Skip to main content

GA Algorithms in Intelligent Robots

  • Chapter
Fuzzy Evolutionary Computation

Abstract

This chapter presents the role of genetic algorithms in intelligent robots. In general, the motion planning problems in intelligent robots can be fundamentally split into path planning problems, trajectory planning problems, and task planning problems. These planning faculties have many constraints concerning kinematics and dynamics of the robot and therefore it is very difficult to solve these planning problems. This chapter presents the general application of genetic algorithms to these planning tasks. Furthermore, the chapter discusses a trajectory planning problem for redundant manipulators and a motion planning problem for biped locomotion robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Fogel, DB. Evolutionary Computation, New York, IEEE Press, 1995.

    Google Scholar 

  2. Schwefel, H. “On the Evolution of Evolutionary Computation.” In Computational Intelligence Imitating Life, Zurada, JM, Marks II, RJ, Robinson CJ, ed. New York: IEEE Press, 1994.

    Google Scholar 

  3. Holland, J. Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, 1975.

    Google Scholar 

  4. Goldberg, D.E., Genetic Algorithm in Search, Optimization, and Machine Learning, Massachusetts: Addison Wesley, 1989.

    Google Scholar 

  5. Rechenberg, I. “Evolution Strategy.” In Computational Intelligence Imitating Life, Zurada, JM, Marks II, RJ, Robinson CJ, ed. New York: IEEE Press, 1994.

    Google Scholar 

  6. Koza, J. Genetic Programming, Massachusetts: The Mit Press, 1992.

    MATH  Google Scholar 

  7. Koza, J. Genetic Programming II, Massachusetts: The Mit Press, 1994.

    MATH  Google Scholar 

  8. Lozano-Perez, T. Automatic Planning of Manipulator Transfer Movements, IEEE Trans. SMC, Vol.11, 1981:681–698.

    Google Scholar 

  9. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, Robotics and Research, Vol.5, No.1, 1986:90–98.

    Article  MathSciNet  Google Scholar 

  10. Lin, HS, Xiao, J., Michaleswicz, Z. Evolutionary Algorithm for Path Planning in Mobile Robot Environments, Proc. of The First IEEE Conference on Evolutionary Computation, 1994:211–216.

    Google Scholar 

  11. Shibata, T., Fukuda, T., Kosuge, K., Arai, F. Selfish and Coordinative Planning for Multiple Mobile Robots by Genetic Algorithm, Proc. of the 31st Conference on Decision and Control, 1992:2686–2691.

    Google Scholar 

  12. Baba, N., Kubota, N. Collision Avoidance Planning of a Robot Manipulator by Using Genetic Algorithm-A Consideration for the Problem in which Moving Obstacles and/or Several Robots Are in the Workspace, Proc. of The First IEEE Conference on Evolutionary Computation, Vol.2, 1994:714–719.

    Google Scholar 

  13. Jung. D, Gupta, KK. Octree-Based Hierarchical Distance Maps for Collision Detection, Proc. of 1996 IEEE International Conference on Robotic and Automation, 1996:454–459.

    Google Scholar 

  14. Brooks, RA. Planning Collision Free Motions for Pick and Place Operation, Robotics Research, MIT Press, 1983:5–38.

    Google Scholar 

  15. Chang, Hsuan. A New Technique to Handle Local Minimum for Imperfect Potential Field Based Motion Planning, Proc. of 1996 IEEE International Conference on Robotic and Automation, 1996:108–112.

    Google Scholar 

  16. Zhao, CS, Farooq, M., Bayoumi, MM. Kinematic Motion Constraints in the Robot’s joint Space, Proc. of 1996 IEEE International Conference on Industrial Electronics, Control, and Instrumentation, 1996:1246–1251.

    Google Scholar 

  17. Kim, S., Kim, JH. Optimal Path Generation of Redundant Manipulator with Evolutionary Programming, Proc. of 1996 IEEE International Conference on Industrial Electronics, Control, and Instrumentation, 1996:1909–1914.

    Google Scholar 

  18. Oda, N., Murakami, T., Ohnishi, K. Observer Based Local Torque Optimization in Redundant Manipulator, Proc. of 1996 IEEE International Conference on Industrial Electronics, Control, and Instrumentation, 1996:1915–1921.

    Google Scholar 

  19. Davidor, Yuval. A genetic Algorithm Applied to Robot Trajectory Generation. In Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991:144–165.

    Google Scholar 

  20. Davidor, Yuval, Analogue Crossover, Proc. of The Third International Conference on Genetic Algorithm, 1989:98–103.

    Google Scholar 

  21. Lee, SW, Nam, YS, et al, Collision-Free Motion Planning of a Robot Using Safety Arc, Proc. of 1996 IEEE International Conference on Industrial Electronics, Control, and Instrumentation, 1996:232–237.

    Google Scholar 

  22. Hwang, YK, Chen, PC, Watterberg, PA. Interactive Task Planning through Natural Language, Proc. of 1996 IEEE International Conference on Robotic and Automation, 1996:24–29.

    Google Scholar 

  23. Kubota, N., Fukuda T, Shimojima, K. Trajectory Planning of Cellular Manipulator System Using Virus-Evolutionary Genetic Algorithm, Robotics and Autonomous Systems 19, 1996:85–94.

    Article  Google Scholar 

  24. Kubota, N., Fukuda T, Shimojima, K. Trajectory Planning of Reconfigurable Redundant Manipulator Using Virus-Evolutionary Genetic Algorithm, Procs. of The 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996:836–841.

    Google Scholar 

  25. Kubota, N., Shimojima, K., Fukuda T. The Role of Virus Infection in Virus-Evolutionary Genetic Algorithm, Journal of Applied Mathematics and Computer Science, Vol.6, No.3, 1996:415–429.

    Google Scholar 

  26. Ridley, M. Evolution, Massachusetts: Blackwell Scientific Publications, 1993.

    Google Scholar 

  27. Anderson, N. Evolutionary Significant of Virus Infection, Nature, Vol.227, 1970:1346–1347.

    Article  Google Scholar 

  28. Syswerda, G. “A Study Reproduction in Generational and Steady-State Genetic Algorithms.” In Foundations of Genetic Algorithms. Spatz, BM, ed. San Mateo: Morgan Kaufmann Publishers, Inc., 1991.

    Google Scholar 

  29. Jung, D., Gupta, K.K. Octree-Based Hierarchical Distance Maps for Collision Detection, Proc. of 1996 IEEE International Conference on Robotic and Automation, 1996:454–459.

    Google Scholar 

  30. Vukobratovic, M., Brovac, B., Surla, D., Stokic, D. Biped Locomotion, Springer-Verlag, 1990.

    Google Scholar 

  31. Kawaji, S., Sawasa, K. Dynamical Walk of Biped Locomotion Robot with Characteristic Rhythm, JAPAN/USA Symposium on Flexible Automation-Volume 1, ASME, 1992:745–752.

    Google Scholar 

  32. Osuka, K., Ikawa, Y., Ono, T. Legged Robot Emu: Development of Emu-1, JAPAN/USA Symposium on Flexible Automation-Volume 1, ASME, 1992:753–757.

    Google Scholar 

  33. Yamaguchi, J., Kinoshita, N., Takanishi, A., Kato, I. Development of a Dynamic Biped Walking System for Humanoid-Development of a Biped Walking Robot Adapting to the Humans’ Living Floor, Proceedings of the 1996 IEEE International Conference on Robotics and Automation 1996:232–239.

    Google Scholar 

  34. Fujimoto, Y., Kawamura. A. Proposal of Biped Walking Control Based on Robust Hybrid Position/Force Control, Proceedings of the 1996 IEEE International Conference on Robotics and Automation 1996:2724–2730.

    Google Scholar 

  35. Miller, MT, Kun, AL. On-line Adaptation for Dynamic Balance of a Biped Walking Robot, Center for System Science, Yale University 1995:219–223.

    Google Scholar 

  36. Arakawa, T., Fukuda, T. Natural Motion Trajectory Generation of Biped Locomotion Robot Using Genetic Algorithm through Energy Optimization, Procs. of The IEEE International Conference on Systems, Man, and Cybernetics, 1996:1495–1500.

    Google Scholar 

  37. Fukuda, T., Ueyama, T. Cellular Robotics and Micro Robotic Systems, World Scientific Series in Robotic and Automated Systems Vol.10, World Scientific, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fukuda, T., Kubota, N., Arakawa, T. (1997). GA Algorithms in Intelligent Robots. In: Pedrycz, W. (eds) Fuzzy Evolutionary Computation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6135-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6135-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7811-2

  • Online ISBN: 978-1-4615-6135-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics