 

  6. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1964).

    Google Scholar 

  7. D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 89 (1928).

    MATH  Google Scholar 

  8. V. Fock, Z. Phys. 61, 126 (1930).

    Article  ADS  MATH  Google Scholar 

  9. J.C. Slater, The Self Consistent Field for Molecules and Solids (Mc GrawHill, New York, 1974).

    Google Scholar 

  10. E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938).

    Article  Google Scholar 

  11. J. Callaway and N.H. March, in Solid State Physics, vol. 38, edited by H. Ehrenreich, D. Turnbull, and F. Seitz (Academic Press, New York, 1984), p. 135.

    Google Scholar 

  12. R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  13. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford-New York, 1989).

    Google Scholar 

  14. N.H. March, Electron Density Theory of Atoms and Molecules (Academic Press, London-San Diego, 1992).

    Google Scholar 

  15. M.P. Das, in Lectures on Methods of Electronic Structure Calculations, edited by V. Kumar, O.K. Andersen, and A. Mookerjee (World Scientific, Singapore, 1994), p. 1.

    Google Scholar 

  16. Density Functional Theory (NATO ASI Series vol. 337), edited by E.K.U. Gross and R.M. Dreizier (Plenum Press, New York-London, 1995).

    Google Scholar 

  17. J.C. Slater, Phys. Rev. 81, 385 (1951).

    Article  ADS  MATH  Google Scholar 

  18. J.C. Slater, Phys. Rev. 91, 52 (1953).

    ADS  Google Scholar 

  19. E. Teller, Rev. Mod. Phys. 34, 627 (1962).

    Article  ADS  MATH  Google Scholar 

  20. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  21. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Levy and J.P. Perdew, in Density Functional Methods in Physics, edited by R.M. Dreizier and J. da Providencia (Plenum Press, New York, 1985), p. 11.

    Chapter  Google Scholar 

  23. C.-O. Almbladh and A.C. Pedroza, Phys. Rev. A 29, 2322 (1984).

    Article  ADS  Google Scholar 

  24. H. Eschrig, Optimized LCAO Method and the Electronic Structure of Extended Systems (Akademie-Verlag, Berlin, 1988; Springer-Verlag, Berlin-Heidelberg, 1989).

    Google Scholar 

  25. L. Hedin and B.I. Lundquist, J. Phys. C: Solid St. Phys. 4, 2064 (1971).

    Article  ADS  Google Scholar 

  26. U. von Barth and L. Hedin, J. Phys. C: Solid St. Phys. 5, 1629 (1972).

    Article  ADS  Google Scholar 

  27. J.F. Janak, Solid State Commun. 25, 53 (1978).

    Article  ADS  Google Scholar 

  28. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  29. J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  30. S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  31. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  32. J.P. Perdew Int. J. Quantum Chem.: Quant. Chem. Symp. 19, 497 (1986).

    Google Scholar 

  33. U. von Barth, in Lectures on Methods of Electronic Structure Calculations, edited by V. Kumar, O.K. Andersen, and A. Mookerjee (World Scientific, Singapore, 1994), p. 21.

    Google Scholar 

  34. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1995).

    Article  ADS  Google Scholar 

  35. O. Gunnarsson and R.O. Jones, Phys. Scr. 21, 394 (1980).

    Article  ADS  Google Scholar 

  36. J.P. Perdew, Chem. Phys. Lett. 64, 127 (1979).

    Article  ADS  Google Scholar 

  37. A. Zunger, J.P. Perdew, and G. Oliver, Solid State Commun. 34, 933 (1980).

    Article  ADS  Google Scholar 

  38. Z. Szotek, W.M. Temmerman, and H. Winter, Phys. Rev. Lett. 72, 1244 (1994).

    Article  ADS  Google Scholar 

  39. A. Svane, Phys. Rev. Lett. 72, 1248 (1994).

    Google Scholar 

  40. A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).

    Article  ADS  Google Scholar 

  41. L. Hedin, Phys. Rev. 139, A 796 (1965).

    Article  ADS  Google Scholar 

  42. F. Aryasetiawan, Phys. Rev. B 46, 13051 (1992).

    Article  ADS  Google Scholar 

  43. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  44. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  ADS  Google Scholar 

  45. A.I. Liechtenstein, V.P. Antropov, and B.N. Harmon, Phys. Rev. B 49, 10770 (1994).

    Article  ADS  Google Scholar 

  46. M. Foley and P.A. Madden, Phys. Rev. B 53, 10589 (1996).

    Article  ADS  Google Scholar 

  47. T.L. Loucks, Augmented Plane Wave Method (Benjamin, New York-Amsterdam, 1967).

    Google Scholar 

  48. A.R. Williams, J. Kühler, and C.D. Gelatt, Jr., Phys. Rev. B 19, 6094 (1979).

    Article  ADS  Google Scholar 

  49. Ergebnisse in der Elektronentheorie der Metalle, edited by P. Ziesche and G. Lehmann (Akademie-Verlag, Berlin, 1983).

    Google Scholar 

  50. H.L. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1984).

    Book  Google Scholar 

  51. Electronic Band Structure and Its Applications, edited by M. Yussouff (Springer-Verlag, Berlin-Heidelberg, 1987).

    Google Scholar 

  52. J. Callaway, Quantum Theory of the Solid State (Academic Press, Boston, 1991).

    Google Scholar 

  53. D.J. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer Academic Publishers, Boston-Dordrecht-London, 1994).

    Book  Google Scholar 

  54. Lectures on, Methods of Electronic Structure Calculations, edited by V. Kumar, O.K. Andersen, and A. Mookerjee (World Scientific, Singapore, 1994).

    Google Scholar 

  55. Quantum Theory of Real Materials, edited by J.R. Chelikowsky and S.G. Louie (Kluwer Academic Publishers, Boston-Dordrecht-London, 1996).

    Google Scholar 

  56. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  ADS  Google Scholar 

  57. B. Velickÿ, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968).

    Article  ADS  Google Scholar 

  58. P. Weinberger, Electron Scattering Theory for Ordered and Disordered Matter (Clarendon Press, Oxford, 1990).

    Google Scholar 

  59. A. Gonis, Green Functions for Ordered and Disordered Systems (North-Holland, Amsterdam, 1992).

    MATH  Google Scholar 

  60. Application of Multiple Scattering Theory to Materials Science(Mat. Res. Soc. Symp. Proc. vol. 253), edited by W.H. Butler, P.H. Dederichs, A. Gonis, and R. Weaver (Materials Research Society, Pittsburgh, 1992).

    Google Scholar 

  61. J. Kudrnovskÿ, V. Drchal, and J. Malek, Phys. Rev. B 35, 2487 (1987).

    Article  ADS  Google Scholar 

  62. J. Kudrnovskÿ and V. Drchal, Phys. Rev. B 41, 7515 (1990).

    Article  ADS  Google Scholar 

  63. J. Kudrnovskÿ, I. Turek, V. Drchal, and M. Sob, in Stability of Materials, edited by A. Gonis, P.E.A. Turchi, and J. Kudrnovskÿ (Plenum Press, New York, 1996), p. 237.

    Chapter  Google Scholar 

  64. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Article  ADS  Google Scholar 

  65. R.A. Tawil and J. Callaway, Phys. Rev. B 7, 4242 (1973).

    Article  ADS  Google Scholar 

  66. J.W. Davenport, Phys. Rev. B 29, 2896 (1984).

    Article  ADS  Google Scholar 

  67. J.C. Slater and G. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  MATH  Google Scholar 

  68. F. Ducastelle, Order and Phase Stability in Alloys, Cohesion and Structure vol. 3, edited by F.R. de Boer and D.G. Pettifor (North-Holland, Amsterdam-Oxford-New York-Tokyo, 1991).

    Google Scholar 

  69. K. Takegahara, Y. Aoki, and A. Yanase, J. Phys. C: Solid St. Phys. 13, 583 (1980).

    Article  ADS  Google Scholar 

  70. D.A. Papaconstantopoulos, Handbook of the Bandstructure of Elemental Solids (Plenum Press, New York, 1987).

    Google Scholar 

  71. D.G. Pettifor, in Electron Theory in Alloy Design, edited by D.G. Pettifor and A.H. Cottrell (London Institute of Materials, London, 1992), p. 81.

    Google Scholar 

  72. Computer Simulation in Materials Science: nano/meso/mascroscopic space e9 time scales, edited by H.O. Kirchner, L.P. Kubin, and V. Pontikis (Kluwer Academic Publishers, Boston-Dordrecht-London, 1996).

    Google Scholar 

  73. Materials Theory, Simulations, and Parallel Algorithms (Mat. Res. Soc. Symp. Proc. vol. 408), edited by E. Kaxiras, J. Joannopoulos, P. Vashishta, and R.K. Kalia (Materials Research Society, Pittsburgh, 1996).

    Google Scholar 

  74. J. Friedel, in The Physics of Metals, 1. Electrons, edited by J.M. Ziman, Cambridge Univ. Press, Cambridge, 1969), p. 340.

    Google Scholar 

  75. D.G. Pettifor, Mater. Sci. Technol. 4, 2480 (1988).

    Article  Google Scholar 

  76. M.C. Desjonquères and D. Spanjaard, Concepts in Surface Physics (Springer-Verlag, Berlin-Heidelberg, 1993).

    Book  Google Scholar 

  77. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford-New York, 1995).

    Google Scholar 

  78. R. Haydock, in Solid State Physics, vol. 35, edited by H. Ehrenreich, F. Seitz, and D. Turnbull, (Academic Press, New York, 1980), p. 215.

    Google Scholar 

  79. R.E. Cohen, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 50, 14694 (1994).

    Article  ADS  Google Scholar 

  80. M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev. B 54 (1996), in print.

    Google Scholar 

  81. R. Zeller, P.H. Dederichs, B. Újfalussy L. Szunyogh, and P. Weinberger Phys. Rev. B 52, 8807 (1995).

    Article  ADS  Google Scholar 

  82. J.S. Faulkner, Y. Wang, and G.M. Stocks, Phys. Rev. B 52, 17106 (1995).

    Article  ADS  Google Scholar 

  83. G. Rickayzen, Green’s Functions and Condensed Matter (Academic Press, London-New York, 1980).

    MATH  Google Scholar 

  84. E.N. Economou, Green’s Functions in Quantum Physics (Springer-Verlag, Berlin-New York, 1990).

    Google Scholar 

  85. I. Mertig, E. Mrosan, and P. Ziesche, Multiple Scattering Theory of Point Defects in Metals: Electronic Properties (BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987).

    Google Scholar 

  86. F. Garcia-Moliner and V.R. Velasco, Theory of Single and Multiple Interfaces (World Scientific, Singapore-New Jersey-London-Hong Kong, 1992).

    Book  Google Scholar 

  87. J. Inglesfield, in Cohesion and Structure of Surfaces, Cohesion and Structure vol.4, edited by F.R. de Boer and D.G. Pettifor (North-Holland, Amsterdam-New York-Oxford-Tokyo, 1995), p. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turek, I., Drchal, V., Kudrnovský, J., Šob, M., Weinberger, P. (1997). Introduction. In: Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6255-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6255-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9798-4

  • Online ISBN: 978-1-4615-6255-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics