Skip to main content

Environmental Scanning Electron Microscopy

  • Chapter
In-Situ Microscopy in Materials Research

Abstract

Following early works on in-situ transmission electron microscopy by using environmental cells, the environmental scanning electron microscope (ESEM) has formed the counterpart for the examination of specimen surfaces in a gaseous environment at pressures up to one atmosphere. As accelerating voltages are relatively low in ESEM, it has been necessary to establish the optimum electron beam transfer conditions from a high vacuum to a high pressure region by using windowless apertures. Studies on the gas and electron dynamics of the system have determined that it is possible to use tungsten, LaB6 and field emission guns without compromising the useful probe size in the presence of gas. The backscattered electron, cathodoluminescence and x-ray detection modes are preserved with proper modification of the detectors. A new method for detection of the secondary and backscattered electron signal has been introduced by the use of the ionisation and scintillation of the environmental gas by corresponding signals. Further, the ionised gaseous environment substitutes the conventional conductive coating or treatment techniques necessary for insulators in vacuum SEM. The high pressure also allows a fully or partially moist environment for the examination of biological or wet specimens, or of chemical reactions in the gas/liquid/solid phases. The possibility of examining the natural or true surface of practically any specimen has added a new dimension to electron microscopy. New contrast mechanisms reveal information not previously possible to see. It has greatly facilitated the examination of specimens by eliminating or reducing the specimen preparation procedures and the specimen exchange time. Based on the success of an experimental ESEM, new commercial instruments are now available making this technology accessible to all. Published scientific literature demonstrates that ESEM has been applied to the most diverse disciplines. A future prospect is to integrate and jointly develop the scanning transmission electron microscope towards a universal kind of environmental EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardenne M. Das Elektronen-Rastermikroskop. Theoretische Grundlagen. Zeits. Physik 1938;109:553–572.

    Article  Google Scholar 

  2. Ardenne M. Das Elektronen-Rastermikroskop. Praktische Ausfürung. Zeits. Techn. Physik 1938;19:407–416.

    Google Scholar 

  3. Ardenne M. Über die Möglichkeit der Untersuchung lebender Substanz mit Elektronenmikroskopen. Zeits. Techn. Physik 1939;20:239–242.

    Google Scholar 

  4. Ardenne M and Friedrich-Freksa H. Die Auskeimung der Sporen von Bacillus vulgatus nach vorheriger Abbildung im 200-kV-Universal-Elektronenmikroskop. Naturwiss. 1941;29:523–528.

    Article  Google Scholar 

  5. Ardenne M. Reaktionskammer-Übermikroskopie mit dem Universal-Elekrtonenmikroskop. Zeits. Phys. Chemie, Abteilung B. 1942;B52:61–71.

    Google Scholar 

  6. Stoyanova IG, Nekrasova TA and Biriusova BI. Research on the action of radiation on bacteria in the wet microchamber of the electron microscope. Akad. Nauk. SSR Doklady 1960;131:195–198.

    CAS  Google Scholar 

  7. Stoyanova IG. Use of gas microcells in electron microscopy. Akad. Nauk. SSR Izvestiya, ser. Fisicheskaya 1961;25:715–721.

    Google Scholar 

  8. Dupouy G, Perrier F and Durrieu L. Microscopie électronique.-L’observation des objets en milieu gazeux. Application à l’étude de la contamination dans le microscope électronique. Compt. Rend. 1962;254:3786–3791.

    CAS  Google Scholar 

  9. Parsons DF, Matricardi VR, Moretz RC and Turner JN. Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 1974;15:161–271.

    CAS  Google Scholar 

  10. Butler EP and Hale KF. Dynamic Experiments in the Electron Microscope. Practical Methods in Electron Microscopy. North-Holland Publishing Company, Amsterdam; 1981;9.

    Google Scholar 

  11. Danilatos GD. Foundations of Environmental Scanning Electron Microscopy. Adv. Electronics and Electron Phys. 1988;71:109–250.

    Article  CAS  Google Scholar 

  12. Danilatos GD. Theory of the Gaseous Detector Device in the ESEM. Adv. Electronics and Electron Phys. 1990;78:1–102.

    Article  Google Scholar 

  13. Danilatos GD. Bibliography of environmental scanning electron microscopy. Microsc. Res. Technique 1993;25:529–534.

    Article  CAS  Google Scholar 

  14. Danilatos GD. Gas flow properties in the environmental SEM. Microbeam Analysis-1991 (Ed. DG Howitt), San Francisco Press, San Francisco 1991;201–203.

    Google Scholar 

  15. Bird GA. Monte Carlo simulation of gas flows. Ann. Rev. Fluid Mech 1978;10:11–31.

    Article  CAS  Google Scholar 

  16. Jost K and Kessler J. Die Ortsverteilung mittelschneller elektronen bei mehrfachstreuung. Zeits. Phys. 1963;176:126–142.

    Article  CAS  Google Scholar 

  17. Danilatos GD. Equations of charge distribution in the environmental scanning electron microscope (ESEM). Scanning Microscopy 1990;4:799–823.

    Google Scholar 

  18. Wells, Oliver C Scanning Electron Microscopy. McGraw-Hill Book Company, New York, 1974;20–36.

    Google Scholar 

  19. Danilatos GD. Environmental scanning electron microscope: Some critical issues. Scanning Microscopy 1993; Supplement 7:57–80.

    CAS  Google Scholar 

  20. Danilatos GD. A gaseous detector device for an environmental SEM. Micron and Microscopies Acte 1983;14:307–319.

    Article  Google Scholar 

  21. Danilatos GD. Cathodoluminescence and gaseous scintillation in the environmental SEM. Scanning 1986;8:279–284.

    Article  CAS  Google Scholar 

  22. Danilatos GD. Secondary-electron imaging by scintillating gaseous detection device. Proc. 50th Annual Meeting EMSA (Ed. GW Bailey, J Bentley and JA Small), San Francisco Press, San Franciso 1992; 1302–1303.

    Google Scholar 

  23. Huxley AG and Zaazou AA. Experimental and theoretical studies of slow electrons in air. Proc. Roy. Soc. Lond. 1949;196:402–426.

    Article  CAS  Google Scholar 

  24. Danilatos GD. Mechanisms of detection and imaging in the ESEM. J. Microsc. 1990;160:9–19.

    Article  Google Scholar 

  25. Danilatos GD. Design and construction of an atmospheric or environmental SEM (Part 3). Scanning 1985;7:26–42.

    Article  Google Scholar 

  26. Danilatos GD. Environmental scanning electron microscopy and microanalysis. Mikrochim. Acta 1994;114/115:143–155.

    Article  Google Scholar 

  27. Robinson VNE and Robinson BW. Materials characterisation in a scanning electron microscope environmental cell. Scanning Electron Microscopy (SEM Inc. AMF O’Hare) 1978;1:595–602.

    Google Scholar 

  28. Bolon RB. X-ray microanalysis in the ESEM. Microbeam Analysis-1991, (Ed. D.G. Howitt) San Francisco Press, San Francisco, 1991;199–200.

    Google Scholar 

  29. Bilde-Soerensen JB and Appel CC. Energy-dispersive x-ray spectrometry in the environmental scanning electron microscope. Proc. 48th Annual Meeting Scandinavian Soc. El. Microsc, Aarus, Denmark, 1996;4–5.

    Google Scholar 

  30. Danilatos GD and Brooks JH. Environmental SEM in wool research - present state of the art. Proc. 7th Int. Wool Textile Research Conference, Tokyo, 1985;1:263–272.

    Google Scholar 

  31. Danilatos GD. Beam-radiation effects on wool in the ESEM. Proc. 44th Annual Meeting EMSA 1986;674–675.

    Google Scholar 

  32. Heavens JW, Keller A, Pope JM and Rowell DM. Beam induced changes in the scanning electron microscopy of poly(oxymethylene). J. Mat. Sci. 1979;5:53–62.

    Article  Google Scholar 

  33. Danilatos GD and Brancik JV. Observation of liquid transport in the ESEM. Proc. 44th Annual Meeting EMSA 1986;678–679.

    Google Scholar 

  34. Uwins PJR, Murray M and Gould RJ. Effects of four different processing techniques on the microstructure of potatoes: Comparison with fresh samples in the ESEM. Microsc. Res. Technique 1993;25:412–418.

    Article  CAS  Google Scholar 

  35. Gribble K, Sarafis V, Nailon J, Holford P and Uwins P. Environmental scanning electron microscopy of the surface of normal and vitrified leaves of Gypsophila paniculata (Babies Breath) cultured in vitro. Plant Cell Reports 1996;15:771–776.

    Article  CAS  Google Scholar 

  36. Wallace HM, Uwins PJR and McConchie CA. Investigation of pollen-stigma interactions in Macadamia and Grevillea using ESEM. J. of Computer-Assisted Microscopy 1992;4:231–234.

    Google Scholar 

  37. O’Brien GP, Webb R.I, Uwins PJR, Desmarcheiier PM and Imrie BC. Suitability of the environmental scanning electron microscope for studies of bacteria on mungbean seeds. J. of Computer-Assisted Microscopy 1992;4:225–229.

    Google Scholar 

  38. Collins SP, Pope RK, Scheetz RW, Ray RI, Wagner PA and Little BJ. Advantages of environmental scanning electron microscopy in studies of micro-organisms. Microsc. Res. Technique 1993;25:398–405.

    Article  CAS  Google Scholar 

  39. Yamaguchi T, Kawata S, Suzuki S, Sato T and Sato Y. New linewidth measurement system using environmental scanning electron microscope technology. Proc. Intern. Microprocess Conf. Jpn. J. Appl. Phys. 1993;32 (Part 1, No. 12B):6277–6280.

    Article  CAS  Google Scholar 

  40. Danilatos GD. Environmental scanning electron microscope: A new tool for inspection and testing. Digest of Papers, MicroProcess’93, 6th Intern. MicroProcess Conf. 1993;B-3-1:102–103.

    Google Scholar 

  41. Charyshkin E, Kinaev NN, Waterworth M, Cousens DR, Calos N, Bostrom T and Ilyushechkin A. In-situ electron microscopy studies of hot filament chemical vapour deposition diamond thin film growth in an environmental SEM. Phys. Stat. Sol. (a) 1996;154:43–54.

    Article  CAS  Google Scholar 

  42. Gerristead WR, Link LF, Paciej RC, Damiani P and Li H. Environmental scanning electron microscopy for dynamic corrosion studies of stainless steel piping used in UHP gas distribution systems. Microsc. Res. Technique 1993;25:523–528.

    Article  CAS  Google Scholar 

  43. Keyser LF and Leu Ming-Taun. Morphology of nitric acid and water ice films. Microscopy Res. Technique 1993;25:434–438.

    Article  CAS  Google Scholar 

  44. Geiger SL, Ross TJ and Barton LL. Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion. Microsc. Res. Technique 1993;25:429–433.

    Article  CAS  Google Scholar 

  45. Parra R. A method to detect variations in the wetting properties of microporous polymer membranes. Microsc. Res. Technique 1993;25:362–373.

    Article  Google Scholar 

  46. Rask JH, Flood JE, Borchardt JK and York G A. The ESEM used to image crystalline structures of polymers and to image ink on paper. Microsc. Res. Technique 1993;25:384–392.

    Article  CAS  Google Scholar 

  47. Baker JC, Uwins PJR and Mackinnon IDR. ESEM study of authigenic chlorite acid sensitivity in sandstone reservoirs. J. Petroleum Science and Engineering 1993;8:269–277.

    Article  CAS  Google Scholar 

  48. Huggett JM and Uwins PJR. Observation of water-clay reactions in water-sensitive sandstone and mudrocks using an environmental scanning electron microscope. J. Petroleum Science and Engineering 1994;10:211–222.

    Article  CAS  Google Scholar 

  49. Bolon RB, Robertson CD and Lifshin E. The environmental SEM: A new way to look at insulators. Microbeam Analysis-1989, (Ed. PE Russell) San Francisco Press, San Francisco, 1989;449–452.

    Google Scholar 

  50. Egerton-Warburton LM, Griffin BJ and Kuo J. Microanalytical studies of metal localisation in biological tissues by environmental SEM. Microsc. Res. Technique, 1993;25:406–411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Danilatos, G.D. (1997). Environmental Scanning Electron Microscopy. In: Gai, P.L. (eds) In-Situ Microscopy in Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6215-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6215-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9989-6

  • Online ISBN: 978-1-4615-6215-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics