Skip to main content

Recent advances in bone sarcomas

  • Chapter
Surgical Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 90))

Abstract

Primary bone sarcomas are rare neoplasms that present many challenges for the musculoskeletal oncologist. Current strategies have been shaped by the experience of the last two decades, during which time a transition from ablative to limb-sparing surgery has evolved. The long-term oncologic and functional outcomes of this major advance are just recently being reported in the literature (A.W. Yasko, unpublished) [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 689.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyers PA, Heller G, Healey JH, Huvos A, Lane J, Marcove R, Applewhite A, Vlamis V, Rosen G. Chemotherapy for nonmetastatic osteogenic sarcoma: The MSK experience. J Clin Oncol 10: 5–15, 1992.

    PubMed  CAS  Google Scholar 

  2. Hudson M, Jaffe MR, Jaffe N, Ayala A, Raymond AK, Carrasco H, Wallace S, Murray JA, Robertson R. Pediatric osteosarcoma: Therapeutic strategies, results and prognostic factors derived from a 10-year experience. J Clin Oncol 8: 1988–1997, 1990.

    PubMed  CAS  Google Scholar 

  3. Horowitz SM, Glasser DB, Lane JM, Healey JH. Prosthetic and extremity survivorship after limb salvage for sarcoma. How long do the reconstructions last? Clin Orthop Rel Res 293: 280–286, 1993.

    Google Scholar 

  4. Malawar MM, Chou LB. Prosthetic survival and clinical results with use of large-segment replacements in the treatment of high-grade bone sarcomas. J Bone Joint Surg 77A: 1154–1165, 1995.

    Google Scholar 

  5. McManus AP, Gusterson BA, Pinkerton CR, Shipley JM. Diagnosis of Ewing’s sarcoma and related tumours by detection of chromosome 22q12 translocations using fluorescence in situ hybridization on tumour touch imprints. J Pathol 176: 137–142, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Barr FG, Chatten J, D’Cruz CM, Wilson AE, Navta LE, Nycum LM, Biegel JA, Womer RB. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA 273: 553–557, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Dockhorn-Dworniczak B, Schafer KL, Dantcheva R, et al. Diagnostic value of the molecular genetic detection of the t(ll;22) translocation in Ewing’s tumours. Virchows Arch 425: 107–112, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Sorensen PH, Liu XF, Delattre O, Rowland JM, Biggs CA, Thomas G, Triche TJ. Reverse transcriptase PCR amplification of EWS/FLI-1 fusion transcripts as a diagnostic test for peripheral primitive neuroectodermal tumors of childhood. Diagn Mol Pathol 2: 147–157, 1993.

    PubMed  CAS  Google Scholar 

  9. Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ. Immunohistochemical analysis of Ewing’s sarcoma. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 139: 317–325, 1991.

    PubMed  CAS  Google Scholar 

  10. Fellinger EJ, Garin-Chesa P, Su SL, DeAngelis P, Lane JM, Rettig WJ. Biochemical and genetic characterization of the HBA71 Ewing’s sarcoma. Cancer Res 51: 336–340, 1991.

    PubMed  CAS  Google Scholar 

  11. Perlman EJ, Dickman PS, Askin FB, Grier HE, Miser JS, Link MP. Ewing’s sarcoma — routine diagnostic utilization of MIC2 analysis: A Pediatric Oncology Group/Children’s Cancer Group intergroup study. Hum Pathol 25: 304–307, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Ladanyi M, Lewis R, Garin-Chesa P, Rettig WJ, Huvos AG, Healey JH, Jhanwar SC. EWS rearrangement in Ewing’s sarcoma and peripheral neuroectodermal tumor. Molecular detection and correlation with cytogenetic analysis and MIC2 expression. Diagn Mol Pathol 2: 141–146, 1993.

    PubMed  CAS  Google Scholar 

  13. Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71: 747–752, 1969.

    PubMed  CAS  Google Scholar 

  14. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Levine A, Momand J, Finlay C. The p53 tumor suppressor gene. Nature 351: 453–456, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Holstein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancer. Science 253: 49–53, 1991.

    Article  Google Scholar 

  17. Nigro JM, Baker S, Preisinger AC, et al. Mutations in the p53 gene occur in diverse tumour types. Nature 342: 705–707, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Mclntyre JF, Smith-Sorensen B, Friend SH, et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol 12: 925–930, 1994.

    Google Scholar 

  19. Masuda H, Miller C, Koeffler HP, Bahifora H, Cline MJ. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84: 7716–7719, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Wadayama B, Toguchida J, Yamaguchi T, Sasaki MS, Yamamuro T. P53 expression and its relationship to DNA alterations in bone and soft tissue sarcomas. Br J Cancer 68: 1134–1139, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Iavarone A, Matthay KK, Steinkirchner TM, Israel MA. Germ-line and somatic p53 mutations in multifocal osteogenic sarcoma. Proc Natl Acad Sci USA 89: 4207–4209, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Abramson DH, Ellsworth RM, Kitchin FD, Tung G. Second nonocular tumors in retinoblastoma survivors. Are they radiation-induced? Ophthalmology 91: 1351–1355, 1984.

    PubMed  CAS  Google Scholar 

  23. Horowitz JM, Yandell DW, Park S-H, Canning S, Whyte P, Buchkovich K, Harlow E, Weinberg RA, Dryja TP. Point mutational inactivation of the retinoblastoma antioncogene. Science 243: 937–939, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Huang H-J, Yee J-K, Shew J-Y, Chen PL, Bookstein R, Friedmann T, Lee EY, Lee WH. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242: 1563–1566, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Toguchida J, Ishizaki K, Sasaki MS, Ikenaga M, Sugimoto M, Kotoura Y, Yamamuro T. Chromosomal reorganization for the expression of recessive mutation of retinoblas-toma susceptibility gene in the development of osteosarcoma. Cancer Res 48: 3939–3943, 1988.

    PubMed  CAS  Google Scholar 

  26. Reissmann PT, Simon MA, Lee W-H, Slamon DJ. Studies of the retinoblatoma gene in human sarcomas. Oncogene 4: 839–843, 1989.

    PubMed  CAS  Google Scholar 

  27. Araki N, Uchida A, Kimura T, Yoshikawa H, Aoki Y, Ueda T, Takai S, Miki T, Ono K. Involvement of the retinoblastoma gene in primary osteosarcomas and other bone and soft-tissue tumors. Clin Orthop 270: 271–277, 1991.

    PubMed  Google Scholar 

  28. Wunder JS, Czitrom AA, Kandel R, Andrulis IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 83: 194–201, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki MS, Kotoura Y, Yamamuro T. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res 54: 3042–3048, 1994.

    PubMed  CAS  Google Scholar 

  30. Stein U, Walther W, Wunderlich V. Point mutations in the mdrl promoter of human osteosarcomas are associated with in vitro responsiveness to multidrug resistance relevant drugs. Eur J Cancer 30A: 1541–1545, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Bodey B, Psenko V, Young L, et al. Immunocytochemical detection of the multidrug resistance (MDR) protein, pl70 overexpression in human osteosarcoma (OS) cells. Proc Ann Meet Am Assoc Cancer Res 35: A2811, 1994.

    Google Scholar 

  32. Imanishi T, Abe Y, Suto R, Higaki S, Ueyama Y, Nakamura M, Tamaoki N, Fukuda H, Imai N. Expression of the human multidrug resistance gene (MDR1) and prognostic correlation in human osteogenic sarcoma. Tokai J Exp Clin Med 19: 39–46, 1994.

    PubMed  CAS  Google Scholar 

  33. Gebhardt MC, Kusuzaki K, Mankin HJ, Springfield DS. An assay to measure Adriamycin binding in osteosarcoma cells. J Orthop Res 12: 621–627, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Yoshikawa H, Takaoka K, Masuhara K, Ono K, Sakamoto Y. Prognostic significance of bone morphogenetic activity in osteosarcoma tissue. Cancer 61: 569–573, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10: 739–749, 1995.

    PubMed  CAS  Google Scholar 

  36. Wu JX, Carpenter PM, Gresens C, Keh R, Niman H, Morvis JW, Mercoila D. The protooncogene c-fos is over-expressed in the majority of human osteosarcomas. Oncogene 5: 989–1000, 1990.

    PubMed  CAS  Google Scholar 

  37. Antillon-Klussmann F, Garcia-Delgado M, Villa-Elizaga I, Sierrasesumaga L. Mutational activation of ras genes is absent in pediatric osteosarcomas. Cancer Genet Cytogenet 79: 49–53,1994.

    Article  Google Scholar 

  38. Ladanyi M, Park CK, Lewis R, Jhanwar SC, Healey JH, Huvos AG. Sporadic amplification of the MYC gene in human osteosarcomas. Diagn Mol Pathol 2: 163–167, 1993.

    PubMed  CAS  Google Scholar 

  39. Hinrichs SH, Jaramillo MA, Gumerlock PH, Gardner MB, Lewis JP, Freeman AE. Myxoid chondrosarcoma with a translocation involving chromosomes 9 and 22. Cancer Genet Cytogenet 14: 219–226, 1985.

    Article  PubMed  CAS  Google Scholar 

  40. Turc-Carel C, Dal Cin P, Rao U, Karakousis L, Sandberg AA. Recurrent breakpoints at 9q31 and 22q12.2 in extraskeletal myxoid chondrosarcoma. Cancer Genet Cytogenet 30: 145–150, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Stenman G, Andersson H, Mandahl N, Meis-Kindblom JM, Kindblom LG. Translocation t(9;22)(q22;q12) is a primary cytogenetic abnormality in extraskeletal myxoid chondrosarcoma. Int J Cancer 62: 398–402, 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Mandahl N, Heim S, Arheden K, Rydholm A, Willen H, Mitelman F. Chromosomal rearrangements in chondromatous tumors. Cancer 65: 242–248, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Coughlan B, Feliz A, Ishida T, Czerniak B, Dorfman HD. P53 expression and DNA ploidy of cartilage lesions. Hum Pathol 26: 620–624, 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Yasko AW, Coupe K, Murphy LA, Ayala AG, Murray JA. Cost effectiveness of percutaneous needle biopsy for bone neoplasms. Orthop Trans 18: 1130, 1994.

    Google Scholar 

  45. Ayala AG, Raymond AK, Ro Y, Carassco CH, Fanning CV, Murray JA. Needle biopsy of primary bone lesions. M.D. Anderson Experience. Pathol Ann 24: 219–251, 1989.

    Google Scholar 

  46. Mankin HJ, Lange TA, Spanier SS. The hazards of biopsy in patients with malignant primary bone and soft-tissue tumors. J Bone Joint Surg 64A: 1121–1127, 1982.

    Google Scholar 

  47. Andreo MA, Yasko AW, Ayala AG, Murray JA. Excision of the needle biopsy tract: Is it necessary? Orthop Trans 9: 294, 1995.

    Google Scholar 

  48. Malawar MM, Meller I, Dunham WK. Shoulder girdle resections for bone and soft tissue tumors: Analysis of 39 patients and presentation of a unified classification system. In Yamamuro T (ed). New Development for Limb Salvage in Musculoskeletal Tumors. Tokyo: Springer-Verlag, 1989, pp 519–530.

    Chapter  Google Scholar 

  49. Jensen KL, Johnston JO. Proximal humeral reconstruction after excision of a primary sarcoma. Clin Orthop 311: 164–175, 1995.

    PubMed  Google Scholar 

  50. Ferruzzi A, Ruggiere P, Capanna R, Campanacci M. Prosthetic replacement of the proximal humerus: Update of cases presented in 1981. In Brown KLB (ed). Complications of Limb Salvage. Prevention, Management and Outcome. Montreal: Isols, 1991, pp 473–477.

    Google Scholar 

  51. Rock MG, Chao EYS, Shi LY, Sim FH, Sanjay B. Osteoarticular allografts for reconstruction after tumor excision about the knee. In Brown KLB (ed). Complications of Limb Salvage. Prevention, Management and Outcome. Montreal: Isols, 1991, pp 17–25.

    Google Scholar 

  52. Samek V, Kotz R, Engel A, Petschnig R, Salzer-Kuntschik M, Windhager R. Ten-year results with a custom-made tumor cndoprosthesis of the knee in primary malignant bone tumors. In Brown KLB (ed). Complications of Limb Salvage. Prevention, Management and Outcome. Montreal: Isols, 1991, pp 17–25.

    Google Scholar 

  53. Ward WG, Eckardt JJ, Johnston-Jones KS, Eilber FR, Namba R, Dorey FJ, Mirra J, Kabo JM. Five to ten year results of custom endoprosthetic replacement for tumors of the distal femur. In Brown KLB (ed). Complications of Limb Salvage. Prevention, Management and Outcome. Montreal: Isols, 1991, pp 17–25.

    Google Scholar 

  54. Sim FH, Beauchamp CP, Chao EYS. Reconstruction of musculoskeletal defects about the knee for tumors. Clin Orthop 221: 188–201, 1987.

    PubMed  Google Scholar 

  55. Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts. Incidence, nature and treatment. J Bone Joint Surg 70A: 369–376, 1988.

    Google Scholar 

  56. Berrey BH Jr, Lord CF, Gebhardt MC. Fractures of allografts: Frequency, treatment and end-results. J Bone Joint Surg 72A: 825–833, 1990.

    Google Scholar 

  57. Gebhardt MC, Flugstad DI, Springfield DS, Mankin HJ. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma. Clin Orthop 270: 181–196, 1991.

    PubMed  Google Scholar 

  58. DuBousset J, Missenard G. Limb salvage for malignant tumours in children — reconstruction with allograft: Critical appraisal of long term follow-up. In Tan SK (ed). Limb Salvage — Current Trends. Montreal: ISOLS, 1993.

    Google Scholar 

  59. Manfrini M, Capanna R, Ceruso M, et al. Vascularised fibula autograft as medial support of massive allografts after femur resections for bone tumours (preliminary results). In Tan SK (ed). Limb Salvage — Current Trends. Montreal: ISOLS, 1993.

    Google Scholar 

  60. Alman B A, De Bari A, Krajbich JI. Massive allografts in the treatment of osteosarcoma and Ewing sarcoma in children and adolescents. J Bone Joint Surg 77A: 54–64, 1995.

    Google Scholar 

  61. Kotz R, Salzer M. Rotationplasty for childhood osteosarcoma of the distal part of the femur. J Bone Joint Surg 64A: 959–966, 1982.

    Google Scholar 

  62. Winkelmann W. Hip rotationplasty for malignant tumours of the proximal part of the femur. J Bone Joint Surg 68A: 362–368, 1986.

    Google Scholar 

  63. Knahr K, Kristen H, Ritschl P, Sekera J, Salzer M. Prosthetic management and functional evaluation of patients with resection of the distal femur and rotationplasty. Orthopaedics 10: 1241–1247, 1987.

    CAS  Google Scholar 

  64. Murray MP, Jacobs PA, Gore DR, Gardner GM, Mollinger LA. Functional performance after tibial rotationplasty. J Bone Joint Surg 67A: 392–399, 1985.

    Google Scholar 

  65. Krajbich JI. Van Nes rotationplasty in skeletally immature patients with malignant sarcoma of the lower extremity. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 527–529.

    Google Scholar 

  66. Capanna R, Manfrini M, Donati D, et al. Arthrodeses after malignant bone tumor resection in children. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 543–551.

    Google Scholar 

  67. Said GZ, El-Sharif EK. Resection-shortening-distraction for malignant bone tumours: A report of two cases. J Bone Joint Surg 77B: 185–188, 1995.

    Google Scholar 

  68. Sneath RS, Carter SR, Grimer RJ. Growing endoprosthetic replacements for malignant tumours. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 573–578.

    Google Scholar 

  69. Kenan S, Lewis MM. Limb salvage in pediatric surgery: The use of the expandable prosthesis. Orthop Clin North Am 22: 121–131, 1991.

    PubMed  CAS  Google Scholar 

  70. Schiller C, Windhager R, Fellinger EJ, Salzer-Kuntschik M, Kaider A, Kotz R. Extendable tumour endoprostheses for the leg in children. J Bone Joint Surg 77B: 608–614, 1995.

    Google Scholar 

  71. Anderson M, Green WT, Messner MB. Growth and predictions of growth in the lower extremities. J Bone Joint Surg 45A: 1, 1963.

    Google Scholar 

  72. Moseley CF. A straight-line graph for leg-length discrepancies. J Bone Joint Surg 59A: 174–179, 1977.

    Google Scholar 

  73. Glasser DB, Duane K, Lane JM, Healey JH, Caparros-Sison B. The effect of chemotherapy on growth in the skeletally immature individual. Clin Orthop 262: 93–100, 1991.

    PubMed  Google Scholar 

  74. Safran MR, Eckardt JJ, Kabo JM, Oppenheim WL. Continued growth of the proximal part of the tibia after prosthetic reconstruction of the skeletally immature knee. J Bone Joint Surg 74A: 1172–1179, 1992.

    Google Scholar 

  75. Eckardt JJ, Eilber FR, Rosen G, et al. Expandable endoprostheses for the skeletally immature: The initial UCLA experience. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 585–590.

    Google Scholar 

  76. Verkerke GJ, van den Kroonenberg HH, Grootenboer HJ, et al. In vitro and in vivo experiments of a lengthening element for a modular femur endoprosthetic system. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 609–612.

    Google Scholar 

  77. Windhager R, Schiller CH, Gisinger B, Kotz R. Expandable prostheses in children. J Bone Joint Surg 74B(Suppl II): 178, 1992.

    Google Scholar 

  78. Healey JH, Lane JM, Marcove RC, Duane K, Otis JC. Resection and reconstruction of periacetabular malignant and aggressive tumors. In Yamamuro T (ed). New Developments for Limb Salvage in Musculoskeletal Tumors. Tokyo: Springer-Verlag, 1989, pp 443–450.

    Chapter  Google Scholar 

  79. Ritschl P, Kickinger W, Feldner-Busztin H, Windhager R, Kotz R. Pelvic and sacrum resections. In Yamamuro T (ed). New Developments for Limb Salvage in Musculoskeletal Tumors. Tokyo: Springer-Verlag, 1989, pp 491–502.

    Chapter  Google Scholar 

  80. Tomeno B, Languepin A. Innominate bone resection for tumors with limb preservation. In Yamamuro T (ed). New Developments for Limb Salvage in Musculoskeletal Tumors. Tokyo: Springer-Verlag, 1989, pp 459–463.

    Chapter  Google Scholar 

  81. Campanacci M, Capanna R. Pelvic resections: The Rizzoli Institute experience. Orthop Clin North Am 22: 65–86, 1991.

    PubMed  CAS  Google Scholar 

  82. Turcotte RE, Sim FH, Pritchard DJ, et al. Long-term follow-up of Walldius hinged total knee arthroplasties. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 277–284.

    Google Scholar 

  83. Horowitz SM, Rapuano BP, Lane JM, Burstein AH. The interaction of the macrophage and the osteoblast in the pathophysiology of aseptic loosening of joint replacements. Calcif Tissue Int 54: 320–324, 1994.

    Article  PubMed  CAS  Google Scholar 

  84. Langlais F, Delepine G, Dubousset JF, Missenard G. Composite prostheses in malignant tumors: Rationale and preliminary results of 42 cases. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 387–394.

    Google Scholar 

  85. Hsu RWW, Sim FH, Chao EYS. Reoperation of failed prosthetic replacement for limb salvage. In Langlais F, Tomeno B (eds). Limb Salvage — Major Reconstructions in Oncologic and Nontumoral Conditions. Berlin: Springer-Verlag, 1991, pp 449–455.

    Google Scholar 

  86. Horowitz SM, Lane JM, Healey JH. Soft-tissue management with prosthetic replacement for sarcomas around the knee. Clin Orthop 275: 226–231, 1992.

    PubMed  Google Scholar 

  87. Eckhardt JJ, Lesavoy MA, Dubrow TJ, Wackym PA. Exposed endoprosthesis: Management protocol using muscle and myocutaneous flap coverage. Clin Orthop 251: 220–229, 1990.

    Google Scholar 

  88. Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Aufdemorte TB, Mikos AG. The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1: 41–52, 1995.

    Article  PubMed  CAS  Google Scholar 

  89. Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG. Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 28: 1445–1453, 1994.

    Article  PubMed  CAS  Google Scholar 

  90. Beresford JN, Graves SE, Smoothy CA. Formation of mineralized nodules by bone derived cells in vitro: A model of bone formation? Am J Med Genet 45: 163–178, 1993.

    Article  PubMed  CAS  Google Scholar 

  91. Maniatopoulos C, Sodek J, Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254: 317–330, 1988.

    Article  PubMed  CAS  Google Scholar 

  92. Caplan AI. Mesenchymal stem cells. J Orthop Res 9: 641–650, 1991.

    Article  PubMed  CAS  Google Scholar 

  93. Benayahu D, Kletter Y, Zipori DS, Wientroub. Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol 140: 1–7, 1989.

    Article  PubMed  CAS  Google Scholar 

  94. Bruder SP, Gazit D, Passi-Even L, Bab I, Caplan AI. Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers. Bone Miner 11: 141–151, 1990.

    Article  PubMed  CAS  Google Scholar 

  95. Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop 262: 298–311, 1991.

    PubMed  Google Scholar 

  96. Goshima J, Goldberg VM, Caplan AI. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop Rel Res 269: 274–283, 1991.

    Google Scholar 

  97. Lane JM, Tomin M, Fellinger E, Bockman R, Gross J. In vitro augmentation of bone marrow osteoprogenitor cells. Trans Orthop Res Soc 16: 417, 1991.

    Google Scholar 

  98. Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: Effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant 1: 23–32, 1992.

    PubMed  CAS  Google Scholar 

  99. Dennis JE, Caplan JE. Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: Effects of pre-treatment with fibronectin or laminin. Oral Implantol 19: 106–115, 1993.

    CAS  Google Scholar 

  100. Tomin E, Browne MG, Lane JM, Gee C, Yasko AW. Stem cell differentiation inhibits osteogenesis. Trans Orthop Res Soc 18: 490, 1993.

    Google Scholar 

  101. Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand 60: 334–339, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Nakamura H, Goldberg VM, Caplan AI. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop Rel Res 276: 291–298, 1992.

    Google Scholar 

  103. Haynesworth SE, Baber MA, Caplin AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69–80, 1992.

    Article  PubMed  CAS  Google Scholar 

  104. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. 13: 81–88, 1992.

    CAS  Google Scholar 

  105. Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). J Bone Joint Surg 74A: 659–671, 19

    PubMed  CAS  Google Scholar 

  106. Heckman JD, Boyan BD, Aufdemorte TB, Abbott JT. The use of bone morphogenetic protein in the treatment of non-union in a canine model. J Bone Joint Surg 73A: 750–764, 1991.

    Google Scholar 

  107. Lee SC, Shea M, Battle MA, Kozita K, Ron E, Turek T, Schaub RG, Hayes WC. Healing of large segmental defects in rat femurs is aided by rhBMP-2 in PLGA matrix. J Biomed Mater Res 28: 1149–1156, 1994.

    Article  PubMed  CAS  Google Scholar 

  108. Muschler GF, Lane JM, Werntz J, Gebhart M, Sandu H, Piergentili C, Nottebaert M, Baker C, Burstein A. Segmental femoral defect model in the rat. In Aebi M, Regazzoni P (eds). Bone Transplantation. Berlin: Springer-Verlag, 1989.

    Google Scholar 

  109. Cook SD, Wolfe MW, Salkeld SL, Rueger DC. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg 77A: 734–750, 1995.

    Google Scholar 

  110. Paige KT, Vacanti CA. Engineering new tissue: Formation of neocartilage. Tissue Eng 1: 97–106, 1995.

    Article  PubMed  CAS  Google Scholar 

  111. Vacanti CA, Kim W, Schloo B, Upton J, Vacanti JP. Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sport Med 22: 485–488, 1994.

    Article  CAS  Google Scholar 

  112. Vacanti CA, Langer R, Schloo B, Vacanti JB. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88: 53–75, 1991.

    Article  Google Scholar 

  113. Freed LE, Grande DA, Emmanual J, Marquis JC, Lingbint Z, Langer R. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28: 891–899, 1994.

    Article  PubMed  CAS  Google Scholar 

  114. Freed LE, Marquis JC, Norhia A, Emmanual J, Mikos A, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27: 11–23, 1993.

    Article  PubMed  CAS  Google Scholar 

  115. Pate DW, Southerland SS, Grande DA, Young HE, Lucas PA. Isolation and differentiation of mesenchymal stem cells from rabbit muscle. Surg Forum 44: 587, 1993.

    Google Scholar 

  116. Grande DA, Southerland SS, Manji R, Pate DW, Schwartz RE, Lucas PA. Repair of articular cartilage defects using mesenchymal stem cells. Tissue Eng 1: 345–352, 1995.

    Article  PubMed  CAS  Google Scholar 

  117. Speer KP, Warren RF. Arthroscopic shoulder stabilization: A role for biodegradable materials. Clin Orthop 291: 67–74, 1993.

    PubMed  Google Scholar 

  118. Laitinen O, Tormala P, Taurio R, Skutnabb K, Saarelainum K, Iivonen T, Vainlonpaa S. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactate) in vitro and in vivo. Biomaterials 3: 359–364, 1992.

    Google Scholar 

  119. Howard CB, McKibbin B, Ralis ZA. The use of dexon as a replacement for the calcaneal tendon in sheep. J Bone Joint Surg 67B: 313–316, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yasko, A.W., Johnson, M.E. (1997). Recent advances in bone sarcomas. In: Pollock, R.E. (eds) Surgical Oncology. Cancer Treatment and Research, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6165-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6165-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7826-6

  • Online ISBN: 978-1-4615-6165-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics