Skip to main content

OWA Operators in Machine Learning from Imperfect Examples

  • Chapter
The Ordered Weighted Averaging Operators
  • 375 Accesses

Abstract

We show how Yager’s (1988) ordered weighted averaging (OWA) operators can be employed in (inductive) learning from examples which are assumed to be imperfect in the sense of errors, misclassifications, classifications to a degree, etc. We formulate the problem as to find a concept decription covering, say, almost all of the positive examples and almost none of the negative examples. Thus, by neglecting some examples, those errors are somehow “masked”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dietterich T.G. et al. (1981) Learning and inductive inference. In P.R. Cohen and E.A. Feigenbaum (Eds.): The Handbook of Artificial. Intelligence, Kaufmann, Los Altos, 323–525.

    Google Scholar 

  • Kacprzyk J. (1996) Fuzzy quantifiers and OWA operators in inductive learning from erroneous examples. Proceedings of FUZZ-TEEE96 — Fifth Intel-national Conference on Fuzzy Systems (New Orleans, USA), vol. 2, pp. 1382–1386.

    Chapter  Google Scholar 

  • Kacprzyk J. and C. Iwaéski (1990) Machine learning from misclassified and erroneous examples. Proc. of IPMU’ 90 Conference (Paris, France), pp. 213–215.

    Google Scholar 

  • Kacprzyk J. and C. Iwaéski (1991a) Machine learning from incomplete and imprecise examples. In B. Bouchon-Meunier, R.R. Yager and L.A. Zadch (Eds.): Uncertainty in Knowledge Bases, Springer-Verlag, Berlin, pp. 424–430.

    Google Scholar 

  • Kacprzyk J. and C. Iwaéski (1991b) Inductive learning under imprecision and errors. In R. Lowen and M. Roubens (Eds.): Proc. of 4th IFSA’ 91 Congress (Brussels, Belgium), Part AI, pp. 78–81.

    Google Scholar 

  • Kacprzyk J. and C. Iwaéski (1992a) Fuzzy logic with linguistic quantifiers in inductive learning. In V. Novak, J. Ramik, J. Mares, M. Cerny and J. Nekola (Eds.): Fuzzy Approach to Reasoning and Decision Making, Kluwor, Dordrecht and Academia, Praga, pp. 29–38.

    Chapter  Google Scholar 

  • Kacprzyk J. and C. Iwaéski (1992b) Fuzzy logic with linguistic quantifiers in inductive learning. In L.A. Zadeh and J. Kacprzyk (Eds.): Fuzzy Logic for the Management of Uncertainty, Wiley, New York, pp. 465–478.

    Google Scholar 

  • Kacprzyk J. and C. Iwaéski (1992c) Fuzzy quantifiers in inductive learning with perception of errors in data. Proceedings of FUZZ-IEEE ’92 — First International Conference on Fuzzy Systems (San Diego, USA), pp. 477–484.

    Google Scholar 

  • Kacprzyk J. and G. Szkatula (1995) Machine learning from examples under errors in data, in B. Bouchon-Meunier, R.R. Yager and L.A. Zadeh (Eds.): Fuzzy Logic and Soft Computing, World Scientific, Singapore, pp. 31–36.

    Chapter  Google Scholar 

  • Kacprzyk J. and G. Szkatula (1996) An algorithm for learning from erroneous and incorrigible examples. International Journal of Intelligent Systems 11, 565–582.

    Article  MATH  Google Scholar 

  • Kacprzyk J. and R.R. Yager (1985) Emergency-oriented expert systems: a fuzzy approach. Information Sciences 37 147–156.

    Google Scholar 

  • Kacprzyk J. and R.R. Yager (1990) Using fuzzy logic with linguistic quantifiers in multiobjective decision making and optimization: a step towards more human-consistent models. In R. Slowiéski and J. Teghem (Eds.): Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer, Dordrecht, pp. 331–350.

    Google Scholar 

  • Michalski R.S. (1983) A theory and methodology of inductive learning. In R.S. Michalski, J. Carbonell and T. Mitchell (Eds.): Machine Learning. Tiogii Press, Palo Alto, pp. 83–133.

    Google Scholar 

  • Yager R.R. (1988) On ordered weighted avaraging operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics SMC-18 183–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L.A. (1983) A computational approach to fuzzy quantifiers in natural languages. Computers and Mathematics with Applications 9 149–184.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kacprzyk, J. (1997). OWA Operators in Machine Learning from Imperfect Examples. In: Yager, R.R., Kacprzyk, J. (eds) The Ordered Weighted Averaging Operators. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6123-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6123-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7806-8

  • Online ISBN: 978-1-4615-6123-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics