Skip to main content

Degradation Mechanisms and Reliability Issues for Ferroelectric Thin Films

  • Chapter
Thin Film Ferroelectric Materials and Devices

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 3))

Abstract

Ferroelectric perovskite thin films are being developed for a wide range of applications, including nonvolatile memories, high-density DRAMs (≥ 1 Gbit), integrated decoupling capacitors, piezoelectric sensors and actuators, IR detector arrays, and optical switches and modulators. While the fundamental properties (ferroelectric, dielectric, piezoelectric, pyroelectric, and electrooptic) of these materials are well suited to these various applications, the lifetime and reliability of devices is ultimately limited by degradation and aging phenomena [1]. Consequently, there has been extensive research devoted to understanding the mechanisms responsible for the degradation and/or aging of perovskite films with time, temperature, and external field stress [219].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Warren, D. Dimos, R. M. Waser, MRS Bulletin, 21[7], 40 (1996).

    Google Scholar 

  2. K. Lehovec and G. A. Shirn, J. Appl. Phys., 33, 2036 (1962).

    Article  Google Scholar 

  3. R. Waser, T. Baiatu and K.-H. Hardtl, J. Am. Ceram. Soc, 73, 1654 (1990).

    Article  Google Scholar 

  4. T. Baiatu, R. Waser and K.-H. Hardtl, J. Am. Ceram. Soc, 73, 1663 (1990).

    Article  Google Scholar 

  5. U. Robels, L. Schneider-Stormann and G. Arlt, Ferroelectrics 168, 301 (1995).

    Article  Google Scholar 

  6. D. M. Smyth, Ferroelectrics, 116, 117 (1991).

    Article  Google Scholar 

  7. R. Wernicke, Phys. Stat. Sol. A47, 139 (1978).

    Article  Google Scholar 

  8. X. Chen, A. I. Kingon, H. N. Al-Shareef, K. R. Bellur, K. Gifford and O. Auciello, Integ. Ferroelectrics, 7, 291 (1995).

    Article  Google Scholar 

  9. S. B. Desu and I. K. Yoo, Integ. Ferroelectrics, 3, 365 (1993).

    Article  Google Scholar 

  10. W. J. Minford, IEEE CHMT-5, 297 (1982).

    Google Scholar 

  11. P. V. Lambeck and G. H. Jonker, Ferroelectrics, 22, 729 (1978).

    Article  Google Scholar 

  12. G. Arlt and H. Neumann, Ferroelectrics, 87, 109 (1988).

    Article  Google Scholar 

  13. W. A. Schulze and K. Ogino, Ferroelectrics, 87, 361 (1988).

    Article  Google Scholar 

  14. H.-J. Hagemann, J. Phys. C, 11, 3333 (1978).

    Article  Google Scholar 

  15. G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. Evans, Jr., Appl. Phys. Lett., 66, 484 (1995).

    Article  Google Scholar 

  16. W. L. Warren, B. A. Tuttle and D. Dimos, Appl. Phys. Lett., 67, 1496 (1995).

    Google Scholar 

  17. I. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc., 310, 165 (1993).

    Article  Google Scholar 

  18. W. Y. Pan, CF. Yue and B. A. Tuttle, Ceram. Trans., 25, 385 (1992).

    Google Scholar 

  19. C. Schaffrin, Phys. Stat. Sol. A35, 79 (1976).

    Article  Google Scholar 

  20. C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics, 151, 33 (1994).

    Article  Google Scholar 

  21. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby and G. E. Pike, Appl. Phys. Lett., 65, 1018 (1994).

    Article  Google Scholar 

  22. W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews and D. C. McIntrye, J. Appl. Phys., 77, 6695 (1995).

    Article  Google Scholar 

  23. J. F. Scott and CA. Paz de Arajuo, Science, 246, 1400 (1989).

    Article  Google Scholar 

  24. Z. Wu and M. Sayer, presented at Proc. Am. Ceram. Soc, PAC Rim Meeting, November, 1993, Honolulu, HI.

    Google Scholar 

  25. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle and R. W. Schwartz, J. Appl. Phys., 76, 4305 (1994).

    Article  Google Scholar 

  26. W. L. Warren and D. Dimos, Appl. Phys. Lett. 64, 866 (1994).

    Article  Google Scholar 

  27. H. M. Duiker, P. D. Beale, J. F. Scott, CA. Paz de Araujo, B. M. Melnick, J. D. Cuchiaro and L. D. McMillan, J. Appl. Phys., 68, 5783 (1990).

    Article  Google Scholar 

  28. I. K. Yoo and S. B. Desu, Mater. Res. Soc. Symp. Proc, 243, 323 (1992).

    Article  Google Scholar 

  29. H. Watanabe, T. Mihara, H. Yoshimori and CA. Paz de Araujo, in Proceedings of the Fourth International Symposium on Integrated Ferroelectrics, 346 (1992).

    Google Scholar 

  30. W. I. Lee, J. K. Lee, I. Chung, I. K. Yoo and S. B. Desu, Mater. Res. Soc. Symp. Proc., 361, 421 (1995).

    Article  Google Scholar 

  31. J. F. Scott, CA. Araujo, B. M. Melnick, L. D. McMillan and R. Zuleeg, J. Appl. Phys., 70, 382 (1991).

    Article  Google Scholar 

  32. J. T. Cheung, P. E. D. Morgan and R. Neurgaonkar, Proc. 4th Inter. Symp. Integrated Ferroelectrics, Ed. R. Panholzer, Monterey, CA, March (192), p. 158.

    Google Scholar 

  33. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee and A. Safari, Appl. Phys. Lett., 61, 1537 (1992).

    Article  Google Scholar 

  34. S. D. Bernstein, T. Y. Wong, Y. Kisler and R. W. Tustison, J. Mater. Res. 8, 12 (1992).

    Article  Google Scholar 

  35. T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, Appl. Phys. Lett. 65, 1522 (1994).

    Article  Google Scholar 

  36. H. N. Al-Shareef, A. I. Kingon, X. Chen and O. Auciello, J. Mat. Res., 9, 2960 (1994).

    Article  Google Scholar 

  37. H. N. Al-Shareef, B. A. Turtle, W. L. Warren, T. J. Headley, D. Dimos, J. A. Voigt and R. D. Nasby, J. Appl. Phys., 79, 1013 (1996).

    Article  Google Scholar 

  38. O. I. Prokopalo, Sov. Phys. Solid State, 21, 1768 (1980).

    Google Scholar 

  39. C. A. Paz de Araujo, J. K. Cuchiara, L. D. McMillan, M. C. Scott and J. F. Scott, Nature 374, 627 (1995).

    Article  Google Scholar 

  40. H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren and B. A. Turtle, Appl. Phys. Lett., 68, 690 (1996).

    Article  Google Scholar 

  41. D. Dimos, H. N. Al-Shareef, W. L. Warren and B. A. Turtle, J. Appl. Phys., 80, 1682 (1996).

    Article  Google Scholar 

  42. W. L. Warren, D. Dimos, G. E. Pike, B. A. Turtle, M.V Raymond, R. Ramesh and J. T. Evans, Jr., Appl. Phys. Lett. 67, 866 (1995).

    Article  Google Scholar 

  43. R. D. Pugh, M. J. Sabochick and T. E. Luke, J. Appl. Phys., 72, 1049 (1992).

    Article  Google Scholar 

  44. J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike and J. T. Evans, Jr., Appl. Phys. Lett., 66, 1337 (1995).

    Article  Google Scholar 

  45. D. Dimos, W. L. Warren and B. A. Turtle, NATO ASI Series, 284, O. Auciello and R. Waser eds., Kluwer Academic Publishers, 1994.

    Google Scholar 

  46. W. L. Warren, D. Dimos, G. E. Pike, K. Vanheusden and R. Ramesh, Appl. Phys. Lett., 67 1689 (1995).

    Article  Google Scholar 

  47. D. Dimos and W. L. Warren, unpublished results.

    Google Scholar 

  48. D. M. Smyth, Prog. Solid St. Chem. 15, 145 (1984).

    Article  Google Scholar 

  49. M. V. Raymond, J. Chen and D. M. Smyth, Integ. Ferroelectrics 5, 73 (1994)

    Article  Google Scholar 

  50. W. L. Warren, B. A. Turtle, D. Dimos, G. E. Pike, H. N. Al-Shareef, R. Ramesh and J. T. Evans, Jr., Jpn. J. Appl. Phys., 35, 1521 (1996).

    Article  Google Scholar 

  51. S. Takahashi, Ferroelectrics 41, 143 (1982)

    Article  Google Scholar 

  52. Al-Shareef-Imprint

    Google Scholar 

  53. C. A. Araujo, unpublished results.

    Google Scholar 

  54. H. Al-Shareef and D. Dimos, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, in press.

    Google Scholar 

  55. H. N. Al-Shareef and D. Dimos, J. Am. Ceram. Soc, submitted.

    Google Scholar 

  56. D. Dimos, R. W. Schwartz and S. J. Lockwood, J. Am. Ceram. Soc, 77, 3000 (1994).

    Article  Google Scholar 

  57. R. Munikoti and P. Dhar, IEEE Trans. Components, Hybrids and Manuf. Technol., CHMT-11, 342 (1988).

    Article  Google Scholar 

  58. K. Numata, Y. Fukuda, K. Aoki and A. Nishimura, Jpn. J. Appl. Phys., 34, 5245 (1995).

    Article  Google Scholar 

  59. R. Waser, Ferroelectric Ceramics, N. Setter and E. L Colla, editors (Birkhauser œ Verlag, 1993).

    Google Scholar 

  60. M. P. Harmer, Y. H. Hu, M. Lal and D. M. Smyth, Ferroelectrics, 49, 71 (1983).

    Article  Google Scholar 

  61. M. Vollmann and R. Waser, J. Am. Ceram. Soc. 77, 235 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dimos, D., Warren, W.L., Al-Shareef, H.N. (1997). Degradation Mechanisms and Reliability Issues for Ferroelectric Thin Films. In: Ramesh, R. (eds) Thin Film Ferroelectric Materials and Devices. Electronic Materials: Science and Technology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6185-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6185-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9993-3

  • Online ISBN: 978-1-4615-6185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics